
Kernel-Elastic Autoencoder for Molecular Design

Haote Li, Yu Shee, Brandon Allen, Federica Maschietto, Victor Batista

Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.

Contributing authors: haote.li@yale.edu; yu.shee@yale.edu; brandon.allen@yale.edu;
federica.maschietto@yale.edu; victor.batista@yale.edu;

Abstract
We introduce the Kernel-Elastic Autoencoder (KAE), a self-supervised generative model based on the
transformer architecture with enhanced performance for molecular design. KAE employs two innovative
loss functions: modified maximum mean discrepancy (m-MMD) and weighted reconstruction (LWCEL).
The m-MMD loss has significantly improved the generative performance of KAE when compared to
using the traditional KL loss of VAE, or standard MMD. Including the weighted reconstruction loss
LWCEL, KAE achieves valid generation and accurate reconstruction at the same time, allowing for
generative behavior that is intermediate between VAE and AE not available in existing generative
approaches. Further advancements in KAE include its integration with conditional generation, setting
a new state-of-the-art benchmark in constrained optimizations. Moreover, KAE has demonstrated its
capability to generate molecules with favorable binding affinities in docking applications, as evidenced
by AutoDock Vina and Glide scores, outperforming all existing candidates from the training dataset.
Beyond molecular design, KAE holds promise to solve problems by generation across a broad spectrum
of applications.

1 Introduction
The advent of generative models has precipitated a
revolutionary shift in the development of methods
for drug discovery, revealing new opportunities to
swiftly identify ideal candidates for specific appli-
cations [1–7]. The Variational Autoencoder (VAE)
model has emerged amongst these models as an
approach with extraordinary capabilities that can
be adapted for molecule generation via character,
grammar, and graph-based representations [8–11].

Autoencoders (AEs) encode the input data
by compression into a low-dimensional space [12].
Though providing a high lower bound for accurate
reconstruction, such space is not well-structured
and in some regions, the decoder does not gen-
erate output that resembles the training data,

thereby limiting its generative capabilities. Sacri-
ficing reconstruction performance, VAEs mitigate
this disadvantage by enforcing encoded latent vec-
tors to known prior distributions. Upon decoding
samples from those distributions, VAEs generate
outputs mimicking the training data. An outstand-
ing challenge of great interest to drug discovery is
to harness the power of VAEs to generate molecu-
lar candidates with optimal properties during the
screening phase of molecular development, while
preserving AE’s high reconstruction rate for precise
lead candidate optimizations.

Generative models are typically evaluated for
molecule generation using novelty (N), uniqueness
(U), validity (V), and reconstruction (R) metrics.
NUVR metric, which is the product of them, cap-
tures the trade-off between these four factors, the
so-called NUV to R tradeoff, as a model with high

1

ar
X

iv
:2

31
0.

08
68

5v
2

 [
cs

.L
G

]
 2

3
M

ar
 2

02
4

reconstruction ability usually does not achieve high
metrics for novelty, uniqueness, and validity.

Optimizing the design of molecules near a ref-
erence molecule requires robust reconstruction, as
proximity in latent space should correlate with
proximity in the value of the desired property. Accu-
rate reconstruction also allows for interpolation
between molecular motifs with intermediate prop-
erties between promising lead compounds [13–16].

Kernel-Elastic Autoencoder (KAE) stands out
as a new category for a self-supervised generative
model based on a modified maximum mean discrep-
ancy and weighted reconstruction loss functions.
Leveraged by the Transformer architecture[17–20],
KAE (Figure 1) effectively overcomes the NUV-R
tradeoff by combining the merits of both autoen-
coder (AE) and variational autoencoder (VAE)
models. KAE’s loss function is a modified version of
the Maximum Mean Discrepancy (MMD), inspired
by [21–23], that shapes the latent space and enables
better performance than using Kullback-Leibler
(KL) divergence loss used in VAEs. When cou-
pled to the weighted cross-entropy loss (LWCEL),
KAE, without any checking for molecular gram-
mar or chemical rules, outperforms both string
and graphical-based models in generation tasks
while exhibiting nearly flawless reconstruction, as
demonstrated on the ZINC250k testing sets. The
freedom to adjust KAE’s behavior through the
LWCEL gives the "Elastic" term in the naming.

