Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

QFlux: Quantum Circuit Implementations of Molecular Dynamics
Victor S Batista
Yale University, Department of Chemistry and Yale Quantum Institute

Part lll: The QFlux Synthesis Pipeline

Every quantum algorithm depends on two operations:
preparing a state and implementing a unitary.
These are not physical problems — they 're synthesis problems.
How linear algebra is compiled as pulses applied to quatum hardware

https://aflux.batistalab.com

Part Ill.ipynb

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute

https://qflux.batistalab.com/
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/JCTC_III.ipynb

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

QFlux: Quantum Circuit Implementations of Molecular Dynamics
Victor S Batista
Yale University, Department of Chemistry and Yale Quantum Institute

Part lll: The QFlux Synthesis Pipeline

This tutorial is based on the manuscript

QFlux: Quantum Circuit Implementations for Molecular Dynamics

Part lll - State Initialization and Unitary Decomposition

Authors:

Alexander V. Soudackov, Delmar G. A. Cabral, Brandon C. Allen, Xiaohan Dan, Nam P. Vu, Cameron Cianci,
Rishab Dutta, Sabre Kais, Eitan Geva, and Victor S. Batista

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute

Flux

QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

The QFlux Synthesis
Pipeline

The backbone of QFlux

One pipeline for all simulations
State vectors - state
preparation
Generic unitaries - linear-
algebra factorizations
Diagonal operators - Walsh
synthesis

Reused across

closed and open systems

Victor S. Batista -

CLOSED SYSTEM DYNAMICS (PART I1)

Yale University -

INPUT OBJECT

state vector |y)
Hamiltonian H

Unitary U

Lindblad Generator
Lindblad Propagator G(1)

GENERAL UNITARY SYNTHESIS (PART IlI)

i«f

ly) — Uly)

Linear Algebra Factorizations

« Givens/QR (column-wise)

+ Column-by-Column decomposition

« Sosine-Sine decomposition (CSD)

+ Quantum Shannon decomposition (QSD)

controlled blocks + diagonal unitaries)

Recursive Path
. multiplexed Ry/Rz

STATE PREPARATION LAYER

[0...0) — |y)

Algebraic Path
« uniformly controlled rotations

hierarchical controls * closed-form angles

Purpose: amplitude + phase encoding

N

DIAGONAL UNITARY ENGINE (PART lll core)
c—ID

« Walsh-Fourier Expansion

« Gray Code Ordering

« Systematic CNOT cancellation

Optimal For:
« Phase Operators

- exp[—=iV], exp[-iZ®Z®...]

e—th
« Pauli-string decomposition
« Basis rotations (all-Z)

« Parity Phase circuits

. Q-SOFT: diag(V) « QFT « diag(T)

Reusing: generic unitaries + diagonal engine

OPEN SYSTEM EXTENSION (PARTS IV-VI)

Non-unitary — unitary on extended space

« Kraus operators

« Propagator superoperator G(f)

» Sz.-Nagy / SVD dilation

+ Q-SOFT: diag(V) «> QFT « diag(T)
Requires the full stack: :
state prep + unitary synthesis + diagonal synthesis)

-

Department of Chemistry -

Yale Quantum Institute 3

Quantum Dynamics Simulations

Victor S. Batista -

Method Selection: Which Tool When?

State preparation:

* Multiplexors = transparent, good for debugging
 UCRs - compact, compiler-friendly

Unitaries:

* Givens / QR - pedagogical baseline

e Column-by-column = practical

 (CSD/QSD = asymptotically optimal

Diagonal:

e Walsh + Gray code - NISQ-optimal

Yale University - Department of Chemistry - Yale Quantum Institute

QFlux: An Open-Source Python Package for

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

1 1 1
0 0 0

Target: |¢¥) = > Chiky. Ky |K1K2 - .. Kn)

kl,kz,...,kRE{O,l}

) =[(c1 0, e20) T

Goal: deterministic, exact preparation

Strategy: disentangle qubits one by one

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

oo |K1K2 - Kp)

\k1ks .. k1) ® [Cklkg...kn_lo 10) + Ciy ks k11 |1)]

\)
—

‘pkle..-kn—1> = Ckika...kp,—10 |O> T Ckika..kn_11 |]'>

_ itk ko...k
pk1k2---kn—1> = Tkiky..kp_,€ 27771 |0>

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

Multiplexor Intuition
R(n) — @ Ry(_eklkz---kn—l)RZ(_QOklkz---kn—l)
kl,...,kn_le{o,l}
R™ i) =) @ |0)
%)
qi1 : L[[1
Group amplitudes by last qubit | I
d2 :
|

1
Each conditional single-qubit state lies on ;/Li\ |¢(n_1)>
Bloch sphere Q2 '\{l_\

! L
Rotate each to | 0) using conditional rotations ¢,_; r %

L

Remove entanglement one qubit at a time

& HR.(~p) Ry (-0) | [0)

