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We present the experimental discovery of multiple simultaneous degeneracies in the spectrum
of a Kerr oscillator subjected to a squeezing drive. This squeezing, in combination with the Kerr
interaction creates an effective static two-well potential in the frame rotating at half the frequency of
the sinusoidal driving force. Remarkably, these degeneracies can be turned on-and-off on demand,
and their number is tunable. We find that when the detuning ∆ between the frequency of the
oscillator and characteristic frequency of the drive equals an even multiple of the Kerr coefficient K,
∆/K = 2m, the oscillator displays m+ 1 exact, parity-protected, spectral degeneracies, insensitive
to the drive amplitude. The degeneracies stem from the unusual destructive interference of tunnel
paths in the classically forbidden region of the double well static effective potential that models
our experiment. Exploiting this interference, we measure a peaked enhancement of the incoherent
well-switching lifetime creating a super-protected cat qubit in the ground state manifold of our
oscillator. Our results demonstrate the relationship between degeneracies and noise protection in
quantum systems.

Introduction – Degeneracies and their connection to
symmetries play a pivotal role in physics. This connec-
tion leads to the emergence of noise-protected manifold
of states for encoding and processing quantum informa-
tion. For example, topological quantum systems exhibit
global symmetries that result in degenerate ground states
with inherent protection against local noise [1]. To error-
correct a quantum computation, the information must
be protected by a symmetry such that the environment
is blind to any unitary taking place within the manifold
of states [2, 3].

Atoms, like the hydrogen atom, exemplify the connec-
tion between symmetries and degeneracies through en-
ergy level degeneracies connected to spherical symme-
try [4, 5]. Superconducting circuits implement artifi-
cial atomic and molecular physics Hamiltonians with the
virtue of in-situ tunability of parameters [6]. The pursuit
of noise protection has led to the proposal and investi-
gation of complex novel circuits, such as the 0− π qubit
[7], whose near-degenerate qubit states are endowed with
inherent resilience to decay and dephasing. However, the
realization of such protected qubits often demands strin-
gent circuit parameters.

In this work, we demonstrate an alternative approach
to achieving circuit-level noise protection by employing a
simple quantum nonlinear system, and engineering tun-
able spectral degeneracies within it. Our system consists
of a sinusoidally-driven underdamped nonlinear oscilla-
tor. We realize a quantum double well with multiple
degeneracies that can be turned on and off simply by
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varying the frequency of the drive. Specifically, when the
detuning ∆ between the frequency of the oscillator and
the characteristic frequency of the drive equals an even
multiple of the Kerr coefficient K, ∆/K = 2m, the os-
cillator displays m + 1 exact, parity-protected, spectral
degeneracies that are insensitive to the drive amplitude.
Remarkably, these degeneracies correspond to the com-
plete suppression of tunneling for excited states below
the barrier in a double-well potential of finite height [8].

Our experiment not only realizes for the first time, an
elementary quantum optical system investigated theoret-
ically [8–10] and uncovers new properties but also demon-
strates new means to fight decoherence [11]. Specifically,
we show that the quantum states at the bottom of the
double well form a qubit manifold with a peaked inter-
well transition lifetime, a phenomenon we name super-
protection, while remaining addressable. Thus, this qubit
provides the basis for fault-tolerant syndrome measure-
ment in quantum error correction [12, 13].
Model system – We introduce our experimental system

as a sinusoidally driven superconducting quantum circuit
oscillator described by the time-dependent Hamiltonian

Ĥ(t)/~ = ωoâ
†â+

g3
3

(â+ â†)3 +
g4
4

(â+ â†)4

− iΩd(â− â†) cosωdt,
(1)

where ωo is the small oscillation frequency and g3, g4 �
ωo are the third and fourth-rank nonlinearities of the
oscillator, â is the bosonic annihilation operator, and
where the drive is specified by its amplitude Ωd and
frequency ωd. Equation (1) models a SNAIL transmon
that is charge-driven at frequency ωd. It is the electri-
cal circuit analog of an asymmetric mechanical pendu-
lum capable of three and four-wave mixing [14]. The
experimental setup has been described in [15]. The
drive is configured so that its second subharmonic ωd/2
lies in the vicinity of the SNAIL transmon resonance at
ωa = ωo + 3g4 − 20g23/3ωo +O(g33/ω

2
o).
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Under an approximation beyond the rotating-wave
that captures the averaged behaviour of this rapidly
driven nonlinear superconducting circuit, the dynamics
governed by Eq. (1) is well-described by the static effec-
tive Hamiltonian [15–17]

Ĥ/~ = ∆â†â−Kâ†2â2 + ε2(â†2 + â2). (2)

Equation (2) corresponds to an elementary quantum sys-
tem: a Kerr oscillator dressed by a squeeze-drive. In
Eq. (2), the detuning parameter is given by
∆ = ∆bare + δac, where ∆bare = ωa − ωd/2, with
|∆bare| � ωa, and where δac corresponds to the ac
Stark shift: δac = (6g4 − 9g23/ωo +O(g33/ω

2
o))|Π|2, where

|Π| = Ωdωd/(ω
2
d − ω2

o). For our system, we measure
ωa/2π = 6.035 GHz. The Kerr coefficient arises from
the bare g3 and g4 nonlinearities of the circuit, which are
themselves controlled in situ by a magnetic field, and is
given by K = 10g23/3ωo − 3g4/2 + O(g33/ω

2
o)). In our

experiment, we measure it to be K/2π = 316.8 kHz
(see Fig. 1). A crucial component of the experiment,
the squeezing drive amplitude ε2 = g3|Π|, is generated
by the near-resonant three-wave mixing process between
one drive excitation and two oscillator excitations. Due
to the relatively small K compared to a standard trans-
mon [6], our experiment has a negligible ac Stark shifts
for ε2/K <∼ 1, so that in this regime δac/K <∼ 1%.
Therefore, in this regime, ∆ can be approximated by
∆bare = ωa − ωd/2. By taking K to provide the natu-
ral units for our system, the Hamiltonian is completely
determined by only two dimensionless parameters: ∆/K
and ε2/K, where the former is controlled by the drive fre-
quency and the latter is directly proportional to the drive
amplitude. We thus have independent real-time control
of all relevant Hamiltonian parameters. Lastly, in our
experiment, the single-photon lifetime of the undriven
SNAIL transmon is T1 = 20 µs and the Ramsey coher-
ence between its lowest-lying eigenstates is T2R = 3.8 µs.

Experiment and results – We first experimentally
demonstrate the cancellation of tunneling in the ground
state manifold. In Figure 1A, we show the classical
limit of the energy surface associated with Eq. (2) for
∆/K = 3, ε2/K = 0.11, as a function of phase-space
coordinates. The arrows indicate the two WKB tunnel-
ing paths [18]. Furthermore, we show in Figure 1B, the
wavefunctions corresponding to the ground state mani-
fold. Note that these are not the energy eigenstates but
their even and odd superpositions, which are localized in
the left and right wells. Importantly, in the classically
forbidden region, marked in grey, oscillations accompany
the expected decay of the wavefunctions [8]. To observe
coherent cancellation of tunneling in the ground state
manifold, we prepare a localized well state and mea-
sure its tunneling probability as a function of time for
different values of ∆ and ε2. We present the measure-
ment protocol in Figure 1C. The preparation is done by
rapidly turning on the squeezing drive until an amplitude
of ε2/K = 8.7 is reached. We subsequently wait for 5T1

for the system to relax to its steady state in the presence
of the squeezing drive and measure, in a quantum nonde-
molition (QND) manner, the quadrature containing the
which-well information. This measurement projects the
system into one of the wells. It is done by the microwave
activation of a parametric beam splitter interaction be-
tween the squeeze-driven Kerr oscillator and a readout
resonator strongly coupled to a quantum-limited ampli-
fier chain. We refer the reader to [15] for experimen-
tal details, where the preparation-by-measurement pro-
cedure for our system was introduced. This readout pro-
tocol yields a stabilized fluorescence signal revealing the
quadrature measurement outcome, while the squeezing
drive sustains the circuit oscillation. After the prepa-
ration, we adiabatically lower the squeezing drive ampli-
tude in a duration 1.6 µs>∼ π/K.1 The depth of the wells,
which increases with ε2/K (see supplement), is then re-
duced so that the tunnel effect becomes observable. We
then wait for a variable amount of time before adiabat-
ically raising the squeezing drive amplitude to its initial
value. Finally, we measure which well the system has
adopted.

The data for this tunneling measurement is shown in
Figure 1D, where we interpret the oscillating color pat-
tern as tunnel-driven Rabi oscillations. The periodic can-
cellation of tunneling at ∆/K = 2m, where m is a non-
negative integer, is clearly visible as a divergence of the
Rabi period. We extract the tunneling amplitude |δE|
from our data by fitting the oscillation frequency with an
exponentially decaying sinusoid and plot this frequency
in Figure 1E, where the data-point color corresponds to
the value of ε2 (see supplement for calibration of ε2).
The black lines, obtained from an exact diagonalization
of the static effective Hamiltonian Eq. (2), correspond to
the energy difference between levels in the ground state
manifold. The cancellation of tunneling for the ground
state manifold in a parametrically modulated oscillator
was predicted by [8] where, using a semiclassical WKB
method, the authors found that this multi-path interfer-
ence effect is due to, and accompanied by, oscillations
of the wavefunction crossing zero in the classically for-
bidden region. Here, we find good agreement between
our experiment and their WKB prediction (see supple-
ment). Note that, across the zero of the tunneling am-
plitude, the bonding and anti-bonding superposition of
well states alternate as the ground state. Specifically, for
∆/K = 4m + 1, the ground state is the bonding super-
position of well states (see supplement). In Fig. 1F, we
further plot the extracted decay time of the tunneling os-
cillations as a function of ∆, and find sharp peaks when
∆/K = 2m, besides an overall continuous increase of the

1 Note that this adiabaticity condition pertains to the gap between
the ground and first excited pair of states. We do not need to be
adiabatic with respect to the two tunnel split states within the
ground state manifold since they have opposite parity and the
parity preserving squeezing drive will not couple them.
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FIG. 1. Tunnel-driven Rabi oscillations in the ground state manifold and their periodic cancellation. A Energy
surface associated with Eq. (2) in the classical limit for ∆/K = 3 and ε2/K = 0.11. The orbits shown with black lines are
obtained by semiclassical action quantization and represent the ground states (see supplement). Bidirectional arrows represent
the two interfering WKB tunneling paths. B Cut of the energy surface in A at p = 0 (see supplement). The classically
forbidden region is marked in grey. The left and right localized wavefunctions are indicated in red and blue. C Pulse sequence
for D. The pink line represents the squeezing drive at frequency ωd and the purple lines represent the preparation and readout
drives at frequency ωd/2 − ωr. D Time-domain Rabi oscillation measurement of inter-well tunneling probability (color) as a
function of ∆bare, taken here as ∆ (see text), for ε2/K = 0.11, 0.22, 0.44, and 0.88. The extracted tunneling amplitudes from
D are shown as open circles in E. The black lines in E correspond to the transition energy between the lowest eigenstates
obtained from an exact diagonalization of Eq. (2). A comparison of the extracted tunneling rate with a semiclassical WKB
calculation is presented in the supplement. Green arrows in E denote the condition for constructive interference of tunneling
and correspond to the measurements shown in Figure 2. We extract the value of the Kerr coefficient K from this data and note
that it is consistent, within experimental inaccuracies, with an independent saturation spectroscopy measurement of the Fock
qubit in the absence of the squeezing drive (see supplement). F Decay time of the tunnel-driven Rabi oscillations for different
values of ∆ and ε2 in D. Sharp peaks in the decay time are clearly visible for ∆/K = 2m, m being a non-negative integer.

decay time with ∆ and ε2. The peaks at ∆/K = 2m
arise from the degeneracies in the excited state spectrum
at this condition and are discussed later in the text.