When implemented to solve optimization prob-
lems, KAE outperforms the state-of-the-art by a
substantial 28% [24]. Additionally, KAE tackles
the problem of molecular docking by finding suit-
able binding ligands with conditional generation, as
demonstrated using the dataset from GFlowNet [5].
Superior candidates from the baseline and the
training data are independently verified by both
Autodock Vina [25] and Glide [26, 27], demonstrat-
ing its efficacy and practicality.

2 Result

2.1 KAE Performance
The overall performance of the KAE (Figure 1)
compared to state-of-the-art generative models
is shown in Table 1. As described in the Meth-
ods section, KAE combines a modified-MMD
(m-MMD) loss and the Weighted Cross Entropy
Loss (LWCEL), with hyperparameters λ and δ, and

exhibits the generative capabilities of VAEs as well
as the exact reconstruction objectives of AEs. KAE
was evaluated according to the fraction of gener-
ated molecules that are novel (N), unique (U), and
valid (V). A molecule is considered novel if it is
not included in the training dataset. Uniqueness
is defined as the absence of duplicates in the set
of generated molecules. A molecule is counted as
valid if its SMILES representation is syntactically
correct and passes the RDKit chemical seman-
tics checks [32]. Additionally, reconstruction (R)
is successful if and only if the decoder regenerates
the input SMILES sequence matching every single
character.

Maximum validity and reconstruction was
achieved by using the Weighted Cross-Entropy
Loss LWCEL(λ, δ) defined by Eq. (4) where the
hyperparameter δ controls the AE-like objective
(see S.I. for a discussion of the effect of changing
λ and δ). The best results for the NUVR metric
were obtained by using a combination of λ = 3.5
and δ = 1.

With the same Transformer architecture, KAE
is compared to approaches using different loss func-
tions (SI, Figure 2) by assessing the validity and
reconstruction. KAE trained with Gaussian noise
added to latent space vectors exhibited the highest
percentage of valid SMILES strings, while models
trained with the KL divergence exhibited much
lower validity and significantly slower improve-
ments for validity during training. The analysis of
novelty and uniqueness showed that models with
noise (i.e., with Gaussian noise added to latent
space vectors) performed much better than the
corresponding models without noise when trained
with the standard MMD (s-MMD) or modified
MMD (m-MMD, see method section). Addition-
ally, the NUV metric showed that models trained
with m-MMD outperformed models trained with
s-MMD.

2.2 Learning Behavior
We have analyzed the KAE behavior by comparing
under the same architecture but with various loss
functions (Figure 2). The reconstruction was eval-
uated from 1000 molecules from the validation set
at every epoch. Figure 2 shows the improvement
in validity, uniqueness, novelty, and reconstruction
along the training process for models based on
a loss that combines the weighted cross-entropy

2

Input Embedding

4-Head Attention

Add & Norm

Feed Forward

Add & Norm

6 x

Output Embedding

Masked
4-Head Attention

Add & Norm

4-Head Attention

Add & Norm

6 x

Feed Forward

Add & Norm

Linear, Softmax
Beam Search

Latent Space

Mixing
Feed Forward

Compression
Feed Forward

Gaussian Noise
at Training

[B x M x E]

[B x M x E]

[B x M x E] [B x C x E]

[B x 10 x E]
[B x 10⋅E]

[B x 10⋅E]

[B x10 x E]

[B x 10⋅E]

[B x 10⋅E] [B x 10⋅E]

[B x (M-1) x E]

[B x (M-1) x E]

[B x (M-1) x E]
[B x (M-1) x E]

[B x (M-1) x T]

[B x (M+C) x E]

[B x (M+C) x E]

Condition-Scaled
Embedding

Conditions (logP, MW, etc)

[B x C]

[B x C x E]

Positional
Embedding

[B x (M-1) x E]

Positional
Embedding

Outputs (Shifted Right)

[B x M]

[B x M] [B x (M-1)]

[B x (M-1)]

SMILES

SMILES

Fig. 1: Conditional KAE transformer architecture. KAE consists of 6 encoder layers, 6 decoder
layers, and a latent space for conditional generations. During training, the condition is concatenated
after positional embedding and provided as input to the 4-head attention encoder. The condition is also
concatenated with the latent vector before a mixing layer. During training, Gaussian noise is added to the
latent vectors. The decoder output is then passed through a linear layer and softmax function, producing
the probabilities of output tokens for each character in the dictionary of size T .