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute 7

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

What Is a Multiplexor?
For each bitstring of the control qubits, apply a different Ry—Rz pair to the target

A gate that applies different single-qubit rotations depending on controls

Block-diagonal structure:
- One rotation per control configuration
* Acts as “conditional disentangler”

1 from scipy.linalg import block_diag Script S.1.3: Part IlI ipvnb

2
3 def multiplexor_matrix(n, vector, bit=0):

4 bit = int/(bool(bit))]

5 multiplexor = None

6 for i in np.arange(@,2x%*n,2):

7 c@, cl = vector[i], vector[i+1]

8 theta, phi = compute_bloch_angles(c@, c1)
9 r = ry_matrix(bitxnp.pi - theta) @ rz_matrix(-phi)
10 multiplexor = block_diag(multiplexor, r) if multiplexor is not None else r
11 return multiplexor

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/JCTC_III.ipynb

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

Recursive Disentanglement Algorithm

Step 1: rotate last qubit > |0) Script S.1.5: Part lll.ipynb
Example: Three-Qubit State Preparation

Step 2: recurse on remaining n—-1 qubits

Script S.1.6: Part lll.ipynb

Example: Coherent Wavepacket State
Cost: ~2" CNOTs Preparation on a 6-Qubit System

Reverse the sequence to prepare |)

Script S.1.5: Example: Three-Qubit State Preparation

1 from numpy import linalg as LA

2 #np.random.seed(42)

3ng =4

4 ndim = 2%*nq

5 state_vector = (2xnp.random.rand(ndim)-1) * np.exp(1lj*2*np.pi*np.random.rand(ndim))
6 state_vector /= LA.norm(state_vector)

7 mrot = rotate_to_vacuum_matrix(state_vector)

8 rot_vector = mrot.dot(state_vector)

9 back_vector = np.conjugate(mrot.T).dot(rot_vector)

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute 9

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/JCTC_III.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/JCTC_III.ipynb

QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

Recursive Disentanglement Algorithm

Script S.1.4: Recursive Quantum Multiplexor Transformation

1
Ré)t

R:(zl)’r [l

]

2
R?(,)

RQ” ...

s,
RSy
oyl
R
=
Py
\v7y
=)
R
z
Py
vy

|@L)
(b) = éL

R@(éﬂ D Ry(éa) L Ry(é4) 1

1 R?(JQ) i 7 Ry(él)

What is the asymptotic cost? CNOT gates: 2" — 2n

Single-qubit rotations: O(2")

Victor S. Batista -

Yale University

Department of Chemistry - Yale Quantum Institute

10

QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

Victor S. Batista -

When to Use Multiplexors

Best for:

e Conceptual clarity

* Debugging pipelines

* Smalln

Tradeoff:

* Higher CNOT count

e Recursive, irregular structure

Yale University

Department of Chemistry - Yale Quantum Institute

11

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

PART B — UNIFORMLY CONTROLLED ROTATIONS (UCR)

Motivation for UCRs

 Same goal: prepare arbitrary
- iwl iwg in T
) = (ler]e™, [eale™2, ... [enle
* But:
* Non-recursive
* Regular layered structure

* Predictable gate counts

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute

12

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

Key Idea: Separate Phase and Amplitude

First, we make the state real and positive

e Step 1: remove all relative phases with uniformly controlled z-rotations R,

CONT
) = (Jeale™, [eale™?, ..., [enle™™)
Angles for phase equalization:
2k—1
. W(2j—1)2k=14] — W(j—1)2k41 . k
(aJ)z_; 2k—1) j_]-:"'azn
Ralt) = e(erlsleal, o lew)T Ra= ILET (2 00 400) @ Lo
=1
B D S SRS SHE— S—
FE (2 0) i . TI i t f
T T)i
k Bz A Rglo1) H Rz(oe) H Ralas) |-~ 4 Rylonr—2) H Rylan—1) H Rylan) |

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

Key Idea: Separate Phase and Amplitude

Second, we move probability mass across basis states.

* Step 2: redistribute amplitudes with uniformly controlled y-rotations R,
n

_ k—1 (]
Ry =11 Fi (v, _k11) ® Lpn-s
k=1
Angles for cancelling amplitudes: (with the least significant qubit set to 1)

k—1 _ 1D
\/252:1 |C(2j—1)2’“1—|—l|2) Rsz |¢> = € 0 ... 0>
VE e) g) = RERE (0. 0)

What is the asymptotic cost?

