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Identifying primes from entanglement dynamics
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The distribution of primes over the set of natural numbers is a fascinating subject closely related to topics that
range from the fundamental problem of factorization to applications in cryptography. Despite numerous efforts,
efficient methods to locate huge primes are still under investigation. Here, we present an alternative approach
to identifying prime numbers that is based on the evolution of the linear entanglement entropy. Specifically,
we show that a singular behavior in the amplitudes of the Fourier series of this entropy is associated with
prime numbers. We also discuss how this intriguing connection between primes and entanglement could be
experimentally implemented using existing optical devices, and examine a possible relationship between our
results and the zeros of the Riemann zeta function.
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I. INTRODUCTION

Prime numbers have captured the attention of researchers
for centuries. In pure mathematics, given the prominent role
of primes in factorizing a positive integer n, much effort has
been made to unravel patterns in their distribution over the set
of natural numbers N. Remarkable results in this direction in-
volve the counting function π (n) [1], which gives the number
of primes less than or equal to n. The complete knowledge
of π (n) would imply being able to determine the position of
each prime number p, since jumps of this function expose
their presence. However, achieving the counting function with
satisfactory accuracy for large values of n has been shown to
be practically impossible. In applied mathematics, this lack of
knowledge is exploited for cryptographic protocols [2], such
as the RSA (Rivest-Shamir-Adleman) algorithm. To break the
RSA protocol, one needs to find the prime factors of a huge n,
which would require the implementation of Shor’s algorithm
in a quantum computer [3].

Another fascinating result involving primes is their connec-
tion with the zeros of the Riemann zeta function ζ (s), where
s is a complex variable, defined as [4]

ζ (s) ≡
∞∑

n=1

1

ns
=

∏
p

1

1 − p−s
= �(1 − s)

2π i

∫
γ

(−x)s

ex − 1

dx

x
.

(1)
The summation and the product above converge when the real
part of the variable s satisfies Re[s] > 1. The first equality in
Eq. (1) is due to Euler and makes evident the relation between
p and ζ (s). In 1859 [5], Riemann achieved the expression
shown on the right side of Eq. (1), which involves a line
integral along a particular path γ [6] and the gamma function
�(1 − s) ≡ ∫ ∞

0 x−se−xdx. The expression is analytic for all
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values of s, except for a simple pole at s = 1. In the region
Re[s] > 1, the term with the integral recovers the other two
expressions in Eq. (1), so one considers it as their analytic
continuation. Using these ideas, Riemann [5] demonstrated
how the complex zeros s0 of ζ (s) encode the distribution of
p. Specifically, he showed that a certain convergent series,
running over all s0, recovers the function π (n). But, for large
values of n, the number of zeros required to accurately get
the counting function is so large that the use of the series to
identify p becomes intractable. This sophisticated connection
between ζ (s) and primes is but one of the impressive results
of Ref. [5]. Arguments in that work also gave origin to the
Riemann hypothesis, which conjectures that Re[s0] = 1

2 for
all nontrivial zeros of ζ (s).

The almost mystical status of prime numbers and their con-
nection with the zeta function have also reached the physics
community, especially researchers working with quantum me-
chanics [7,8]. A particularly inspiring idea is the Hilbert-Pólya
conjecture that could lead to the proof of the Riemann hypoth-
esis. The conjecture proposes that the nontrivial zeros of the
Riemann zeta function, which supposedly fall on the critical
line Re[s0] = 1

2 , correspond to the eigenvalues of a Hermitian
Hamiltonian operator. The first substantial evidence support-
ing this conjecture arose in the semiclassical studies carried
out by Berry and Keating [9]. They compared the distribu-
tion of s0 over the critical line with the equivalent function
for the eigenvalues of a given Hamiltonian achieved through
the Gutzwiller trace formula. In this way, they were able to
identify a Hamiltonian operator that fulfills the conjecture.
The operator is obtained by quantizing the classical Hamil-
tonian Hcl = xp, where x and p are the particle position and
momentum, respectively.

Inspired by the Hilbert-Pólya conjecture and the Berry and
Keating xp model, several works [10–16] have aimed at in-
terpreting, extending, and circumventing technical difficulties
of Ref. [9]. Other contributions looked for alternative physical
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systems, where the properties of ζ (s) could be identified. This
has been done using quantum graph theory [17], many-body
systems [18], wave-packet dynamics [19], statistical mechan-
ics of random energy landscapes [20], random matrix theory
[21,22], and quantum entanglement [23], and there is also an
experiment based on a periodically driven single qubit [24]. In
addition to these works, where the Riemann zeta function is
the protagonist to link prime numbers and quantum physics,
other quantum approaches deal directly with primes, studying,
for instance, number factorization [25,26] and the properties
of prime states [27,28], which are superpositions of states
corresponding to prime numbers.