LWCEL(λ,δ), defined by Eq. (4), with m-MMD
(m-MMD(λ), Eq. 11), s-MMD, Eq. 10), or KL diver-
gence. All models were trained with the ZINC250K
dataset for 200 epochs, with λ = 1 and δ = −1.
When λ = −δ, the weighted cross-entropy loss
(LWCEL, Eq. 4) reduces to the standard cross-
entropy loss (LCEL). Additionally, we examine the
effect of noise while training with the m-MMD
loss. The results (Figure 2) indicate that the
KAE model using m-MMD loss with Gaussian
noise added to the latent space exhibits the best

performance. The models exhibit significant dif-
ferences in their ability to generate valid SMILES
strings and reconstruct input molecules. The m-
MMD model trained with noise in latent space
generated the highest percentage of valid SMILES
strings, making it preferable to other models. For
example, the model trained with KL divergence
exhibited much lower validity and a significantly
slower learning rate. The assessment of novelty and
uniqueness also shows that s-MMD and m-MMD
models trained with Gaussian noise added in latent

3

Table 1: Comparison of performance of molecular generative models trained with the
ZINC250K dataset. Assessment of the capabilities of the models to generate novel (N), unique (U), valid
(V), and properly reconstructed (R) molecules. Validity (V w/o) indicates that the generated strings have
not been post-processed using chemical knowledge to enforce corrections. NUV results were obtained from
averaging over 5 iterations of sampling 10,000 random vectors from latent space while the reconstruction
rate was calculated using all molecules from the testing dataset. The two KAE models in the table were
trained using loss functions with λ = 1 and 3.5 and δ = -1 and 1. The choice of δ = -1 is a special case of
LWCEL and is equivalent to not using any AE objectives. The validity check selects alternative candidates
from beam search.

Method N U V w/o V NUV R NUVR

CVAE [9]a 0.980 0.021 0.007 N/A 0.0001 0.446 5e-6
GVAE [10]a 1.000 1.000 0.072 N/A 0.072 0.537 0.039
JTVAE [11]a 1.000 1.000 0.935 1.000 0.935 0.767 0.717
MoFlow [28] 1.000 0.999 0.818 1.000 0.817 1.000b 0.817
Rebalanced [29] 1.000 1.000 0.907 0.938 0.907 0.927 0.841
GraphDF [30] 1.000 0.992 0.890 1.000 0.883 1.000b 0.883
ALL SMILES [31]a 1.000 1.000 N/A 0.985 N/A 0.874 N/A
β-VAE [24] 0.998 0.983 0.983 0.988 0.964 N/A N/A
KAE (λ = 1, δ = −1) 0.998 0.994 0.863 N/A 0.856 0.992 0.849
KAE (λ = 3.5, δ = 1) 0.996 0.973 0.997 1.000 0.966 0.997 0.963

aResults obtained from sampling 1,000 vectors from latent space.
bReconstruction rates were obtained on training datasets.

space (noisy models) performed much better than
the corresponding models without noise. The rea-
son for adding noise is to prevent the model from
remembering exactly the locations of the latent
vectors and the decoder has to see the multitude
of possible outcomes related to the region of the
decoding latent vector. Further, the decision to
add a Gaussian noise on top of confining the latent
vector to the same Gaussian through m-MMD is
to maximize the overlap of the distribution of all
latent vectors with respect to the distribution of
any individual latent vector. This approach is differ-
ent from VAE as the VAE has the option to output
small variances for some latent vectors which could
reduce the probability of sampling corresponding
instances from its prior distribution.

2.3 Conditional KAE
In this section, the performance of the Conditional-
KAE (CKAE) (Figure 1) on the constraint
optimization task is investigated. CKAE generates
new candidates conditioned on properties such as
PLogP or docking scores. Here, we demonstrate
the capabilities of CKAE as applied to the PLogP

values defined, as follows: [9, 11]:

PLogP (m) = LogP (m)− SA(m)− ring(m), (1)

where LogP is the octanol-water partition coef-
ficient of molecule m calculated using Crippen’s
approach from the atom contributions [37]. SA is
the synthetic accessibility score, [38] while ring(m)
corresponds to the number of rings with more than
six members in the molecule.