()5 =2 arcsin(

CNOT gates: 2"t2 — 4n — 4; Single-qubit rotations: 2712 — 5

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute 14

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

Gray Code

Control patterns reordered by Gray code -7 - -
Consecutive gates differ by one control bit
Enables: =M

* Minimal CNOTs

e Systematic cancellations

o—

Ra(6h) CL Re(62) 1D Re(63) \JD Re(04) D Re(05) GL Re(06) €

3/
31/
3/
&

R¢(67)

R.(0g)

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute 15

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

When to Use UCRs

In practice, this is your default state-preparation engine
Clean, compact, and hardware-friendly

* Best for:
e Scalable synthesis
* Automation
* Compiler pipelines
* Cost:
* Fewer CNQOTs than multiplexors

* Analytic angles

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute 16

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

PART C — GENERIC UNITARY DECOMPOSITION

Problem: Arbitrary Unitary Synthesis

* |Input: U € SU(2")
* Goal: decompose into 1- and 2-qubit gates

e (Constraint: minimize CNOT count

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute 17

QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

Givens Rotations (QR Intuition)

Classical QR - eliminate off-diagonal entries column by column

Quantum version:

e Two-level rotations

e (Cancel one element at atime

Victor S. Batista -

7
Gk =

Yale University

Tjk =
k .
! !
| | \
g, -------- Uy, ------
| . l ' E
Uji -~ Uki ------
I ., l .
W,

Department of Chemistry -

1 Ui Ufz‘
VIUGP +106l?\ —U,: U

— k

—J

Yale Quantum Institute

18

QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

U

el arg(det U)/4I\

7

* X X X
* X X ¥

* X X X

Victor S. Batista -

Givens Rotations (QR Intuition)

Example: [4x4] unitary matrix U

* k% % x k ok) 1 0 0 O

*\ 1Gug3 ¥ k% kx| 1G3, * k% ok x| Gy, 0 x % =

" Bl IR T e L

* 0 * *x x 0 x *x x 0 * *x x%
*

1 0 0 0 1 000 1 0 00

EGi) 0 * *x % E} 01 0 0363 [0 1 00

0 * *x x 0 0 x =« 0 010

0 0 x = 0 0 % =% 0 0 01

U = expliarg (detU) /4] I'G}5'GL,' G} *Gl 5°GY ° Gl

Yale University

Department of Chemistry

Yale Quantum Institute

19

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

Gray Code Makes It Implementable

* Reorder basis states by Gray code
* Each rotation couples states differing by one qubit

* Implemented as multi-controlled single-qubit gates
General formula:

N-1 N _ | v(+) = Gray-code permutation
N—i —iarg(det U)/N -
_H1 _111 B)Gv(j),v(j—l)] (e e I) Uv=1 (i.e., the integer value of a
1= J:?, . .
Gray-coded bitstring)

Example: 2 qubit unitary Part lll.ipynb (Scripts S.2.1-S.2.4)
1 T T]s N T}, T
7 [|
1 TR T ' Th ' Tha [

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute 20

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/JCTC_III.ipynb

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

Column-by-Column Decomposition (CCD)
State preparation on every column

 Apply reverse state 1. Rotate its first column to |0) (state preparation):

preparation to each column Ro Uy |0> = |0> with Uy := U
- Protect previously fixed 2. Rotate the second column of U; := RoU, to 1) :

columns with extra controls R1U;y |1> = |1> with Ry |0> = |0>

3. Rotate subsequent columns analogously:

(, f ol i f R U: 7)) = |7) wi .

U= R{RL -+ Rha_y D i Ui l3) = 13) with Uy == R;U;

R i) = |i) for all ¢ < j.

with D = Rgn_l /

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute 21

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

—
Column-by-Column Decomposition (CCD)
State preparation on every column
* [*] *] 1] 07 07 07 0] 07 07
| * E 0 0 0 * * * * * 1
* ; 8 0 0 x| o] 0 0 0 0
_|* A d 0 0 * * * 0 0 0
U0y =10 =1l — 1=l — lol — o RoUIL) =110l — tol — lol — lol — lo
% | 0] 0 0 0 * * * * 0 0
* * 0 0 0] o] 0 0 0 0
* 0] 0 0] 0] % * 0] 0] 0 0]
| | | |
: T T RO ; i T ? R i
| | | l |
| | | |
: T R® D : : T R® (2) D :
: : | j :
— R® i — R® : i
| | | |
U |0) 10) RoU [1) 1)
Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute 22

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

CSD & Quantum Shannon Decomposition

* Recursively split unitary into blocks

e Push all control into single-qubit multiplexed rotations

O B CAA CIE

5| (2
Cosine-Sine Decomposition (CSD): U = =
Wi lon) {0 |4)\s] ¢f Lo

N -

o\:
)

—

AO@AI cos-sin blOCk By® B,

0 n—1 1 1
C = diag(cos %, ..., cos 2%) —_ T Ryf) T
6 n—1 — —
S = dlag(71 , Sin 22) _U_ ~ B, @ B, I Ao @ Ay
Applying CSD vely t e — %———;
ppLymng recursivelty Lo — T I
A0$A1 andBo$B] o T — e