The literature cited above describes a broad context in
which prime numbers connect to the quantum theory. In the
present paper, we add a related but different approach to this
subject by showing that the dynamics of the linear entan-
glement entropy encodes prime and semiprime numbers. In
a sense, we borrow this idea from the Hilbert-Pólya conjec-
ture. While the original statement concerns the existence of
a system that reveals the nontrivial zeros of ζ (s) through an
energy measurement, here we indicate which physical obser-
vation exposes the location of a prime number, a mathematical
element as undomesticated as s0. Specifically, we demonstrate
that the Fourier modes cn of the entropy have amplitudes that
present a singular behavior when n corresponds to a prime. In
addition, we find curves c( f )

n for the location of families f of
semiprimes. This result is shown for a system of two coupled
harmonic oscillators and a system of two coupled spins. The
route to achieve our goals consists of letting a specific initial
bipartite state evolve according to an appropriate Hamiltonian
and calculating its linear entanglement entropy as a function
of time. A careful inspection of the Fourier series represen-
tation of this expression reveals the location of primes and
semiprimes. Finally, at the end of the paper, we discuss a
possible experimental realization of this idea and speculate on
how to link cn and the counting function π (n).

Our work focuses exclusively on this new connection be-
tween entanglement and prime numbers, and thus differs from
the available literature on methods for efficiently identify-
ing primes. Furthermore, our proposal for the experimental
realization of our ideas serves as a proof of concept. We
provide initial estimates for the values of the parameters,
but further development and eventual implementation call for
collaborations with experimental groups that are experts in the
proposed approach.

II. ENTANGLEMENT DYNAMICS

We consider a system consisting of two interacting parts,
A and B, to which we assign distinct Hilbert spaces, HA and
HB, respectively. The system is isolated and prepared in a pure
state, ρ(0) = |�(0)〉〈�(0)|, which evolves according to the
total Hamiltonian

H = HA ⊗ 1B + 1A ⊗ HB + λHA ⊗ HB, (2)

where λ is the coupling strength between the two subsystems.
The linear entanglement entropy,

SL(t ) = 1 − Tr
[
ρ2

A(t )
]
, (3)

where ρA(t ) ≡ TrB[ρ(t )] is the reduced density matrix of sys-
tem A, measures the bipartite entanglement in time between
A and B. When ρ(t ) is separable, SL(t )=0, otherwise 0<

SL(t )<1.

III. COUPLED OSCILLATORS

The first Hamiltonian that we consider describes two cou-
pled harmonic oscillators, where HA is the Hamiltonian for
part A with eigenvalues h̄ω0(nA + 1

2 ) and eigenstates |nA〉, and
equivalently for part B. The initial state is the product of two
canonical coherent states [29], |�(0)〉 = |αA αB〉, with

|αA αB〉 ≡ e−u/2
∞∑

nA,nB=0

α
nA
A√
nA!

α
nB
B√
nB!

|nA nB〉, (4)

where we chose |αA|2 = |αB|2 = u
2 . Defining ω ≡ h̄λω2

0,

Sosc
L (t ) = 1 − e−2u

∑
j,k,l,m

(
u
2

) j+k+l+m

j! k! l! m!
e−iωt ( j−k)(l−m). (5)

The sum above runs from 0 to ∞ for all indexes. Since the
entropy in Eq. (5) is periodic in time, with period T = 2π/ω,
we use the Fourier series and arrive at

Sosc
L (t ) = c0(u) −

∞∑
n=1

cn(u) cos(nωt ), (6)

where the coefficients cn(u) are given by

cn(u) = 4 e−2u
∑
k,m

∑
j>k

∑
l>m

(
u
2

) j+k+l+m

j! k! l! m!
δn

( j−k)(l−m), (7)

representing the amplitude of the mode with frequency nω.
In Eq. (7), the Kronecker delta function, δb

a for integers a and
b, prompts the analysis of how n decomposes as a product
of two integers. We introduce the set �n composed of all
distinct positive divisors of n and note that the non-null terms
in Eq. (7) are those for which ( j − k) and (l − m) belong to
�n and their product equals n. Therefore,

cn(u) = 4 e−2u
∑
μ∈�n

Iμ(u) I n
μ

(u), (8)

where Iχ (w) ≡ ∑∞
k=0[k!(χ + k)!]−1( w

2 )2k+χ is the modified
Bessel function of the first kind. As we show next, cn(u) is
very sensitive to the primality of n.