Importantly, the dynamics of the two-level system in
Figure 1D suggest a new type of bosonic encoding of in-
formation that we call the ∆-Kerr-cat qubit. The north
and south poles of the corresponding Bloch sphere, a gen-
eralization of the ∆ = 0 one [15, 17, 19], is defined by
the cat states formed by the lowest pair of eigenstates of
Eq. (2). In this picture, a tunnel-Rabi cycle in Figure 1D
for a fixed ∆/K 6= 2m corresponds to a travel along the
equator. For ∆/K = 2m, this travel is prohibited. Note
that when ∆/K = 2m + 1, the tunneling amplitude is
maximum and is first-order insensitive to fluctuations of
∆.

From Figure 1E, we also see that, besides the discrete
cancellation of tunneling at ∆/K = 2m, tunneling in
the ground state manifold is overall continuously reduced
with both ∆ and ε2. This reflects the well-known symme-
try of the double well, which is broken by tunnel coupling.
The approximate symmetry is restored with increasing
∆ and ε2 because both parameters explicitly control the
barrier height and thus exponentially control the tunnel-
ing amplitude |δE|. Theory predicts that the larger the
detuning ∆, the faster the tunneling reduction with the
squeezing drive amplitude ε2 (see supplement). We have
measured this effect by measuring the tunneling ampli-
tude as a function of ε2 for different constructive tunnel-
ing conditions corresponding to ∆/K = 2m + 1. The
data is presented in Figure 2. The exponential insensi-
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FIG. 2. Exponential reduction of tunnel splitting as a
function of ε2 in the ground state manifold. Extracted
tunnel splitting (open circles) for the first five local maxima
in Figure 1E as marked by the color coded arrows. Experi-
mental sequence as in Figure 1E. For the raw color data, see
Figure 3 in the supplement. Black lines are obtained from
a Hamiltonian diagonalization of Eq. (2) with no adjustable
parameters. For comparison with a semiclassical WKB cal-
culation, see supplement. Note that for small tunneling am-
plitude, dissipation plays a relevant role and the Hamiltonian
model used here is insufficient.

tivity, around ∆ = 0, to fluctuations of ∆ due to a noisy
ωa, as a function of ε2, was predicted by [19] and thus
proposed as a resource for quantum information. This
insensitivity was a key motivation for realizing the Kerr-
cat qubit experimentally [17]. The insensitivity of the
ground state manifold to detuning as a function of ε2 is
directly observed here for the first time. Note from Fig-
ure 1E that for ∆ < 0, in the parameter regime ε2/K < 1,
the tunneling amplitude |δE| is weakly dependent on ε2,
whereas for ∆ > 0, it is strongly dependent on ε2. This
weak dependence for ∆ < 0 is expected since the barrier
height vanishes for small values of ε2/K.2 Our finding
shows that new operating points at even, positive values
of ∆/K will increase the resilience of ground-state qubit
encoding to detuning-like noise.

Moving to the pairs of excited states above the ground
state manifold, do they also present observable degen-
eracies as a function of ∆/K? In order to deepen
our understanding of this problem, we first examine
the classical energy surface associated with Eq. (2) via
the period doubling phase diagram [20] shown in Fig-
ure 3A. In the classical limit (see supplement), the
parameter space spanned by ∆/K and ε2/K is di-
vided by two phase transitions located at ∆ = ±2ε2.
The different phases are characterized by the number
of stable nodes (attractors) in the classical metapoten-
tial and we refer to them as the single-, double-, and
triple-node phases. These phases correspond to different
metapotential topologies. We show them as contour line

2 In the absence of dissipation, the metapotential acquires two
wells as soon as ε2, ∆ > 0, i.e. there is no threshold for bifur-
cation of the driven oscillator. In our quantum experiment, this
threshold is finite but is, relatively speaking, extremely small
since and is set by ε22 > (∆2 + T−2

1 /4)/4 (see [14]).

insets in Figure 3A, representing classical orbits. The
single-node phase occurs for ∆ < −2ε2, and presents
only one well. For ∆ ≥ −2ε2, the oscillator has bifur-
cated and the classical metapotential acquires two wells.
In the presence of dissipation, these wells house stable
nodes. The emergent ground state manifold has been ex-
ploited, for ∆ = 0, in the Kerr-cat qubit [15, 17]. In the
interval −2ε2 ≤ ∆ < 2ε2, an unstable extremum (saddle
point) appears at the origin. For ∆ ≥ 2ε2, the saddle
point at the origin splits into two saddle points and an
attractor reappears at the origin. The barrier height of
the classical metapotential is given by (∆ + 2ε2)2/4K
in the double-node phase and by 2ε2∆/K in the triple-
node phase (see supplement). To count the number of
excited states that have sunk under the barrier, we fur-
ther introduce in Figure 3B a semi-classical phase di-
agram of the squeeze-driven Kerr oscillator. Following
the Einstein-Brillouin-Keller method, which generalizes
the notion of Bohr orbits, we quantize the action en-
closed in the metapotential well below the height of the
barrier and obtain the number of in-well excited states.
In Figure 3C, we present the corresponding orbits in the
energy surface for a fixed value of ε2/K = 2.17 and four
values of ∆/K. We validate this simple, semiclassical pic-
ture with a fully quantum mechanical calculation of the
Wigner functions of localized states in the ground and
excited state manifold (see supplement). It is clear from
this analysis that, by increasing ε2 and ∆, and therefore
the barrier height, not only the ground state manifold but
even the excited state manifolds become progressively en-
sconced in the wells, and we thus expect the tunneling
between the wells to be drastically reduced.

Besides the overall continuous reduction of tunneling,
the excited state manifold of the squeeze-driven Kerr os-
cillator experiences a discrete cancellation of tunneling
when ∆/K = 2m. Since the squeezing interaction pre-
serves photon parity, levels belonging to the even and odd
sector of the Kerr Hamiltonian remain decoupled and re-
peatedly cross at values of ∆/K corresponding to even
integers. This braiding induces m + 1 perfect degenera-
cies at ∆/K = 2m. Moreover, the corresponding eigen-
states have a closed-form expression in the Fock basis.
Remarkably, these features are independent of the value
of ε2, reflecting a particular, unappreciated symmetry of
our Hamiltonian Eq. (2) (see supplement).

Both the discrete cancellation and the overall continu-
ous reduction of tunneling now in the excited state man-
ifold of the squeeze-driven Kerr oscillator is accessed by
performing spectroscopy measurements as a function of
∆, which we show in Figure 3F for ε2/K = 2.17. The
measurement protocol is shown in Figure 3D. We pre-
pare a localized well state in a manner that is similar
to the protocols of Figures 1 and 2. To locate the fre-
quency of the excited states, we apply a probe tone at
variable frequency in the vicinity of the SNAIL trans-
mon resonance ωa and measure the well-switching prob-
ability. When the probe is resonant with a transition to
a state close to the barrier maximum, this probability
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FIG. 3. Spectroscopic measurements of coherent and periodic cancellation of tunnel splitting in the excited
state spectrum. A Classical phase diagram for the Kerr oscillator with parametric squeezing, also called the period-doubling
bifurcation diagram. B Quantum phase diagram to count in-well excited states. White lines separate single-node, double-node,
and triple-node phases. Colors represent contours of constant action on the energy surface associated with Eq. (2). Dashed pink
line corresponds to ε2/K = 0.88, the maximum value of squeezing drive amplitude in Fig. 1. Dashed black line corresponds
to ε2/K = 2.17, the value of squeezing drive amplitude used in Figs. 3F and 3G. Energy surfaces for ε2/K = 2.17 and (i)
∆/K = 0.5, (ii) ∆/K = 3, (iii) ∆/K = 5, and (iv) ∆/K = 7. Bohr-like obits are indicated as black curves (see supplement
for more details). D Pulse sequence for F. The green line represents the weak spectroscopic probe tone at frequency ωpr. The
pink line represents the squeezing drive at frequency ωd and the purple lines represent the preparation and readout drives at
frequency ωd/2 − ωr. E Pulse sequence for G. F (upper panel) Frequency-domain measurement of well-transition probability
(color) via excited states as a function of ∆ for ε2/K = 2.17. The power of the perturbative spectroscopic probe is increased
as ωpr is decreased to compensate for the lower matrix element connecting the ground state with the higher excited levels,
yet is kept weak enough to preserve the parity conservation rules of Eq. (2). F (lower panel) Dashed lines plotted on top of
experimental data (same as in upper panel) correspond to transition energies obtained by performing an exact diagonalization
of Eq. (2) with no adjustable parameters. The Kerr coefficient is calibrated via time-domain measurements in Figure 1E. G
Measured well-switching time under incoherent environmental-induced evolution as a function ∆ for ε2/K ≈ 2.17. Background
color in G marks the number of excited states per well following semiclassical orbit quantization.

is increased. The experimental results are shown in Fig-
ure 3F. The colored dashed lines (orange and blue) in the
lower panel are obtained from an exact diagonalization
of the static effective Hamiltonian Eq. (2) with no ad-
justable parameters. The crossings of levels are marked
with circles. The data also shows that the level crossings
are accompanied by a continuous reduction of the braid-
ing amplitude with ∆. The corresponding reduction of

the tunnel splitting is the manifestation associated with
a generic double-well Hamiltonian while the braiding re-
flects interference specific to our particular Hamiltonian,
resulting from its underlying driven character. The level
of experimental control achieved allows us to observe in
this data the joint presence of the exact discrete sym-
metry and the approximate continuous symmetry in our
bosonic system.
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FIG. 4. Color plot of TX as a function of ∆/K and
ε2/K. White line marks the transition from a two-node to
a three-node metapotential. Black solid lines mark contours
of constant barrier height. Increasing both ∆/K and ε2/K
yields fastest enhancement in TX as predicted by Figure 3B.
The additional enhancement by the coherent cancellation of
excited state tunneling at ∆/K = 2m stands out. The pulse
sequence for the measurement is shown in Figure 3E.

An important consequence of the cancellation of tun-
neling in the excited state spectrum is the periodic en-
hancement of the well-switching time under incoherent
environment-induced evolution. This time scale corre-
sponds to the transverse relaxation time, TX , of a new
bosonic qubit: a ∆-variant of the Kerr-cat qubit [14, 19]
as mentioned earlier. To measure TX , we prepare a local-
ized well state by measurement, and wait for a variable
amount of time before measuring the which-well infor-
mation. We show the pulse sequence in Figure 3E. We
obtain TX by fitting a decaying exponential function to
the measured well-transition probability for each value
of ∆ and plot the result in Figure 3G. Note that we
have chosen the squeezing drive amplitude, identical to
that of Figure 3F, as ε2/K = 2.17. Around values of
∆/K corresponding to even integers, the variation of TX
presents sharp peaks. The location of the peaks corre-
sponds to the degeneracy condition in the excited state
spectrum, associated with coherent cancellation of tun-
neling and the blocking of noise-induced well-switching
pathways via the excited states. The systematic right-
offset δ̃/K of each peak from an even integer, is 15%.
About 5% can be attributed to the ac Stark shift δac for
this photon number, given the accuracy of our knowledge
of the experimental parameters. We do not have an ex-
planation for the remaining 10%, but we suspect it could
be explained by higher-order terms in our static effective
Hamiltonian. Note that this explanation is still compat-
ible with the perfect alignment of the cancellation points
with even integers in Figure 1F for ε2/K < 1, since for
that case the ac Stark shift is negligible. Note also that
this offset could provide access, within experimental ac-

curacy, via the ac Stark shift, to the nonlinear parameters
of Eq. (1).