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute 23

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

CSD & Quantum Shannon Decomposition

* Recursively split unitary into blocks

e Push all control into single-qubit multiplexed rotations

Quantum Shannon - (V| 0\ (D 0\(W‘ 0\ W — DUy
Y-] = , — 1
Decomposition (QSD): ko ‘ V} ko DT} k 0 ‘ W}
0 Uy| O
0 | Uy T
The middle block D @D’ is a R - w il Vi
diagonal multiplexor and maps to — :—L——::
a single multiplexed R_(¢) on the N | 1 B

most significant qubit

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute 24

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

CSD + Quantum Shannon Decomposition

* Recursively split unitary into blocks

e Push all control into single-qubit multiplexed rotations

B) R

<
—~

9) R,

Va

-
112

(¢
|
W I Vi
_ T
4

[+ H 11—
=
1+ H—1—

What is the asymptotic cost? CNOT gates: CSD: O(4") (smaller constants)
Optimized QSD: 224™ — 32" + O(1)

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

PART D — DIAGONAL UNITARIES
Special Case: Diagonal Operators
* Arisein:
Best method: Walsh decomposition
o o-iHt

Part lll.ipynb Section S.3.6: Walsh Synthesis of eV (@)t
* Phase oracles for a unitary of a Double-Well Potential

* Lindblad dilation

Scripts S.3.1-5: U :=diag(e'/*)

Rz _
qoo T I —02212
R R, _;;
q 0 1 —4 .85 f— 05 -0.0g'fa
q0, - Rz Rz Rz Rz _L
—-0.0683 0.0828 —-0.145 —-0.345

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute 26

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/JCTC_III.ipynb

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

Walsh + Gray Code = NISQ-Optimal
Expand diagonal operator in Walsh basis U =el
Order terms by Gray code F = diag(fo, ..., for_1) real
Systematic CNOT cancellation 2" —1

F = i W
Cost: O(2") entangling gates ;) 77

on—1 w;=Z{'®Z R @ ZJ
U — H eiajwj
7=0 aj = 2_nﬂ(WjF)

Each factor €' %" is efficiently realized with one

single-qubit Z-rotation and at most 2n CNOT¥ j = (31 .. _jn)z is the binary label
Ordering terms by a Gray code cut two-qubit cost , n o an_l
from naive O(n2") to roughly O(2") in practice J = 2= 02

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute 27

Flux QFlux: An Open-Source Python Package for
Quantum Dynamics Simulations

Take-Home Messages

» State prep and unitary synthesis are the backbone of all simulations
e Operator structure determines optimal circuits
* QFlux provides:

e Transparent algorithms

* Predictable scaling

* Reusable infrastructure

Victor S. Batista - Yale University - Department of Chemistry - Yale Quantum Institute

28

	Slide 1: QFlux: Quantum Circuit Implementations of Molecular Dynamics Victor S Batista Yale University, Department of Chemistry and Yale Quantum Institute
	Slide 2: QFlux: Quantum Circuit Implementations of Molecular Dynamics Victor S Batista Yale University, Department of Chemistry and Yale Quantum Institute
	Slide 3: The QFlux Synthesis Pipeline
	Slide 4: Method Selection: Which Tool When?
	Slide 5: PART A — STATE PREPARATION
	Slide 6: PART A — STATE PREPARATION
	Slide 7: Multiplexor Intuition
	Slide 8: What Is a Multiplexor?
	Slide 9: Recursive Disentanglement Algorithm
	Slide 10: Recursive Disentanglement Algorithm
	Slide 11: When to Use Multiplexors
	Slide 12: PART B — UNIFORMLY CONTROLLED ROTATIONS (UCR)
	Slide 13: Key Idea: Separate Phase and Amplitude
	Slide 14: Key Idea: Separate Phase and Amplitude
	Slide 15: Gray Code
	Slide 16: When to Use UCRs
	Slide 17: PART C — GENERIC UNITARY DECOMPOSITION
	Slide 18: Givens Rotations (QR Intuition)
	Slide 19: Givens Rotations (QR Intuition)
	Slide 20: Gray Code Makes It Implementable
	Slide 21: Column-by-Column Decomposition (CCD)
	Slide 22: Column-by-Column Decomposition (CCD)
	Slide 23: CSD & Quantum Shannon Decomposition
	Slide 24: CSD & Quantum Shannon Decomposition
	Slide 25: CSD + Quantum Shannon Decomposition
	Slide 26: PART D — DIAGONAL UNITARIES
	Slide 27: Walsh + Gray Code = NISQ-Optimal
	Slide 28: Take-Home Messages