To demonstrate that CKAE generates
molecules that are strongly correlated to the condi-
tioned value, we analyzed the correlation between
the properties of CKAE-generated molecules and
the specified input condition. Figure 3 shows the
mean PLogP value obtained from 1,000 CKAE-
generated molecules, strongly correlated to the
PLogP value used as a condition (correlation
coefficient 0.9997). The distribution of PLogP
values of the training set, rendered as a histogram
in Figure 3, shows the range of PLogP values used
for CKAE training. We have also trained a sepa-
rate model using the dataset from Lim et al [39]
who developed a Conditional-VAE (CVAE) with
Recurrent Neural Network (RNN) architectures to

4

(a) (b)

(c) (d)

Fig. 2: Comparison of learning rates for models trained with m-MMD loss, s-MMD loss,
and KL divergence loss. (a) Validity evaluated at each epoch. (b) Fraction of molecules properly
reconstructed as a function of epochs. (c) Novelty evaluated at each epoch. (d) The uniqueness at each
epoch. The model labeled as KL includes an extra layer that estimates the standard deviation of each
latent vector. The models labeled with m-MMD are trained with the loss LCEL+m-MMD(λ = 1), s-MMD
with LCEL + s-MMD(λ = 1), and KL with LV AE = LCEL + KL(λ = 1). "No noise" means no noise is
added to the latent vectors during training.

sample molecules given five distinct pharmaceuti-
cally relevant properties. The comparison between
CKAE and CVAE from Lim et al further shows
that CKAE generates candidates correlating to
the asked conditions and outperforms the given
baseline by a wide margin (Table 3).

Instead of using regressors to navigate in the
latent space[11, 24, 29, 40], a procedure called
Similarity Exhaustion Search (SES) was devel-
oped for constraint optimizations. SES aims to
find molecules that are both similar to the tar-
get molecule and have higher desired properties

5

Table 2: Comparison of performance of various conditional generative models. The table
presents the average PLogP improvements computed for the set of 800 lowest ranking molecules from the
ZINC250K dataset, as well as the mean Tanimoto similarities of the best candidate molecules compared
to their respective starting molecules (standard deviations reported after ±). The success rate indicates
the percentage of molecules for which the algorithm successfully achieved modifications resulting in higher
PLogP values within the specified similarity constraint. The ZINC250K result corresponds to the highest
PLogP improvement obtained by searching within the ZINC250K dataset itself. Our approach outperforms
the search against the training data and demonstrates the highest performance when combining our model
with the SES method.

Methoda PLogP-Improvement Tanimoto Similarity Success Rate

JT-VAE [11] 0.84 ± 1.45 0.51 ± 0.1 83.6%
MHG-VAE [33] 1.00 ± 1.87 0.52 ± 0.11 43.5%
GCPN [34] 2.49 ± 1.30 0.47 ± 0.08 100%
Mol-CycleGAN [1] 2.89 ± 2.08 0.52 ± 0.10 58.75%
MolDQboot [35] 3.37 ± 1.62 N/A 100%
ZINC250K (This work) 4.64 ± 2.33 0.48 ± 0.16 97.88%
MoFlow [28] 4.71 ± 4.55 0.61 ± 0.18 85.75%
Random Sample (This work) 4.78 ± 2.08 0.43 ± 0.03 81.75%
MNCE-RL [36] 5.29 ± 1.58 0.45 ± 0.05 100%
β-VAE [24] 5.67 ± 2.05 0.42 ± 0.05 98.25%
CKAE (This work) 7.67 ± 1.61 0.42 ± 0.02 100%

aTanimoto similarity constraint = 0.4

Table 3: Performance of CKAE compared to CVAE, as applied to conditional molecular
generation We impose strict counting criteria for the CKAE statistics so that only valid, novel, and
unique molecules are considered attempts. Therefore, the number of valid molecules will be equal to the
number of attempts. To further compare to the CVAE method by Lim et al where there is more than
one valid molecule per attempt, we have applied beam search with a beam size of 10 (labeled CKAE w.
Beam). When beam search is used, the number of valid molecules reports the number of valid, novel, and
unique candidates derived from all attempts. The success rate is defined as 100 times the rate of finding
a candidate within a 10% error range of each property per attempt. The result shows CKAE, without
using a method to derive more candidates per output SMILES strings is better than CVAE with RNN
architectures. Further, if beam search is applied, CKAE significantly outperforms the given baseline.