The data in Figure 3G also shows that the discrete
peaks are accompanied by a monotonic baseline increase,
a direct manifestation of the overall continuous tunnel-
ing reduction in the spectrum versus ∆. The background
colored stripes represent the number of in-well excited
states found via the action quantization method dis-
cussed above and in the supplement. Continuing with
this semiclassical picture, we interpret the slowdown in
the growth of TX for ∆/K >∼ 5 as the slowdown in the
growth of the barrier height as one crosses over from the
double-node, where the barrier height ∝ (∆ + 2ε2)2, to
the triple-node phase, where the barrier height ∝ ∆ε2.
Indeed, this is the quantum manifestation of the classical
phase transition from the double-node to the triple-node
phase.

Thus, whether the theoretical framework is classical,
semiclassical, or quantum, the predicted TX will increase
with both ε2 and ∆. While ε2 and ∆ contribute via
the overall continuous reduction of tunneling [15], only
∆ controls the discrete cancellation of tunneling. We
verify this prediction by measuring TX while varying si-
multaneously both Hamiltonian parameters. We present
the result of this experiment in Figure 4. We further
plot contours of constant barrier height in black, and
the expected separation between the double-node and
triple-node metapotential as a white line. The system
lying deeply in the quantum regime, we do not expect
any sharp features along this line. As expected, follow-
ing the gradient of the barrier height, one observes the
fastest gain in TX , with a maximum of TX = 1.3 ms
for ∆/K = 6 and ε2/K = 4. Increasing the lifetime
by increasing ε2 presents limitations, since strong drives
are known to cause undesired effects in driven nonlinear
systems (see [21, 22] and supplement).

One could argue that ∆ = 0 provides an important
factorization condition that guarantees that the ground
state manifold is spanned by exact coherent states (see
[19] and supplement). Indeed, this is an asset for quan-
tum information, since these states are eigenstates of the
single-photon loss operator â [23]. However, this desir-
able property is traded for the advantages discussed ear-
lier when ∆/K = 2m, m ≥ 1. Even if the ∆-variant
of the Kerr-cat qubit suffers from quantum heating and
quantum diffusion [18, 24, 25] at zero temperature result-
ing from the squeezed nature of its ground states, these
effects are small and, as we show in the experiments re-
ported here and in [15], the well-states of the Kerr-cat live
longer than its ∆ = 0 parent, even at finite temperature.

Discussion – Although quantum tunneling was discov-
ered nearly a century ago [26] and observed since in a
variety of natural and synthetic systems, the treatment
of tunneling is usually limited to the ground states of the
system and has rarely been discussed for excited states
in the literature, as we elaborate in the following survey.
The phenomenology of ground state tunneling has been
studied in cold atoms [27] in three-dimensional optical



7

lattices [28], optical tweezers [29], ion traps [30] and in
quantum dots [31]. In Josephson tunnel circuits, quan-
tum tunneling of the phase variable was first observed
by Devoret, Martinis, and Clarke [32] and since then ex-
ploited in several other experiments [33]. Furthermore,
the tunnel effect has been involved in quantum simula-
tion [34], in Floquet engineering of topological phases
of matter and to generate artificial gauge fields with no
static analog [35, 36]. The quantum interference of tun-
neling for the ground states of a large spin system was
measured previously in a cluster of eight iron atoms by
Wernsdorfer and Sessoli [37] (see also [38]).

Weilinga and Milburn [9] first identified that the quan-
tum optical model in Eq. (2) exhibits ground state tun-
neling for a particular value of ∆. Marthaler and Dyk-
man [8, 18] developed a WKB treatment for a range of
the ∆ parameter, and predicted that, for this model,
the tunnel splitting of the ground state manifold crosses
zero periodically and is accompanied by oscillation of the
wavefunction in the classically forbidden region.

Our work is the first experimental realization of the
longstanding theoretical proposals of the last paragraph.
It is similar, but different, to the phenomenology of the
“coherent destruction of tunneling”, discovered theoreti-
cally by Grossmann et al. [39] and observed experimen-
tally in cold atoms [40, 41]. Indeed, the dynamical tun-
neling in our experiment is in sharp contrast with photon-
assisted or suppressed tunneling in weakly driven double-
well potentials. Firstly, our tunneling is completely dy-
namical, i.e., the tunneling barrier vanishes in the ab-
sence of the drive. Secondly, and most importantly, our
work extends the coherent cancellation of tunneling to
all the excited states in the well. The periodic resonance
condition ∆/K = 2m, shared for the m + 1 first pairs
of excited levels, is independent of the drive amplitude.
Remarkably, under this multi-state resonance condition,
the first 2(m+ 1) oscillator states have a closed-form ex-
pression in the Fock basis (see supplement). We further
emphasize that the dynamical tunneling in our work is
distinct from chaos-assisted dynamical tunneling [42] ob-
servations made in ultracold atoms over three decades
ago [42, 43]; remarkably our strongly driven nonlinear
system remains integrable. To the best of our knowl-
edge, our work corresponds to the discovery and the first
demonstration of the exact simultaneous cancellation of
the tunnel splitting for the ground and excited states.
Our data featuring the incoherent dynamics can be qual-
itatively modeled by a Lindbladian treatment that we
present in the supplement, yet more research on the de-
coherence of driven nonlinear driven systems is needed
to get a quantitative agreement (see [22]).

As a resource for quantum information, the squeeze-
driven Kerr oscillator for ∆ = 0, was identified in theory
proposals by Cochrane, Milburn, and Munro [44] and
Puri, Boutin, and Blais [19] due to its exponential re-
silience to low frequency noise and was proposed for a
bosonic code. The code was implemented for the first
time in circuits [17]. Bistability for non-zero ∆ was pre-

dicted by Roberts and Clerk in [45]. Our work demon-
strates this bistability experimentally through the life-
time peaks in Fig. 3G and explains the peaks as a fin-
gerprint of the observed spectral degeneracies in Fig. 3F.
Furthermore, the resilience to noise in the non-zero ∆
case is demonstrated through Fig. 1E and Fig. 2.

Conclusion – We have observed multiple degeneracies
between pairs of states in a quantum double-well sys-
tem, resulting from the interplay of quantum tunneling
and quantum interference. Our work showcases the tun-
ability of these degeneracies in number and the ability
to rapidly activate or deactivate them. Furthermore, we
have identified the drive frequency as a critical control
parameter, governing not only a discrete exact symme-
try in Eq. (2), manifested as exact degeneracies, but
also a continuous approximate symmetry that leads to
an overall exponential reduction of tunnel splitting in
both ground and excited states of our oscillator. This
high degree of quantum control culminates in a signifi-
cant reduction of incoherent well-flip dynamics, enabling
the creation of a super-protected cat-qubit—the ∆-Kerr-
cat qubit. Our demonstration of the continuous Z-gate
[12, 46] adds valuable capability to the single qubit gate-
set for cat qubits, offering new tools for quantum compu-
tation [15, 17, 19, 23, 46–49]. With comprehensive con-
trol over the parameter space of an individual squeeze-
driven Kerr oscillator and the ability to measure its spec-
trum as a function of these parameters, our system holds
immense significance in the theories of Quantum Phase
Transitions (QPT) [50], Excited State QPT (ESQPT)
[51], and Dissipative QPT (DQPT) [52]. Incidentally,
the phase portrait presented in Fig. 3A is very similar
to the one in Figure 1 in [53]. Moreover, our findings
underscore the potential of superconducting circuits for
simulating symmetries, providing the unprecedented ad-
vantage of in situ tunability. This breakthrough opens up
new research avenues in the simulation of atomic, molec-
ular, and nuclear physics.

A quasi-spin symmetry and an algebraic structure un-
derlying the measured degeneracies were recently discov-
ered by F. Iachello and will be discussed in a forthcoming
paper.

After our experiments were performed, we learned
that the degeneracies in our squeeze-driven Kerr oscil-
lator were studied theoretically by our colleagues in the
QUANTIC group in INRIA, Paris [11].
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[28] S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers,
A. Widera, T. Müller, and I. Bloch, Direct observation of
second-order atom tunnelling, Nature 448, 1029 (2007).

[29] A. Kaufman, B. Lester, C. Reynolds, M. Wall, M. Foss-
Feig, K. Hazzard, A. Rey, and C. Regal, Two-particle
quantum interference in tunnel-coupled optical tweezers,
Science 345, 306 (2014).

[30] A. Noguchi, Y. Shikano, K. Toyoda, and S. Urabe,
Aharonov–bohm effect in the tunnelling of a quantum
rotor in a linear paul trap, Nature communications 5, 1
(2014).

[31] T.-K. Hsiao, C. van Diepen, U. Mukhopadhyay, C. Re-
ichl, W. Wegscheider, and L. Vandersypen, Efficient or-
thogonal control of tunnel couplings in a quantum dot
array, Phys. Rev. Applied 13, 054018 (2020).

[32] M. H. Devoret, J. M. Martinis, and J. Clarke, Mea-
surements of macroscopic quantum tunneling out of the
zero-voltage state of a current-biased josephson junction,
Phys. Rev. Lett. 55, 1908 (1985).

[33] R. Vijay, M. Devoret, and I. Siddiqi, Invited review arti-
cle: The josephson bifurcation amplifier, Review of Sci-
entific Instruments 80, 111101 (2009).

[34] I. Bloch, J. Dalibard, and S. Nascimbène, Quantum sim-
ulations with ultracold quantum gases, Nature Physics
8, 267 (2012).

[35] N. Goldman and J. Dalibard, Periodically driven quan-
tum systems: effective Hamiltonians and engineered

gauge fields, Phys. Rev. X 4, 031027 (2014).

[36] K. Wintersperger, C. Braun, F. N. Ünal, A. Eckardt,
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The Supplemental text is organized as follows. In Section I, we detail the experimental calibration of Hamiltonian
parameters in Eq. (2) of the main text; specifically, in Section I we present a calibration of the squeezing drive ε2
and in Section II, we present a measurement of the Kerr coefficient K. In Sections III and IV, we present further
experimental results supplementing Figures 2 and 4 in the main text.

In Section V and the following sections, we switch gears and detail our theoretical models. First, in Section V
we formally introduce the notation employed throughout this work. We then present in Section VI two well-known
squeeze-driven Kerr oscillator Hamiltonians that were introduced in the literature and comment on the relationships
between them. In Section VII, we introduce the operator and phase space formulation of our particular squeeze-driven
Kerr oscillator effective Hamiltonian and discuss its classical limit.

In Sections VIIA, VIII and IX, we discuss distinct properties of this Hamiltonian and its eigenstates. Specifically,
in Section VIIA, we discuss the structure of lowest pair of well-localized wavefunctions for different Hamiltonian
parameter configurations and distinguish them from those of an ordinary quadratic + quartic double-well potential.
We present our semiclassical analyses, namely a WKB analysis of the tunnel splitting in Section VIIIA and an overview
of action quantization in Section VIII B to discuss the construction of quantized orbits. We discuss in Section IX
the robustness of the degeneracies in the squeeze-driven Kerr oscillator. In Section X, we present a simple Lindblad
model to capture the qualitative features of the experimentally measured transverse relaxation lifetimes TX of the ∆
variant of the Kerr-cat qubit.