A. Identifying primes

To show that the entanglement dynamics quantified by
Sosc

L (t ) is a prime identifier, we first assume that n is prime,
so that �n = {1, n} and Eq. (8) yields cn(u) = c(p)

n (u), where

c(p)
n (u) ≡ 8 e−2uI1(u) In(u). (9)

In contrast, when n is a composite number, �n necessarily
consists of 1, n, and, at least, one more integer. By defining
the set �′

n = �n − {1, n}, Eq. (8) becomes

cn(u) = c(p)
n (u) + 4 e−2u

∑
μ∈�′

n

Iμ(u) I n
μ

(u) � c(p)
n (u), (10)

which holds only for n > 1.
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FIG. 1. Decimal logarithm of the coefficients cn(u) as a function
of n for (a) u = 1 and (b) u = 103. The blue dots, connected with a
blue solid line to guide the eye, represent cn(u), and the red points
indicate the lower bound c(p)

n (u). For each prime n, the blue dots are
encircled with black circles and touch the red dotted line. Green and
cyan lines are for c( f2 )

n (u) and c( f3 )
n (u), respectively. Black squares

[triangles] enclose the coefficients of the family f2 [ f3]. Inset plots
show a magnified region of the respective main graph.

Inequality (10) is a main result of this work. It shows that
the coefficients cn(u) coincides with c(p)

n (u) in Eq. (9) if, and
only if, n is prime, while for composite numbers the ampli-
tudes are strictly lower bounded by c(p)

n (u). This means that
if we have a way to determine the values of cn(u), other than
through the construction of �n, the application of Eq. (10)
can reveal the primality of n. Indeed, cn(u) can be evaluated
theoretically via Eq. (5) and possibly experimentally.

In Fig. 1, to illustrate the above analytical discussion, we
mark the values of cn(u) with blue dots. For each n identified
as a prime, the dots are encircled with a black circle. All values
of cn(u) corresponding to primes coincide with the red dotted
line that represents the lower bound c(p)

n (u) and can, therefore,
be clearly distinguished. In Fig. 1(a) we show results for u =
1, but cn(1) becomes too small when n is large, so in Fig. 1(b)
we use u = 103 and larger values of n.

B. Semiprimes

Figure 1 also reveals the square-free semiprimes, including
the integer 2, which we denote by family f2. For these num-

bers, �n = {1, 2, Pn, n}, where Pn = n/2 
= 2 is a prime, and
cn(u) = c( f2 )

n (u), where

c( f2 )
n (u) ≡ 8 e−2u

[
I1(u) In(u) + I2(u) I n

2
(u)

]
. (11)

For a composite n that presents the divisors 1, 2, n/2, n, and
at least one more integer,

c(2)
n (u) ≡ c( f2 )

n (u) + 4 e−2u
∑

μ∈�
′(2)
n

Iμ(u) I n
μ

(u) > c( f2 )
n (u),

where �′(2)
n = �n − {1, 2, n/2, n}. The semiprimes of family

f2 are identified with black squares in Fig. 1 and they all fall
on the curve c( f2 )

n (u), indicated with a green line. This line
consists of a lower bound for any integer composed by 2,
except for 2, 22, and 23.

It is straightforward to extend the analysis above to any
other family of semiprimes. The particular case of the square-
free semiprimes containing the number 3, denoted by f3, is
shown in Fig. 1. The components of family f3 are marked
with black triangles and they are exactly located over the cyan
curve c( f3 )

n (u) [30].

IV. INTERACTING SPINS

Analogously to the system of coupled harmonic oscillators,
we now show that two interacting spins with a large quantum
number S is another physical system that can be used to
identify primes. In the Hamiltonian of Eq. (2), we assume that
HA = h̄ω0Sz

A, where Sz
A is the z component of the spin operator

of part A and Sz
A|mA〉 = mA|mA〉, and equivalently for part B.