Method Target Attempts Number of Valid Molecules Success Rate (%)

CVAE Lim et al Aspirin 28,840 32,567 0.34
CVAE Lim et al Tamiflu 15,960 34,696 0.62

CKAE Aspirin 4743 4743 2.11
CKAE Tamiflu 3715 3715 2.63

CKAE w. Beam Aspirin 671 4221 14.90
CKAE w. Beam Tamiflu 436 3927 22.94

(e.g., PLogP) by using the same or slightly per-
turbed latent vector representations with gradually
increasing conditions. Formally, f(z, c) ≈ f(z +
∆z, c+∆c) for small values of ∆z and ∆c where

f(z, c) is the decoding output function of latent vec-
tor z subject to the condition c (e.g., PLogP = c).
When the generative model has high enough NUVR
values, it is able to pinpoint the exact latent vector

6

Fig. 3: CKAE correlation performance. The
blue dots represent the mean PLogP values of
1,000 molecules generated by CKAE, as a function
of the condition PLogP value. The error bars on
each dot indicates the associated standard devia-
tion as estimations of errors. The black line shows
the ground truth values strongly correlated with
the mean PLogP values. The histogram shows the
underlying distribution of the training dataset over
the entire range of PLogP values.

location and perform an exhaustive search for all
possible ∆z. Therefore, SES combines beam search
with iterative sampling under various conditions to
identify chemically similar molecules that closely
resemble the target compound in the latent space.
The details of SES can be found in Section S4.

Table 2 shows 1. the results of optimizing
the 800 lowest PLogP-valued molecules from the
ZINC250K dataset to generate similar molecules
(Tanimoto similarity < 0.4) with larger PLogP val-
ues. [35]; 2. The mean difference in PLogP values;
3. The Tanimoto similarity between the best can-
didate molecules and their starting molecules for
each method. The success rate measures the per-
centage of molecules that achieved modifications
with higher PLogP values within their similarity
constraints.

Additionally, CKAE performance was assessed
as compared to direct search from the ZINC250K
training set. For each of the 800 molecules, its
similarity value with respect to all other 250K
entries was calculated, and the compound with
the highest PLogP value that remained within the

0.4 Tanimoto similarity constraint was identified.
This particular outcome is labeled “ZINC250K” in
Table 2.

We further compared CKAE to direct search
using randomly sampled latent vectors with dif-
ferent conditions (PLogP values from -10 to 10
scanned with a step size of 0.1). At each step,
instead of using encoder-provided latent vectors.
800 vectors were randomly sampled from the latent
space and decoded using beam search with a beam
size of 15. The outcomes of this search are marked
as “Random Search” in Table 2.

2.4 CKAE for Ligand Docking

2.4.1 Comparison to GFlowNet

Table 4 shows the performance of the CKAE model
as applied to the generation of small molecule
inhibitors that bind to the active site of the enzyme
soluble epoxide hydrolase (sEH), as compared to
results obtained with GFlowNet for the same active
site [5, 41].

CKAE was trained using the same dataset of
300,000 molecules used for training GFlowNet [42],
each with a binding energy calculated using
AutoDock [25] (see Section 4.5). Binding energies
were converted to a reward metric, using a custom
scaling function. Results in Table 4 correspond
to the mean reward for the top 10, 100 and 1000
best scoring molecules from a pool of 106 NUV
molecules generated by the CKAE model. Rewards
were computed from the Autodock Vina binding
scores. Average Tanimoto similarities were com-
puted using a Morgan Fingerprint with a radius
of 2.

Table 4 shows that CKAE achieves similar per-
formance to GFlowNet in molecular docking, and
generates molecules with higher rewards at the top
10, 100, and 1000 thresholds, without significantly
sacrificing the similarity score. In fact, CKAE was
able to generate molecules scoring as high as 11.45,
which exceeds the maximum reward of 10.72 in the
training database. This demonstrates the capabili-
ties of CKAE for generative extrapolation, which
allows for applications to generative dataset aug-
mentation including molecules with scoring values
beyond the range of the original dataset.

7

Table 4: Performance of the CKAE model on molecular docking as compared to GFlowNet.
Top 10, 100, and 1000 rewards are the averages of the docking scores of molecules generated at the
corresponding thresholds. The Top-1000 similarity is the mean of all pair-wise similarities. Lower similarity
between generated molecules indicates greater diversity, which is desirable. For docking, the higher rewards
are better.

Method Top 10 reward Top 100 reward Top 1000 reward Top-1000 similarity

GFlowNet 8.36 8.21 7.98 0.44
Training Data 9.62 8.78 7.86 0.58

CKAE (This work) 11.15 10.46 9.63 0.63

2.4.2 Glide Analysis

A comparison of the ligand-receptor interactions
established by the top-scoring CKAE, training
dataset (TD) and GFlowNet candidates, respec-
tively is shown in Figure 4a. KAE’s top candidate
exhibits superior docking performance compared
to top-scoring candidates in both the training
dataset and GFlowNet. In terms of fitting within
the pocket, the top CKAE candidate occupies a
substantially larger volume within the receptor
binding region when compared to the other two.
The improved fit is also evidenced by the broader
array of stabilizing interactions. These interac-
tions include a series of π-π stacking and π-cation
interactions. In addition to occupying the pocket
entirely, the CKAE-generated molecules are devoid
of unfavorable clashes, further underscoring the
effectiveness of the model in generating effective
candidates in the context of molecular docking.