Finally, in Section XI we present a self-contained tutorial and a concise introduction to the phase space formulation
of quantum mechanics.

I. CALIBRATING THE SQUEEZING DRIVE AMPLITUDE ε2

In this section, we present a measurement that provides an independent calibration of the squeezing drive amplitude
ε2. The pulse sequence is the following: We turn on the squeezing drive at ∆ = 0, for a variable amount of time t
during which we also turn on a Rabi drive at amplitude εx and frequency ωd/2 = ωa. The squeezing drive stabilizes the
Schrödinger cat states with well-defined parity, and the Rabi drive induces an oscillation in this cat-qubit. We perform
this experiment for different values of ε2 and measure X̂ = |C+〉〈C−|+ |C−〉〈C+|, where |C±〉 are the Schrödinger cat
states. This protocol was introduced in [1, 2] and we refer the reader to these works for further details. The result
of our experiment is shown in Figure S1A. From this experimental data, we extract a Rabi oscillation frequency
Ωx that is related to the amplitude of the Rabi drive as εx = Ωx(ε2 = 0)/2. The photon-number at ∆ = 0 |α|20 is
related to εx and Ωx as |α|20 = Ω2

x/16ε2x [1, 2]. In Figure S1B, we plot the experimental data and fit for the extracted
photon-number as a function of the digital control amplitude (DAC). With this result, we have a calibration of ε2 as
a function of the digital control amplitude (DAC) controlling the squeezing drive.

II. MEASURING THE KERR COEFFICIENT K

In this section, we detail a measurement of the Kerr coefficient K via saturation spectroscopy of the SNAIL
transmon. This measurement is performed in the absence of the squeezing drive. In the following text, the letters g, e,
and f index the ground, first excited, and second-excited states of the SNAIL transmon oscillator. In Figure S2, we
plot the response of the readout as a function of a probe tone, whose frequency is ωpr, and which we vary around the
ge transition frequency of the SNAIL transmon oscillator ωa corresponding to ε2 = 0. When the probe tone excites
the oscillator, the readout signal due to the dispersive coupling [3] changes. The two dips in Figure S2, from left to

∗Electronic address: jaya.venkat@yale.edu,rodrigo.cortinas@yale.edu; these two authors contributed equally.
†Present address: JILA, National Institute of Standards and Technology and the University of Colorado, Boulder, Colorado, 80309, USA;
Department of Physics, University of Colorado, Boulder, Colorado, 80309, USA
‡Electronic address: michel.devoret@yale.edu
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Figure S1: Calibrating ε2 with cat-Rabi oscillations. A Color plot of 〈X〉 as a function of the the digital control amplitude
(DAC) controlling the squeezing drive ε2 and duration of the Rabi drive. We find εx/2π = 144.93 kHz using the relation between
the Rabi amplitude and Rabi frequency for ε2 = 0, εx = Ωx(ε2 = 0)/2. A plot of |α|20 = ε2/K = Ω2

x/16ε2x [1, 2] as a function of
ε2 in DAC units. A line fit gives us a calibration of |α|20 = ε2/K as a function of the digital control amplitude (DAC) controlling
the squeezing drive.

right, correspond to a two-photon transition that excites the oscillator from g to f and to a resonant excitation of the
oscillator from g to e respectively. The gf/2 and ge resonances are located at (ωa −K)/2π and ωa/2π respectively.
Fitting the peaks and subtracting their locations yields a value of K/2π = (329.73±4.30) kHz. This value is consistent
with the value of K/2π = 316.83 kHz, where the latter is extracted from Figure 1E in the main text and is the value
for K used throughout the article.

experimental
data

fit

Figure S2: Readout response as a function of the frequency of the saturation (probe) tone. The two readout signal dips in
black correspond, from left to right, to the gf/2 transition, which is expected to occur at (ωa−K)/2π and to the ge transition
of the SNAIL transmon, which is expected to occur at (ωa)/2π. Here, gf/2 refers to a transition induced by two photons from
the probe. By fitting the experimental data, we find K/2π = (329.73± 4.30) kHz.
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Figure S3: Tunnel-driven Rabi oscillations in the ground state manifold and its exponential reduction as a
function of ε2; raw data. The transition probability as a function of ε2/K and time t for A ∆/K = 1, B ∆/K = 3, C
∆/K = 5, D ∆/K = 7, and E ∆/K = 9 respectively. This corresponds to the condition of constructive interference of tunneling
to occur. By progressively increasing ε2, there is a clear overall continuous reduction of the tunnel-driven Rabi oscillations.

III. EXPONENTIAL REDUCTION OF TUNNELING WITH ε2

In the main text, we claim that tunneling in the ground state manifold is overall continuously reduced with ε2. The
parameter ε2 controls the barrier height, which is given as (∆ + 2ε2)2/4K in the double-node phase and 2∆ε2/K in
the triple-node phase. Moreover, continuing this reasoning, the larger the detuning, the faster the tunneling reduction
as a function of ε2. In Figure S3, we present raw data to further support this claim. We present the measurement
protocol in Figure 1C of the main text and recall it for the sake of completeness. First, we prepare, by measurement,
a steady-state localized in one of the wells. Following this, we adiabatically lower the squeezing drive amplitude ε2.
Lowering the value of ε2 reduces the barrier depth, and thus the tunnel effect becomes observable. We then wait for
a variable amount of time before adiabatically re-raising ε2 to its initial value and finally do which-well readout.

In Figure S3, we present the measured transition probability as a function of ε2 for A ∆/K = 1, B ∆/K = 3, C
∆/K = 5, D ∆/K = 7, and E ∆/K = 9 respectively. It is clear from the data that the Rabi-frequency is overall
continuously reduced with ε2 and moreover, increasing ∆/K reduces the Rabi frequency further. We plot in Figure
2 of the main text the extracted tunneling amplitude |δE| from our data by fitting the oscillation frequency with an
exponentially decaying sinusoid. We find that the extracted tunneling amplitude is in excellent agreement with an
exact diagonalization of the static effective Hamiltonian and in good agreement with a WKB prediction of the tunnel
splitting within the expected regime of validity. See Figure S8 for more details.

IV. TRANSVERSE RELAXATION LIFETIME TX MEASUREMENTS

In Figure S4, we plot the transverse relaxation lifetime TX as a function of ∆bare = ωa − ωd/2 for different values
of ε2. Note that the photon-number at ∆ = 0 is given by |α|20 = ε2/K. Importantly, for large photon-numbers
ε2/K >∼ 6.5, we see that the peaks in lifetime start plateauing and even dropping. This effect is not captured by an
ordinary model of the Lindblad master equation as we discuss in Section X. The degradation of the T1 with readout
power has been observed for transmon qubits [5]. But other drive-induced effects such as multiphoton nonlinear
resonances are present in transmons and disentangling these various sources of lifetime degradation is nontrivial
[3, 5–8]. These spurious nonlinear resonances are largely absent in this our SNAIL conducting circuit for values of
ε2/K <∼ 5, thanks to negligible Kerr and stark shifts, but may plague our system for larger mean-photon numbers.
Due to this reasoning, ∆ might be a more effective knob to create states with large photon number [4]. Finally, the
squeeze-driven Kerr oscillator provides a perfect platform to investigate lifetime degradation under drives.
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Figure S4: Measurement of TX as a function of ∆bare = ωa − ωd/2 for representative values of squeezing drive
amplitude ε2. The measurement protocol is shown in Figure 3E of the main text. We observe a degradation of TX with
increasing ε2, as indicated by red boxes in the legend, and we show representative measurements here. On the other hand, we
see no degradation of TX with increasing ∆. This measurement indicates that ∆ might be a more effective knob to increase TX
than ε2 for cat-states with large photon-number [4]. B Low-power lifetime extracted from time-resolved measurements. The
data is presented as Figure 1F in the main text.

V. NOTATION

In this work, we note X̂ and P̂ the position-like and momentum-like coordinates with [X̂, P̂ ] = i~. We build
the dimensionless quadratures by introducing the zero point spread of the coordinates as Xzps and Pzps, respecting
XzpsPzps = ~/2. We further introduce the complex notation for the dimensionless quadratures as â = (X̂/Xzps +

iP̂ /Pzps)/2 and its conjugate operator â†, where [â, â†] = 1 and introduce the rescaled phase space quadratures as
x̂ =

√
λ/2X̂/Xzps =

√
λ/2(â+ â†) and p̂ =

√
λ/2P̂ /Pzps = −i

√
λ/2(â− â†), where [x̂, p̂] = iλ. These choices induce

the definitions xzps = pzps =
√
λ/2. Conversely, we have â = (x̂ + ip̂)/

√
2λ. At this point, λ is a dimensionless

rescaling parameter. We will connect it with the Hamiltonian parameters later, while discussing the classical limit
(λ→ 0) of our system, and thereby give it physical significance. It is also useful to compare our results with those of
[9], who have performed a WKB analysis of a driven oscillator. Thus, unless otherwise specified, λ should be taken
equal to unity λ = 1.

For a mechanical oscillator with mass m and spring-constant k, the small-oscillation frequency is ωo =
√
k/m

and the impedance is Zo = 1/
√
km. With this, we have Xzps =

√
~Zo/2 and Pzps =

√
~/2Zo. We further remark

that there is a direct correspondence between the mechanical harmonic oscillator and a linear LC circuit oscillator
[3, 10, 11] under the following relations. The mechanical position coordinate X̂ corresponds to the circuit flux Φ̂, the
mechanical momentum P̂ corresponds to the circuit charge Q̂, where [Φ̂, Q̂] = i~, the mechanical oscillator frequency
ωo =

√
k/m corresponds to the circuit oscillator frequency ωo = 1/

√
LC and the mechanical oscillator impedance

Zo = 1/
√
km corresponds to the circuit oscillator impedance Zo =

√
L/C which amounts to the identification of

the mechanical mass m with the circuit capacitance C and the spring constant k with the inverse inductance 1/L.
The expressions for the zero point spreads are given by Φzps =

√
~Zo/2 and Qzps =

√
~/2Zo. In circuits, it is

customary to introduce [3, 12] the reduced flux and charge coordinates: ϕ̂ =
√
λ2πΦ̂/Φ0 and N̂ =

√
λQ̂/2e so that

[ϕ̂, N̂ ] = iλ, where e is the charge quantum, and Φ0 = h/2e is the magnetic flux quantum.1 Their respective zero point
spreads ϕzps =

√
λ2πΦzps/Φ0 and Nzps =

√
λQzps/2e, and are related to the rescaled complex coordinate operators

by ϕ̂ = ϕzps(â
†+ â) and N̂ = −iNzps(â− â†) and ϕzpsNzps = λ/2. We summarize this notation in the following table

1 Note that in this case the non-dimensionalization of variables is done by fundamental constants and not by linear properties of the
oscillator. This comes at the price of a slight notation asymmetry over the reduced operators the electric and mechanical oscillators.
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Mechanical oscillator Circuit oscillator

X̂; P̂ Φ̂; Q̂

[X̂, P̂ ] = i~ [Φ̂, Q̂] = i~
ωo =

√
k/m ωo = 1/

√
LC

Zo = 1/
√
km Zo =

√
L/C

Xzps =
√

~Zo/2; Φzps =
√

~Zo/2;

Pzps =
√

~/2Zo Qzps =
√

~/2Zo
⇒ XzpsPzps = ~/2 ⇒ ΦzpsQzps = ~/2

â = 1
2

(
X̂
Xzps

+ i P̂
Pzps

)
â = 1

2

(
Φ̂

Φzps
+ i Q̂

Qzps

)