The initial state is the product of spin coherent states [29],
|�(0)〉 = |sA sB〉, where

|sA sB〉 ≡ Ns

2S∑
nA,nB=0

snA
A snB

B

√(2S
nA

)(2S
nB

)|nA − S, nB − S〉, (12)

with Ns = (1 + u)−2S . Choosing |sA|2 = |sB|2 = u, the evolv-
ing linear entanglement entropy (3) becomes

Sspin
L (t ) = 1 −

2S∑
j,k,l,m=0

ξ j,k,l,m u j+k+l+me−iωt ( j−k)(l−m), (13)

where ξ j,k,l,m ≡ (2S
j

)(2S
k

)(2S
l

)(2S
m

)
(1 + u)−8S . The Fourier se-

ries of Eq. (13) has the same structure as Eq. (6), but with
the coefficients

c̄n(u) = 4
2S−1∑

k,m=0

2S∑
j>k

2S∑
l>m

ξ j,k,l,m u j+k+l+mδn
( j−k)(l−m).

The nonvanishing terms in the equation above are again those
for which μ ≡ ( j − k) and ν ≡ (l − m) belong to the set �n

of divisors of n. However, this system is bounded, so the
upper limits of the above summations add new constraints to
μ and ν. Given a value for k and m, we have that μ ∈ Ik ≡
[1, 2S − k] and ν ∈ Im ≡ [1, 2S − m]. In addition, since δn

μν

implies that ν = n/μ, we also get that μ ∈ Im,n ≡ [ n
2S−m , n].

Therefore,

c̄n(u) = 4
2S−1∑

k,m=0

∑
μ∈�̄

(k,m)
n

ξ̄ u2k+2m+μ+n/μ, (14)
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where ξ̄ ≡ ξk+μ,k,m+ n
μ
,m and �̄(k,m)

n is the set of divisors of n
that satisfies all constraints commented above:

�̄(k,m)
n ≡ �n ∩ Ik ∩ Im,n. (15)

Contrary to Sosc
L (t ) in Eq. (6), there is a finite number of

Fourier modes in Sspin
L (t ) due to the finite Hilbert space for

the spin system. For n > 4S2, we have that Ik ∩ Im,n = ∅
for any value of k and m, so �̄(k,m)

n = ∅ and c̄n(u) = 0. In
what follows, to assess the primality of n, we conveniently
divide the interval 1 < n � 4S2 in two regions of interest,
region I (1 < n � 2S) and region II (2S < n � 4S). In the
complementary range 4S < n � 4S2, one cannot find a be-
havior that distinguishes primes from composite numbers.
There, even though all amplitudes of the Fourier modes for a
prime n vanish, the same can also happen to some composite
numbers.

Region I (1 < n � 2S): A careful inspection of Eq. (15)
reveals that 1 ∈ �̄(k,m)

n for all values of k and 0 � m � 2S −
n, while n ∈ �̄(k,m)

n for all values of m and 0 � k � 2S − n.
Applying these results to Eq. (14), we find that, for n prime,
c̄n(u) = c̄(p)

n,I (u), where

c̄(p)
n,I (u) ≡ 8 (1 + u)−8SG1(u)Gn(u), (16)

with Gχ (w) ≡ ∑2S−χ

k=0

(2S
k

)( 2S
k+χ

)
w2k+χ . On the other hand,

for a composite number n > 1 inside region I, we have that
c̄n(u) = c̄(p)

n (u) + d̄n,I (u), where

d̄n,I (u) ≡ 4
2S−1∑

k,m=0

∑
μ∈�̄

′(k,m)
n

ξ̄ u2k+2m+μ+n/μ (17)

and �̄′(k,m)
n ≡ �′

n ∩ Ik ∩ Im,n, where �′
n was defined above

Eq. (10). One can show that, at least for k = m = 0, there is
a positive non-null term in Eq. (17). Therefore, for a com-
posite number, we necessarily have c̄n(u) > c̄(p)

n,I (u) and this
inequality can be employed in the search for prime numbers in
region I.

Region II (2S < n � 4S): In this case, prime modes are
not included in the Fourier series of Eq. (13). Indeed, for a
prime number n, we now have that 1 
∈ Im,n and n 
∈ Ik , which
implies that �̄(k,m)

n = ∅ and c̄n(u) = 0. For a composite n in
the same interval, similarly to region I, there is at least one
integer in �n, in addition to 1 and n, so that c̄n(u) > 0. So we
can distinguish primes from composite numbers by checking
if c̄n(u) = 0 or c̄n(u) 
= 0.