X̂ = Xzps
(
â+ â†

)
Φ̂ = Φzps

(
â+ â†

)

P̂ = −iPzps
(
â− â†

)
Q̂ = −iQzps

(
â− â†

)
[
â, â†

]
= 1

[
â, â†

]
= 1

x̂ =
√

λ
2

X̂
Xzps

= xzps
(
â+ â†

)
ϕ̂ =
√
λ2π Φ̂

Φ0
= ϕzps

(
â+ â†

)

p̂ =
√

λ
2

P̂
Pzps

= −ipzps
(
â− â†

)
N̂ =

√
λ Q̂

2e
= −iNzps

(
â− â†

)

xzps = pzps =
√
λ/2 ϕzps = 2π

√
λ

Φzps
Φ0

;Nzps =
√
λ
Qzps

2e

⇒ xzpspzps = λ/2 ⇒ ϕzpsNzps = λ/2

[x̂, p̂] = iλ [ϕ̂, N̂ ] = iλ

â = 1
2

(
x̂

xzps
+ i p̂

pzps

)
â = 1

2

(
ϕ̂

ϕzps
+ i N̂

Nzps

)

â = (x̂+ ip̂)/
√

2λ â =

(√
λ
2

ϕ̂
ϕzps

+ i
√

λ
2

N̂
Nzps

)
/
√

2λ

VI. THE RELATIONSHIP BETWEEN DIFFERENT SQUEEZE-DRIVEN KERR OSCILLATOR
MODELS IN THE LITERATURE AND THEIR CLASSICAL LIMIT

In 1993, Wielinga and Milburn [13] proposed a quantum optical model that they called the dynamical equivalent of
the double-well potential. The interest of the problem, to them, was that their model exhibited a double-well structure
in phase space, and quantum mechanical ground state tunneling between them. The Hamiltonian they addressed is

ĤWM = −K(â†â)2 + ε2(â†2 + â2). (S1)

In 2017, the theoretical discovery of the Kerr-cat qubit by Puri, Boutin, and Blais [14] relied on the fact that the
ground states of

ĤPBB = −Kâ†2â2 + ε2(â†2 + â2) (S2)

are fundamentally degenerate and exhibit no tunneling between two wells found in the classical limit (see also [15]).
This property can be understood by writing Eq. (S2) into the factorized form [14]

ĤPBB = −K(â†2 − ε2/K)(â2 − ε2/K), (S3)

from which it is evident that the two coherent states | ± α〉 with α =
√
ε2/K, which are the eigenstates of the

annihilation operator â, are also degenerate eigenstates of Eq. (S3). Since Eq. (S3) is negative-semidefinite and
ĤPBB| ± α〉 = 0, these states are the ground states.

Note that the Hamiltonians ĤWM and ĤPBB differ only by a commutator. Their shared classical limit can be
written as

Hcl = −Ka∗2a2 + ε2(a∗2 + a2)

= −K
(
x2 + p2

2

)2

+ ε2(x2 − p2).
(S4)

Since â†2â2 − (â†â)2 = â†â, we cast the Hamiltonian

Ĥ = ∆â†â−Kâ†2â2 + ε2(â†2 + â2), (S5)
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where we identify that ĤPBB and ĤWM are specific instances of Eq. (S5) with ĤPBB = Ĥ|∆=0 and ĤWM = Ĥ|∆=−K .
Note that taking ∆ 6= 0 breaks the simple factorization condition of Eq. (S3). Indeed, the presence of the â†â term
is the cause of ground state tunneling in ĤWM, and its absence is the cause of the complete coherent cancellation of
tunneling in ĤPBB. The lowest eigen-manifold of Eq. (S5) is plotted in Figure S5 while the excited state manifold of
Eq. (S5) is plotted in Figure S6.

In 2007, Marthaler and Dykman [9] treated a Hamiltonian similar to Eq. (S5), where ∆ was kept free for a fixed ε2.
This led to their prediction of periodic cancellation of tunneling amplitude for the ground state manifold as a function
of ∆. Their work inspired our experiment shown in Figure 1 of the main text. We discuss in detail the mapping of
their problem to ours in Section VIII.

In the following text, we discuss the quantum phase space representation of Eq. (S5).

VII. PHASE SPACE FORMULATIONS OF OUR EFFECTIVE HAMILTONIAN

Let us reconsider Eq. (S5). For its derivation starting from the circuit Hamiltonian, see appendix A of [2].
We obtain the phase space formulation of Eq. (S5) by taking the invertible Wigner transform [16] W as

x̂→W{x̂} = x; p̂→W{p̂} = p;

â→W{â} = a = (x+ ip)/
√

2λ; â† →W{â†} = a∗;

â†â→ a∗ ? a = a∗a− 1

2
=
x2 + p2

2λ
− 1

2
;

â†2â2 → a∗2 ? a2 = a∗2a2 − 2a∗a+
1

2

=
(x2 + p2)2

4λ2
− (x2 + p2)

λ
+

1

2
;

â†2 + â2 → a∗2 + a2 =
(x2 − p2)

λ
,

(S6)

where the Groenewold star product [17] is given by W{ÂB̂} = A ?B = A exp
(

1
2 (
←−
∂ a
−→
∂ a∗ −

←−
∂ a∗
−→
∂ a)

)
B. The Moyal

bracket [16, 18] over a and a∗ is defined as {{A,B}}a,a∗ = A?B−B?A so that we have {{a, a∗}} = 1. For a pedagogical
exposition on the phase space formulation of quantum mechanics, we refer the reader to Section XI and [16, 19, 20].
With Eq. (S6), we write Eq. (S5) in the phase space formulation of quantum mechanics, up-to coordinate-independent
terms, as

H = (∆ + 2K)

(
x2 + p2

2λ

)
−K

(
x2 + p2

2λ

)2

+ ε2

(
x2 − p2

λ

)
. (S7)

Note that Eq. (S7) is not equal to Eq. (S4) even when ∆ = 0 and λ = 1. We further rescale Eq. (S7) by −K/λ2 so
as to have a coefficient of order 1 for the nonlinear term and rearrange Eq. (S7) as

−Hλ2

K
=

(
x2 + p2

2

)2

− 2ε2λ

K

x2

2

(
1 +

(∆ + 2K)

2ε2

)
+

2ε2λ

K

p2

2

(
1− (∆ + 2K)

2ε2

)
. (S8)

By choosing the scale of phase space λ = K/2ε2 Eq. (S8) becomes

−Hλ2

K
=

(
x2 + p2

2

)2

− x2

2

(
1 +

∆

2ε2
+ 2λ

)
+
p2

2

(
1− ∆

2ε2
− 2λ

)
. (S9)

The term proportional to λ in Eq. (S9) involves a commutator, and corresponds to the Lamb shift. The classical
limit then consist in dropping this term. This is valid for λ � min(∆/2ε2, 1). This translates to ∆/K, ε2/K � 1.
In this limit, the WKB approximation is valid to treat Eq. (1) in the main text.

The interpretation of the Hamiltonian classical limit is that the elementary action element λ in the phase space
defined by x and p must be much smaller than the typical dimensionless action of the system determined by the
well-size parameters: ∆/K and ε2/K. As we discuss in what follows (see section Section VII 1 and [2]), under the
condition ∆/K, ε2/K � 1, the wells of the Hamiltonian are large in the sense that they encompass many action
quanta λ. Finally, note that for λ ≈ 1 the classical treatment should not hold.
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B CA D E

Figure S5: Lowest eigen-manifold of the squeeze-driven Kerr oscillator Wigner functions of lowest pair of eigenstates
of Eq. (S5) (top row) for ε2/K = 2 and A ∆/K = −6, B ∆/K = 0, C ∆/K = 2, and D ∆/K = 6 and ∆/K = 10 respectively.
∆/K � 0, the eigenstates are squeezed. For ∆/K � 0, increasing ∆/K yields Schrödinger cat states with increasing photon
number. This phenomenon manifests as the monotonically growing baseline in transverse relaxation lifetime TX in Figure 3 of
the main text.

We call the surface for H in Eq. (S9) the metapotential of the squeeze-driven Kerr oscillator, and the classical limit
for H in Eq. (S11) as the classical metapotential surface. Furthermore, as customary, we plot −H rather than H
to respect the familiar notion that in the presence of dissipation, stable equilibria correspond to well-bottoms rather
than hill-tops.

1. Properties of the metapotential surface

In the table below, we examine the properties of the metapotential surface. For details on the number of levels
inside the well, which we obtain via action quantization following the prescription of Einstein-Brillouin-Keller (EBK)
[21], see Section VIII B.

Phase → Double-node −2ε2 ≤ ∆ + 2K ≤ 2ε2 Triple-node ∆ + 2K > 2ε2
↓ Parameter

(x, p phase space)

Area (∆+2K)
K arccos

(
−(∆+2K)

2ε2

)
+ 2ε2

K

√
1−

(
(∆+2K)

2ε2

)2
4ε2
K

√
(∆+2K)

2ε2
− 1 + 2(∆+2K)

K arcsin
(√

2ε2
(∆+2K)

)

Levels per well (#) area/2π − 1/2 area/2π − 1/2

Approximation of # (∆+2K)/K
2 + ε2/K

π − 1
2

√
8ε2(∆+2K)

Kπ − 1
2

Distance b/w nodes 2
√

(∆+2K)+2ε2
K 2

√
(∆+2K)+2ε2

K

Distance b/w saddles 0 2
√

(∆+2K)−2ε2
K

Depth of nodes (∆+2K+2ε2)2

4K
(∆+2K+2ε2)2

4K

Depth of saddles 0 (∆+2K−2ε2)2

4K

Depth of barrier (∆+2K+2ε2)2

4K
2(∆+2K)ε2

K

A. Wavefunctions of localized well states

In this section, we examine closely the wave functions of the squeeze-driven Kerr oscillator in the classically forbidden
region and contrast them with those of an ordinary quadratic + quartic potential. We define the ordinary double-well
Hamiltonian as

H =
p2

2
+ V (x), with V (x) = −k2

2
x2 +

k4

4
x4,

where k2, k4 > 0. This potential has a saddle at xs = 0, with V (xs) = 0 and nodes at xn = ±
√
k2/k4 with the left

and right well depth given by V (xn) = −k2
2/(4k4). The barrier height is given by V (xn)− V (xs) = k2

2/(4k4).
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B C

A

D

Figure S6: Excited well states in the squeeze-driven Kerr oscillator Localized ground and excited states in the squeeze-
driven Kerr oscillator. A Period doubling phase diagram with equi-state contours. B - E. Wigner functions of exact eigenstates’
superpositions, corresponding to localized states, for ε2/K = 4, and B ∆/K = 1, C ∆/K = 4, D ∆/K = 7. The action
quantization formulation, detailed in Section VIII and summarized by Eq. (S16), predicts B 1,C 2,D 3 excited states in each
well. The Wigner functions of states outside this window are seen to have support in the other well too, and larger ∆ helps
localize them, thus validating the semiclassical picture discussed in Section VIII quantum mechanically.

The study of tunneling usually begins by considering a localized wave packet in one well, which is written as the
superposition of the wavefunctions of the two lowest laying energy states ψ+ and ψ−.2 Their energy difference is
denoted by δE = E+ − E− and the left- and right-localized wavefunctions read

ψl =
ψ+ + ψ−√

2
ψr =

ψ+ − ψ−√
2

. (S10)

On the left column of Figure S7, we plot the left and right-localized wavefunctions in red and blue respectively for A
k2 = 3, k4 = 1, B k2 = 2, k4 = 1, and B k2 = 4, k4 = 2 respectively. The wavefunctions are computed by numerical

2 From a perturbation theory point of view this corresponds to the bonding and anti-bonding of the decoupled well states [22]. The zero
point energy of the individual wells, in the absence of tunneling, is E0 =

√
k2/2. In the presence of tunneling the system’s energies can

be approximated by E± = E0 ± δE.
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diagonalization of the Hamiltonian. In the classically forbidden region, as one should expect, the wavefunctions display
evanescent decay [23].

In the right column of Figure S7, we contrast the localized wavefunctions of the ordinary double-well potential with
those of the squeeze-driven Kerr oscillator. The parameters ∆, K, and ε2 were chosen so that a cut of the effective
Hamiltonian surface at p = 0 yields an identical double-well potential as the left column. The wavefunctions of the full
squeeze-driven Kerr oscillator are computed numerically. Importantly, B, D, and F show the localized wavefunctions
for ∆/K = 0, 1, and 2 respectively, corresponding to the destructive, constructive, and again destructive interference.
Interestingly, in the classically forbidden region, in B and D, oscillations accompany decay in the wavefunction [9, 24].
This is due to the underlying driven nature of our system, providing a quartic term in momentum, which here reflects
in the oscillatory nature of the wavefucntions in the classically forbidden region.

VIII. SEMICLASSICAL ANALYSIS

In [9], Marthaler and Dykman calculated the tunnel-splitting between states comprising the ground state manifold
and found that the tunnel splitting vanishes periodically as a function of the drive frequency. We massage our phase-
space Hamiltonian function into a form resembling Equation 5 of Marthaler and Dykman [9] by rewriting Eq. (S7)
as

H = −K
λ2

[(
x2 + p2

2

)2

− x2

2

(
1 +

∆

2ε2

)
+
p2

2

(
1− ∆

2ε2

)]
(S11)

where their parameter µ = (∆ + 2K)/2ε2.

A. WKB calculation of tunnel splitting for the ground state manifold of eq. (1)

The expression for the tunnel splitting following the analysis in [9, 24] is given as

δE = f cos θ exp(−A), (S12)

where

f = 2

(
4ε2
K

)2(
K

π(∆ + 2K)

)1/2(
1 +

(∆ + 2K)

2ε2

)5/4

θ =
π

2

(
(∆ + 2K)

K
− 1

)

A =
2ε2
K

(
(∆ + 2K)

2ε2
+ 1

)1/2

− (∆ + 2K)

K
log

((
2ε2

(∆ + 2K)

)1/2

+

(
1 +

2ε2
(∆ + 2K)

)1/2
)
,

(S13)

where, the above expression is only valid for (∆ + 2K)/K � 1. There are two failure modes for the WKB approxi-
mation. The first condition corresponds to when ∆ <∼ K, and the other is when ε2/K � 1. Note that WKB works
remarkably well outside its domain of validity (ε2/K < 1). Compare to Figure S7, where the wavelength given by the
oscillation period of the wavefunction is of the same magnitude as the potential variation set by the interwell distance.
Note that we have applied the formula developed in [9] in a domain that lies beyond the parameter regime where it
was produced and we find remarkable agreement with data. The comparison between measured tunneling amplitude
and a WKB theory can be found in Figure S8.

B. Action quantization via Einstein-Brillouin-Keller (EBK) method

In this section, we present the semiclassical method of obtaining the number of in-well states via action quantization,
following the Einstein-Brillouin-Keller method, which generalizes the notion of Bohr orbits.

First, we introduce a polar-coordinate representation of Eq. (S11), which exploits its radial symmetry, as

Hcl =
∆r2

2
− Kr4

4
+ ε2r

2 cos 2θ, (S14)



10

B

C

A

D

E F

Figure S7: Localized wavefunctions of the ground state manifold in the position basis in A,C,E an ordinary
double well potential and in B, D, F for a squeeze-driven Kerr oscillator. The Hamiltonian parameters in A, C, and
E have been chosen to produce a double-well with the same depth and the well separation as those of B, D, and F respectively.
The value of ∆/K is chosen to be B ∆/K = 0, D ∆/K = 1, and F ∆/K = 2 corresponding to the destructive, constructive, and
destructive interference of tunneling respectively. In the right panel, oscillations accompany decay of the wavefunction in the
classically forbidden region, marked in grey. In the left panel, the wavefunction exhibits pure decay in the classically forbidden
region. In this sense, the cancellation of tunneling amplitude in fig 1 of the main text can be understood as the destructive
interference of the wavefunction in the classically forbidden region of the squeeze-driven Kerr oscillator. In [9], Marthaler and
Dykman found an analytical expression for the WKB tunnel splitting of the ground state manifold. See Section VIIIA for
the WKB expressions for the tunnel splitting and Figure S8B and D for comparisons of the extracted tunnel splitting from
experiment with their WKB theory.
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C

A

D

B

exact

WKB

exact

WKB

Figure S8: Experimentally extracted tunneling amplitude in the ground state manifold as a function of ∆ (A and C) and
ε2 (B and D) compared to two different theoretical models. Dots correspond to extracted level splittings from dynamical
measurements of the tunneling rate and correspond to the data presented in Figures 1C and 2 respectively. Solid lines in black
in A and B are obtained via exact numerical diagonalization. Solid blue lines in C and D are obtained via a semi-classical
WKB treatment developed by Marthaler and Dykman in [9, 24]. As expected, the semi-classical Hamiltonian model, in the
domain of its validity ∆/K � 1 and ε2/K ∼ 1, agrees well with the measured data.

where x = r cos θ and p = r sin θ, for r ≥ 0 and θ ∈ [0, 2π).
In a semiclassical treatment, a classical orbit Cj satisfying the following Einstein-Brillouin-Keller (EBK) quantization

condition [21]:
∫

Cj
dx dp = ~

(
Nj +

βj
4

)
, (S15)

plays a special role. On the left hand side of Eq. (S15), the action integral corresponds to the area enclosed by the
contour Cj . On the right hand side of Eq. (S15), the non-negative integer Nj ≥ 0 represents a quantum number and
βj is called a Maslov index; it counts the number of caustics encountered by the contour Cj . For an orbit in the
Kerr-cat metapotential, we have βj = 2. Thus the condition in Equation (S15) states that only those orbits whose
enclosed area satisfy a condition given by non-negative integers nj and βj = 2 correspond to allowed quantum orbits.

With this condition stated, one can ask a simple question: given a set of ∆, ε2, how many in-well or bound states
exist in the metapotential surface? This will be obtained by computing the number of allowed states at the separatrix,
which separates bound and unbound states.

From the calculations detailed in Sections VIII B 1 and VIII B 2, we find the number of bound states as

N ∼
{

∆/K
2 + ε2/K

π − 1
2 −2ε2 ≤ ∆ < 2ε2√

8ε2∆
Kπ − 1

2 ∆ ≥ 2ε2.
(S16)

We demonstrate in Fig. S6 the value of the semi-classical action quantization condition in predicting the locality in
phase space of even the excited states of the squeeze-driven Kerr oscillator.

1. Separatrix area in the double-node phase: −2ε2 ≤ ∆ < 2ε2

In the double-node phase, the separatrix has a special name called the Bernoulli’s lemniscate and its equation is
given as

r2 =
2∆

K
+

4ε2
K

cos 2θ, (S17)
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and −θc ≤ θ ≤ θc, where θc = 1
2 arccos −∆

2ε2
. We compute the area of a half the lemniscate as

∫

Cj
dx p =

1

2

∫ θc

−θc
dθ r2

=

∫ θc

0

dθ
2∆

K
+

4ε2
K

cos 2θ

=
∆

K
arccos

(−∆

2ε2

)
+

2ε2
K

√
1−

(
∆

2ε2

)2

∼ ∆

K

(
π

2
+

∆

2ε2

)
+

2ε2
K

(
1− 1

2

(
∆

2ε2

)2
)

|∆/2ε2| � 1

=
π

2

∆

K
+ 2

ε2
K

(S18)

Note that for ∆ = 0, Eq. (S18) reduces to 2ε2/K.

2. Separatrix area in the triple-node phase: ∆ ≥ 2ε2

The separatrix in the triple-node phase is given as

r2
± =

∆

K
+

2ε2
K

cos 2θ ± 4ε2 cos θ

K

√
∆

2ε2
− sin2 θ (S19)

and −θc ≤ θ ≤ θc, where θc = π
2 . When plotted, this separatrix carves a bean-like shape.

Remarkably, we find an exact analytic expression for the area of this surface as
∫

Cj
dx p =

1

2

∫ θc

−θc
dθ (r2

+ − r2
−)

=

∫ π/2

−π/2
dθ

4ε2 cos θ

K

√
∆

2ε2
− sin2 θ =

4ε2
K

∫ 1

0

dt

√
∆

2ε2
− t2

=
4ε2
K

√
∆

2ε2
− 1 +

2∆

K
arcsin

(√
2ε2
∆

)

∼ 2
√

8ε2∆

K
, ∆/2ε2 � 1.

(S20)

IX. DEGENERACIES IN THE SQUEEZE-DRIVEN KERR OSCILLATOR

A. Robustness of degeneracies

The squeeze-driven Kerr oscillator we have engineered has the remarkable property: for ∆/K = 2m, the first m+ 1
pairs of levels become decoupled from the rest of the oscillator’s Hilbert space. Their eigenenergies and eigenstates
become exactly solvable and present m+ 1 robust degeneracies in between states of different photon-number parity.
Critically, note that the resonance condition for these degeneracies is independent of the value of the squeezing drive
amplitude ε2.

First, to show this, we begin by considering the squeezing drive as a perturbation to the Kerr oscillator described
by the Hamiltonian ĤK/~ = ∆â†â −Kâ†2â2 which is exactly solvable: its eigenstates are Fock states |n〉 and their
energies are E(0)

n = ∆n−Kn(n−1), which, as a function of ∆, are lines with integer slope that we plot in the top row
of Figure S9A. The even(n)-odd(l) degeneracies read En = El and imply ∆/K = 2m where m = (n + l − 1)/2 ≥ 0
is any nonnegative integer. In the second row, we plot the transition spectrum with respect to the ground state at
ε2 = 0, which, due to the choice of rotating frame, corresponds to the highest energy eigenstate. This is the directly
experimentally observable transition spectrum from the ground state. We further note that the ground state changes
with ∆; remarkably, for ε2 = 0, at ∆/K = 2m, the ground state is (|m〉 + |m + 1〉)/

√
2. This special property of
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the squeeze-driven Kerr oscillator has technological applications [25]. In the following rows, we plot the transition
spectrum for increasing values of squeezing drive amplitude ε2.

Indeed, it is clear that the squeezing drive renormalizes the energies of the Kerr oscillator. Level crossings of the
Kerr oscillator with different parity remain exact crossings in the presence of the squeezing drive, since the interaction
preserves parity. However, the remarkable feature is that these crossings are locked to where ∆ equals an even multiple
of K. In the following text, we justify this property, first via a perturbative and then provide a to-all-order proof.