V. EXPERIMENTAL PROPOSAL

The Hamiltonian for the two coupled harmonic oscillators
studied above also describes the interaction between two op-
tical fields via a Kerr nonlinear medium [31,32]. In Fig. 2, we
show the sketch of an experimental setup for implementing
this optical system. A laser beam of frequency ω0 and lin-
ear polarization at 45◦ is sent to a polarizing beam splitter
(PBS). The vertically polarized (�) component goes directly
to the homodyne detection scheme [33], shown in the lower
right corner of the figure, to act as the local oscillator (LO).
The horizontally polarized (↔) component passes through
a half-wave plate (HWP), which rotates the polarization to

FIG. 2. Setup for the identification of prime numbers. The sym-
bols BS, HWP, PBS, M, KM, and PD refer to beam splitter, half-wave
plate, polarizing beam splitter, mirror, Kerr medium, and photodiode,
respectively. See text for details.

45◦ and enters an unbalanced Mach-Zehnder interferometer,
identified in Fig. 2 with dashed lines. In the interferometer,
after the PBS, the � component beam propagates through
the short path, and the ↔ one goes through the long course.
The path difference is longer than the coherence length, so
that the recombined ↔ and � beams at the interferometer
output PBS are separable and no longer result in a pure mode
with linear diagonal polarization. Next, these two beams are
injected in the nonlinear Kerr medium (KM) of length L and
Kerr optical nonlinearity χ (3). During the propagation time
inside the KM, each beam will experience a modified index of
refraction due to the action of the other beam. This is how the
coupling between the oscillators is physically implemented.
By varying the length L, one changes the interaction time t .
After passing KM, the ↔ and � beams are split again. To
identify the prime numbers, we measure one of the beams and
ignore the other, which is equivalent to performing the trace
over one of the interacting systems. We can analyze any of
the two beams because of the interaction symmetry. In Fig. 2,
we choose the � beam, which goes to the homodyne detector,
a frequency-dependent measurement. By tuning the phase of
LO, we can measure the fluctuations in the quadrature affected
by the cross-Kerr modulation directly. These fluctuations are
translated into electric current modulations, whose spectrum
is analyzed. Therefore, it is possible to readily address fluc-
tuation frequencies as high as fh � 1 GHz, the homodyne
frequency, with current technology.

We can estimate the range of prime numbers p that can be
identified using this approach by noting that the homodyne
frequency fh must be equal to the mode frequency pω/2π ,
appearing in Eq. (5). This gives pω/2π = ph̄λω2

0/2π = fh.
With angular optical frequency ω0 in the range of 1014 Hz and
interaction strength λ � 10−6 J−1, we have p � 1021, which
is a prime with 21 digits. Notice also that this is not an
upper limit because the nonlinear interaction can be increased,
reducing λ, and heterodyne detection can be used to increase
the frequency analysis. Naturally, the actual implementation
of this experiment will require further technical considerations
and fine tuning.

VI. CONCLUSION

This paper shows that analyzing the bipartite entanglement
in time works to identify prime and semiprime numbers in
N. The main ingredient is a Hamiltonian composed of two
parts, A and B, with equidistant energy levels for HA and HB.
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We discussed the implementation of this idea, emphasizing
that it takes advantage of an existing experimental setup. The
purpose of the approach is not to compete with standard nu-
merical methods used to study the distribution of large primes.
Instead, our focus is on the new fundamental relation between
primes and entanglement, which offers a new perspective of
the problem and may provide a new route of investigation.

Our work resonates with the Hilbert-Pólya conjecture in
the sense of proposing a physically measurable quantity to
determine prime numbers. We speculate that there may be
a way to connect our results with ζ (s). In fact, by defining
A(n, u) ≡ cn(u) − c(p)

n (u) for a fixed u, the task of counting
primes along N is equivalent to counting the zeros of A(n, u).
This alternative method to build π (n) could be used to study
the zeros of ζ (s) by means, for example, of a hypothetical
inversion of the Riemann series that connects s0 with π (n),
shedding new light on the Riemann hypothesis.

The last remark concerns the semiclassical approaches
originated from the ideas of Berry and Keating [9]. The
semiclassical version of the linear entanglement entropy was
addressed in [34,35] for the same two physical systems treated
here. In those papers, entanglement is reproduced by summing

over sets of classical trajectories determined by the solutions
of a given transcendental equation. The purely quantum for-
malism presented here encourages the reexamination of those
works, aiming at connecting those solutions with the distribu-
tion of primes.
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