1. Perturbative analysis of degeneracies

To first order in perturbation theory, we see that this even and odd Fock states remain decoupled (energy level
crossings) under the parity conserving squeezing drive: E(1)

n = 〈n|(â†2 + â2)|n + 1〉 = 0. The condition for crossings
of consecutive levels with different parity (En = En+2) reads instead ∆/K = (2n+ 1). To first order in perturbation
theory, the avoided crossing amplitude is E(1)

n = ε2
√

(n+ 1)(n+ 2).
As a next approximation to the problem, we see the robustness of the crossings of consecutive levels with different

parity (at ∆ = 2nK) by computing the second order correction to the nth energy levels E(2)
n and comparing it to the

correction for the (n+ 1)th energy level

E
(2)
n+1 = ε22

(
(n+ 3)(n+ 2)

−2∆ + 2K(2n+ 3)
+

(n+ 1)n

2∆− 2K(2n+ 1)

)
,

to find that E(2)
n = E

(2)
n+1 for ∆/K = 2n. This robustness can be seen in Figure S9A (all panels), where we see

that the crossing shifts in energy but remains locked to ∆/K equal to even non-negative integers. The perturbation
theory argument is easily generalized to non-consecutive level crossings and anti-crossings to this order. A similar
perturbative argument was made in [25].

2. Non-perturbative analysis of degeneracies

To prove that the location of the degeneracies in ∆ is independent of the squeezing drive amplitude to all orders
we observe that we can write the Hamiltonian in Eq. (1) as

Ĥ = λ1(â†2 − α2)(â2 − α2) + λ2(â2 − α2)(â†2 − α2), (S21)

where, for ∆/K = 2m (m non-negative integer), we have λ1 = −K(1 + m/2), λ2 = mK/2 and α = ±
√
ε2/K, and

which is a generalization of the factorization condition proposed in [14] for ∆ = 0. We next consider the displaced
Hamiltonian Ĥ+ = D̂(+α)ĤD̂†(+α), which brings one of the wells to the origin of phase space. In this frame, the
Hamiltonian operator can be written as3

Ĥ+ =−K
(
â†2â2 + (4α2 + 2m)â†â

)

− 2Kα[â†â− (m+ 1)]â†

− 2Kα[â†â−m]â.

While the first line is number conserving, the next two lines couple only consecutive Fock states. In matrix form,
it is tridiagonal in the Fock basis |n〉. By examining the square brackets in the above expression, we see that the
off-diagonal elements are exactly zero for n = m and n = m+ 1. Thus, the first m+ 1 states decouple from the rest
of the oscillator’s Hilbert space. The finite matrix is Hermitian, negative-semidefinite, and tridiagonal so it is exactly
diagonalizable. Finally, we note that in phase space, a displacement of the metapotential surface, which is mirror-
symmetric about x = 0, is identical to an opposite displacement composed with a rotation of 180◦ around the origin.

3 Note that, without specializing ∆, one can directly write from Eq. (1) in the main text, or equivalently from Eq. (S21): Ĥ+ =
−K

(
â†2â2 + (4α2 + ∆/K)â†â

)
− 2Kα[â†â − (∆/2K + 1)]â† − 2Kα[â†â − ∆/2K]â. From this expression one can directly derive the

sub-space decoupling condition to be ∆/K = 2m, in an exact manner, without relying in perturbative calculation or any previous
knowledge existence of the resonance. The independence of the sub-space decoupling condition with respect to ε2 is explicit.
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A B

Figure S9: Robustness of degeneracies in the squeeze-driven Kerr oscillator. Spectrum of A Eq. (1) and B
Ĥ = ∆â†â − Kâ†2â2 + ε4(â†4 + â4) as a function of ∆/K for different values of ε2/K and ε4/K respectively. Dashed lines
mark ∆/K corresponding to even integers. Left panel indicates that even for non-perturbative values of ε2/K, the locations
of crossings of even (blue) and odd (orange) parity eigenstates occur at even values of ∆/K. Right panel indicates that even
for the parity preserving perturbation controlled by ε4/K, the locations of the crossings of even and odd parity states get
renormalized. Red circle tracks one such crossing.
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Since the photon-number parity operator Π̂ = eiπâ
†â commutes with the Hamiltonian ([Π̂, Ĥ] = 0) the rotation is a

symmetry of the system. Specifically; Ĥ− = D̂(−α)ĤD̂†(−α)⇒ Π̂Ĥ−Π̂ = Ĥ+. We thus have two sets of equivalent4
m+1 exactly solvable eigenenergies, and 2(m+1) linearly independent equations 5, which imply the existence of m+1

degeneracies in the spectrum for ∆/K = 2m. The 2(m + 1) eigenstates |ψ±k≤m+1〉 = D̂(±α)|φ±k≤m+1〉 of Ĥ, where
|φ−k≤m+1〉 = Π̂|φ+

k≤m+1〉 and Ĥ+|φ+
k≤m+1〉 = Ek≤m+1|φ+

k≤m+1〉, found in this way are not orthogonal, but thanks to the
two-fold degeneracy condition we can take the superposition of the right (+) and left (−) kth displaced state to get an
orthogonal basis in each of the m+1 two-fold degenerate sub-spaces: |C±k≤m+1〉 ∝ D(+α)|φ+

k≤m+1〉±D(−α)|φ−k≤m+1〉.
These 2(m+ 1) pairwise-degenerate eigenstates of energy are also eigenstates of parity6. In this work we name these
pairs of degenerate states the ∆-cats.

Note, that the robustness of the resonance condition is a peculiar symmetry property of the squeeze-driven Kerr
oscillator and not a property of generic Kerr parametric oscillators. The existence of this robust degeneracies begs the
question: what are the hidden symmetries associated with these degeneracies, if any? We show in Figure S9B, as an
example, the spectrum of Ĥ = ∆â†â−Kâ†2â2 + ε4(â†4 + â4), where the location in ∆ of the super-parity resonances
depend on the value of the parametric drive amplitude ε4. Note, also, that even if the multilevel resonances in
Figure S9B are displaced with the value of the parametric drive amplitude (red circles), they are locked together to
a running resonance condition: the point of exact solvability is changed by the drive. The phenomenon corresponds
to deep symmetries [26, 27] of these type of, as of now, engineerable bosonic Hamiltonians and will be discussed in
detail in a separate publication.

X. MODELING THE MEASURED TRANSVERSE RELAXATION LIFETIME TX

To model the transverse relaxation lifetime measurements TX of the Kerr-cat qubit, which we also refer to as the
well-switching lifetime of the Kerr-cat system, we use a standard Lindblad master equation as:

∂tρ̂ =
1

i~
[Ĥ, ρ̂] + κ(1 + n̄th)D[â]ρ̂+ κn̄thD[â†]ρ̂, (S22)

where ρ̂ describes the state of the system, n̄th = 1/(exp(~ωa/kBT ) − 1) corresponds to the temperature of the
environment and κ corresponds to the coupling between system and environment. The Hamiltonian Ĥ is given by
Eq. (S5) and the dissipator D of the operator Ô is given by D[Ô]• := Ô • Ô† − (Ô†Ô • + • Ô†Ô)/2. In Eq. (S22),
these operators correspond to single photon loss D[â] and gain D[â†] [28–30]. In Figure S10, we compare the data
presented in Figure 3 of the main text with the lifetime extracted from Eq. (S22) for different values of nth. The
value of κ has been set to κ = 1/T1 = 1/20 µs−1. The current model seems insufficient to accurately predict the
observations and more research is needed to understand the decoherence of nonlinear driven systems (see, for example,
[31]). Figure S10 emphasizes the need for further measurements and a detailed modeling of possible noise sources
affecting particularly driven qubits. See also the note at the end of Section XI. We also present, in Figure S11, the
expected TX as a function of ε2/K for different values of ∆. This plot indicates that a ∆-Kerr-cat, in general, gives
larger TX lifetimes than a Kerr-cat (∆ = 0).

4 Note that for the off-diagonal elements the parity transformation produces a minus sign (Π̂|n〉〈n± 1|Π̂ = −|n〉〈n± 1|) that manifests in
α→ −α: H+

n,n±1 = −H−n,n±1. This leaves the finite characteristic polynomial invariant.
5 The elements of the finite set of eigenvectors of Ĥ+, {|φ+

k≤m+1〉}k, are linearly independent from the finite set of eigenvectors of

Ĥ−, {|φ−k≤m+1〉}k, since they are spanned by the first m + 1 displaced Fock states in different directions (±, see text). Indeed, any

Fock state i that is displaced has support in all (undisplaced) Fock states j’s [? ]: for j > i the formula reads |〈j|D̂(±2α)|i〉| =(
i!
j!

)1/2
|2α|j−ie−2|α|2 |L(j−i)

i (4|α|2)| > 0, where L(j−i)
i is an associated Laguerre polynomial (note that the matrix element tends to

zero rapidly as |α|, or equivalently |ε2|, grows, while the decoupled subspace condition, and ultimately the proof itself, is independent
of these values for as long as they are non zero. If ε2 = 0, the proof is trivial and is given in the previous subsection). In other words,
the linear independence manifests here explicitly in that |φ±k≤m+1〉 have no defined parity, yet |φ+

k≤m+1〉 = Π̂|φ−k≤m+1〉 (note that

[Π̂, Ĥ±] 6= 0). Ultimately, |〈φ−k≤m+1|D̂†(−α)D̂(+α)|φ+
k≤m+1〉| = |〈φ

+
k≤m+1|D̂(2α)|φ+

k≤m+1〉| < 1 if |α| > 0.
6 Specifically Π̂|C±k≤m+1〉 = ±|C±k≤m+1〉 and are thus orthogonal. We used D̂(+α)Π̂ = Π̂D̂(−α).
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dataexperimental data

Figure S10: Lindblad simulations of TX as a function of ∆ for different thermal populations, corresponding to
Eq. (S22). Black dots correspond to experimental data presented in Fig. 3 G in the main text. The value of κ has been taken
as κ = 1/T1 = 1/20 µs−1 and the value of ε2 has been chosen as ε2/K = 2.17 to match the experimental data. The solid curves
take the experimentally observed ac Stark shift into account. An ordinary Lindbladian at non-zero temperature is insufficient
to predict the experimental data. Beyond-RWA effects may be important to consider [31]. See also [? ].

A B

Figure S11: Ordinary Lindblad simulations of TX as a function of ε2/K for different values of ∆/K„ corresponding
to Eq. (S22). For both A and B, the value of κ/K = 1/50 and n̄th = 0.05. In B for ε2/K < 2 the lifetime is limited by
ground state tunneling and is this not well captured by our simplified method.

XI. TUTORIAL ON THE PHASE SPACE FORMULATION OF QUANTUM MECHANICS

A full quantum mechanical treatment can be developed in phase space without incurring in any semiclassical
approximations [16–18]. For the sake of completeness, here we provide an overview on the mapping from operator-
valued Hilbert space to quantum phase space and a few elemental techniques and identities. We focus here on Wigner
phase space, and showcase that the Wigner transform is more than a visualization tool for states. We note that our
treatment can be equivalently extended to other phase space formulations [16, 19, 32–34].

From operator Hilbert space to Wigner phase space (and back)

The Wigner transform [35] of the density matrix ρ̂ is the Wigner function W (X,P ), where X and P are standard
phase space coordinates (not operators) with dimensions of position and momentum (see Section V for notation). We
write this as
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W{ρ̂} = W (X,P ).

Let us remind the reader of some crucial properties of the Wigner function. We have
∫∫

dXdP W (X,P ) = 1, (S23)

where each integral runs from −∞ to ∞ and we suppress the limits in the following text for simplicity. For a pure
state, we further have

h

∫∫
dXdP W (X,P )2 = 1, (S24)

where h = 2π~.
In general, we have

0 ≤ hn−1

∫∫
dXdP W (X,P )n ≤ 1, (S25)

which corresponds to the positivity of the density matrix.
Likewise, for a generic operator F̂ , we introduce the phase space function F (X,P ) = W{F̂}.
In this framework, the average value of an Hermitian operator F̂ can be written as

〈F̂ 〉 =

∫∫
dXdP F (X,P )W (X,P ). (S26)

The transformation W is invertible as appreciated by Groenewold [17]

W−1{W (X,P )} = ρ̂.

The inverse transformation W−1 is know as the Weyl transformation [36].
In general, the Weyl transformation is

ρ̂ = W−1{W} =
1

h

∫∫∫∫
dXdPdkdlW (X,P )e

i
~ (k(X̂−X)+l(P̂−P )), (S27)

where the characteristic function C(l, k) defined as

C(l, k) =

∫∫
dXdP e−

i
~ (kX+lP )W (X,P ), (S28)

is the Fourier transform of the Wigner function and C is dimensionless.
Another useful formula is

W (X,P ) =
1

h

∫
dq e−iqP/~〈X + q/2|ρ̂|X − q/2〉, (S29)

where ρ̂ is to be understood in the continuous position basis and therefore has the dimension of [1/position].
We now review simple operational rules to go from operator space to phase space functions and back without

performing cumbersome integrals.
The Wigner and Weyl transformation take a particularly simple form for binomial expansions

W{(αX̂ + βP̂ )n} = (αX + βP )n.

W−1{(αX + βP )n} = (αX̂ + βP̂ )n.

For non-symmetric expressions, the Wigner transform can be evaluated via a non-commutative Wigner phase space
product, the celebrated Groenwold’s star product.
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A. An introduction to the star product

We introduce the star product as

W(F̂ Ĝ) = W(F̂ ) ?W(Ĝ) = F (X,P ) ? G(X,P ), (S30)

defined as (the exponential of the Poisson bracket):

F ? G =
∞∑

n=0

n∑

k=0

(−1)k

n!

(
i~
2

)n(
n

k

)
∂kP∂

n−k
X F × ∂n−kP ∂kXG

≡ F exp

(
i~
2

(←−
∂ X
−→
∂ P −

←−
∂ P
−→
∂ X

))
G (S31)

= FG+
i~
2
{F,G}+ · · ·

Here F
←−
∂ XG = (∂XF )G and F

−→
∂ XG = F (∂XG), and we have introduced the Poisson bracket {F,G} = ∂XF∂PG−

∂PF∂XG. The star product can also be conveniently expressed in terms of complex-coordinates a and a∗ as

F ? G ≡ F exp

(
−1

2

(←−
∂ a∗
−→
∂ a −

←−
∂ a
−→
∂ a∗

))
G.

It generalizes to a system of many particles (or many modes) as

F ? G = F exp


 i~

2

∑

j

(←−
∂ Xj

−→
∂ Pj
−←−∂ Pj

−→
∂ Xj

)

G.

In Fourier space the star product becomes a phase factor: ?→ ei
~
2 (kXk

′
P−k′XkP ) [37]. This phase corresponds to an

oriented area in reciprocal phase space. This is the simplest manifestation of the noncommutativity of the algebra of
quantum mechanics in phase space.

Remarkably, the scalar product associated with the star product is the usual integral in phase space. For phase
space functions in the Wigner representation F and G, we have

∫∫
dXdP F (X,P ) ? G(X,P ) =

∫∫
dXdP F (X,P )G(X,P ). (S32)

Note however that in general for any F (X,P ), G(X,P ), and H(X,P ),
∫∫

dXdP F (X,P ) ? G(X,P ) ? H(X,P ) 6=
∫∫

dXdP F (X,P )G(X,P )H(X,P ). (S33)

For non-symmetric expressions in X̂ and P̂ , the above formulae can be employed to evaluate the Wigner transform.
For example

W{X̂P̂ P̂} = XP 2 + i~P

W{P̂ P̂ X̂} = XP 2 − i~P

W{P̂ X̂P̂} = XP 2.

We evaluate the Weyl transform of asymmetric expressions by symmetrizing it and replacing phase space functions
by their corresponding operators. For example

W−1{XP 2} =
1

3
(X̂P̂ P̂ + P̂ X̂P̂ + P̂ P̂ X̂).

To find the Weyl transform of a high-degree polynomial of X and P , the Weyl-symmetrized form might be too
tedious and McCoy [38] provided a shortcut to obtain polynomial expressions in the phase space representation. We
review McCoy’s formula in the next section.
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The McCoy formula for obtaining ordered operators from phase space functions

While a fully-symmetrized representation is usually inconvenient for polynomials of large degree, McCoy derived a
set of formulae [38], each corresponding to a different representation of a Weyl transform. Here, we present two of
them that yield operators that privilege the ordering of X̂ (or P̂ ).

Consider a phase space function F (X,P ). Its operator-valued correspondent F̂ in normal order with respect to X
is given by the McCoy formula [38] that reads:

F(X,P ) = e−i
~
2 ∂X∂PF (X,P )

F(X,P ) = F (X,P )− i~
2
∂X∂PF (X,P )− 1

2!

~2

22
∂2
X∂

2
PF (X,P ) + · · ·

F̂ = (NXF)|(X̂,P̂ ),

The functional (operator over real functions) NX is carried out by writing its arguments with X factors (or P
factors as indicated by the subindex of N ) to the left in each term and replace X,P with X̂, P̂ respectively. For
example, if F = XP , we have F = XP − i~2 which gives the correct and now ordered Hermitian expression for the
operator F̂ = X̂P̂ − i~2 = X̂P̂+P̂ X̂

2 .
The inverse transform, is simply given F (X,P ) = ei

~
2 ∂X∂PF(X,P ).

In terms of complex coordinates, a = 1√
2
(x+ ip) we adapt McCoy’s formula [38]:

F(a, a∗) = e
1
2∂a∂a∗F (a, a∗)

F̂ = (Na∗F)|(â,â†)

to get the normal ordered (with respect to a∗) result. For example, one has classically that 1
2 (x2 + p2) = a∗a. The

correct quantization reads F = aa∗ → F = aa∗ + 1/2→ F̂ = â†â+ 1/2.

Application to our Hamiltonian

If the Wigner phase space Kerr Hamiltonian reads H = ∆a∗a−Ka∗2a2 the corresponding operator is

F = a∗2a2 → F = a∗2a2 + 2a∗a+
1

2
→ F̂ = â†2â2 + 2â†â+

1

2
,

Ĥ/~ = (∆− 2K)â†â−Kâ†2â2,

where the oscillator frequency is renormalized by 2K. This is the Lamb shift, and its origin is in the non commu-
tativity of â and â†, i.e. the vacuum fluctuations.

Groenewold’s theorem

Note that W
{

1
i~ [F̂ , Ĝ]

}
= {{W(F̂ ),W(Ĝ)}} 6= {W(F̂ ),W(Ĝ)}. The quantum commutators do not correspond to

the Poisson brackets: the theorem [17] states that such a mapping does not exist. We provide a practical consequence
of the implications of this theorem to quantum Hamiltonian engineering in Appendix B of [39].
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Dynamics of the Wigner function: the Moyal equation

The von-Neumann equation ∂tρ̂ = 1
i~ [Ĥ, ρ̂] (the density-operator version of the Schrödinger equation) transforms

as

∂tW =
1

i~
(H ?W −W ?H),

∂tW = {{H,W}}.

Here H(X,P ) = W(Ĥ) is the Hamiltonian function and we have introduced the Moyal bracket notation [18]. We
refer the reader to [20] for a derivation of the equation of motion of the Wigner function from Schödinger’s equation
for the wavefunction without referring to the star product.

The exponential notation of the star product induces the name “Moyal sine bracket” since it can be written as

∂tW = H
2

~
sin

(
~
2

(←−
∂ X
−→
∂ P −

←−
∂ P
−→
∂ X

))
W.

Note that the Moyal equation is identical to Liouville equation plus quantum corrections coming from the expansion
of the sine to higher orders of ~.

∂tW = {H,W}+O(~2).

Interestingly, there is no corrections to O(~). Importantly, the quantum corrections are proportional to ~2 and to
the nonlinear terms in the Hamiltonian. For quadratic Hamiltonians, all the quantum corrections vanish: the higher-
order derivatives exterminate low-order polynomials (see the Appendix of [2]). Specifically, Gaussian transformations,
i.e., those generated by quadratic Hamiltonians in the phase space coordinates, are classical in the sense that they
are ruled by only the Poisson bracket. Thus, they would not develop negativities in the Wigner distribution if none
would be present at the beginning.

Phase space formulation for open quantum systems

So far, we have only discussed the phase space formulation for closed quantum systems. Indeed, one can extend
the treatment to open systems as we demonstrate below. The Lindblad equation for single photon loss is given by

∂tρ̂ =
1

i~
[Ĥ, ρ̂] + κâρ̂â† − κ

2
(â†âρ̂+ ρ̂â†â). (S34)

Using Eq. (S30) and Eq. (S31), we get the phase space formulation of Eq. (S34) as

W{∂tρ̂} = ∂tW,

W

{
1

i~
[Ĥ, ρ̂]

}
= {{W(Ĥ),W(ρ̂)}}

= {{H,W}}

W{âρ̂â†} = a ? W ? a∗

= aWa∗ +
1

2
∂aW +

1

2
(∂a∗(Wa∗) +

1

2
∂2
aa∗W )

W{â†âρ̂} =

(
a∗a− 1

2

)
? W

= aWa∗ − 1

2
W +

1

2
(a∗∂a∗W − a∂aW )− 1

4
∂2
aa∗W
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W{ρ̂â†â} = W ?

(
a∗a− 1

2

)

= aWa∗ − 1

2
W − 1

2
(a∗∂a∗W − a∂aW )− 1

4
∂2
aa∗W

Gathering all terms one directly gets

∂tW = {{H,W}}+
κ

2

(
∂2
aa∗ + ∂aa+ ∂a∗a

∗)W.

It is convenient to translate the above to x, p space

∂tW = {{H,W}}+
κ

2

(
∂2
x + ∂2

p + ∂xx+ ∂pp
)
W. (S35)

By expressing the equation in x, p space in Eq. (S35), the diffusion terms ∝ (∂2
x+∂2

p) and the drag terms ∝ (∂xx+∂pp)
associated to the fluctuation and the dissipation become evident. Note, that the Moyal sine bracket has only odd
derivatives: the diffusion (∂2

x + ∂2
p) cannot be canceled by Hamiltonian dynamics.

For finite temperature n̄th, the Lindblad master equation is

∂tρ̂ =
1

i~
[Ĥ, ρ̂] + κ(1 + n̄th)D[â]ρ̂+ κn̄thD[â†]ρ̂, (S36)

where the dissipator D of the operator Ô is given by D[Ô]• := Ô • Ô† − (Ô†Ô •+ • Ô†Ô)/2.
It is straightforward to show that in the phase space formulation, Eq. (S36) reads

∂tW = {{H,W}}+
κ

2
(∂aa+ ∂a∗a

∗)W + κ

(
1

2
+ n̄th

)
∂2
a∗aW, (S37)

which reads in x, p space as

∂tW = {{H,W}}+
κ

2
(∂xx+ ∂pp)W +

κ

2

(
1

2
+ n̄th

)(
∂2
x + ∂2

p

)
W. (S38)

Equation (S38) is the quantum version of the Fokker-Planck equation, with the Poisson bracket replaced by the Moyal
bracket and a quantum diffusion term corresponding to the zero point spread.

Note that for the Hamiltonian corresponding to Eq. (S5), the solution for W from Eq. (S38) will not yield the
Boltzmann distribution in steady state, which perhaps is not surprising for an out-of-equilibrium driven problem [40].
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