Figure 4b shows the analysis of the best scor-
ing molecules generated by CKAE and direct
search from the training dataset (TD), as assessed
by the Glide molecular docking program that
is an integral part of the Schrödinger Suite of
software [26, 27]. Figure 4b thus provides an
independent assessment of the quality of the best-
scoring CKAE-generated molecules, showing that
CKAE-generated molecules outperform the TD
counterparts in terms of ranking as determined by
the nature of the interactions established at the
binding site.

The docking procedure employed an identical
receptor grid size as used for Autodock Vina [25]
calculations, and the candidates sourced from both
the training dataset and CKAE, were docked onto
the same receptor structure, using the highest
scoring pose derived from Autodock Vina [25]
calculations, as described in Section 4.5.1.

A dataset comprised of 869 tautomers was
curated with high structural similarity, including
the top ten CKAE-derived molecules and the top
ten TD molecules, as well as a set of tautomers of
the same molecules generated by changing protona-
tion and enantiomeric states to analyze the quality
of the top-performing hits relative molecular tau-
tomers (molecules with different arrangements of
atoms and bond). The results shown in Figure 4c
revealed that the top-ranking candidates from both
CKAE and TD outperformed other contenders
(tautomers) when compared against the dataset
of tautomers. These results confirmed that the
highest-scoring molecular structures obtained from
CKAE and TD remained superior, even when com-
pared to a large number of structurally similar
alternatives, confirming the reliability and quality
of molecules generated by CKAE.

As examined by both Autodock Vina [25] and
Glide [26, 27], it is clear that CKAE generated
molecules that bind better to the active site of
sEH than those of the training dataset. The gen-
erated higher-scoring molecules can then be used
for dataset augmentation, for retraining purposes,
allowing the model to generate even higher-scoring
molecules.

3 Discussion
KAE allows the integration of the strengths of both
VAE and AE frameworks in applications to molec-
ular design. The KAE loss, with hyperparameters
λ and δ, controls varying degrees of VAE and AE
features as needed for the specific applications.

In the context of molecule generation, KAE out-
performed VAE approaches in terms of generation
validity without the need for additional chemical

8

(a)

Fig. 4: Glide analysis of molecular inhibitors docked at the active site of sEH. (a) Binding
interactions of top scoring molecules generated by CKAE (left), searched from the training dataset
(middle), and generated by GFlowNet (right). (b) Extra Precision (XP) Glide score Boltzmann factors
for the top ten candidates obtained from the CKAE and training dataset (TD) show that the top ranking
CKAE-generated outperform the top molecules from the TD ensemble. (c) Histogram of Glide XP docking
scores, showing that top scoring inhibitors generated by CKAE or TD outperform 869 tautomers generated
from the top ten candidates of the two datasets.

knowledge-based checks, while achieving recon-
struction performance near 100% accuracy akin to
the AE. With beam search decoding [43–45] mul-
tiple candidates per latent vector can be derived.
This enriched KAE’s generation diversity and valid-
ity. In the context of conditional generation, CKAE

generates molecules that exhibit excellent correla-
tion with the input condition, including molecules
with a desired property (e.g., specific value of
PLogP, or reward value upon docking to a specific
binding site of a biological target).

9

In the constrained optimization task, the
CKAE model exhibits significant improvements,
with an average increase of 7.67 ± 1.61 PLogP
units. CKAE achieves a 100% success rate, indi-
cating that modifications leading to higher PLogP
values were successfully achieved for all molecules
within the defined similarity constraints. This
improvement surpasses directly searching from the
training dataset by over 65%. The comparison to
“Random Search” shows the strength of KAE’s
accurate reconstruction which makes searching
around the molecules much more efficient.

Using Glide [26, 27], the validation for CKAE’s
generated high binding affinity candidates reveals
that they consistently outperform those from the
training dataset as well as all structurally simi-
lar tautomers, demonstrating CKAE’s ability of
extrapolation and the quality of the generated
molecules.

As demonstrated in this article, KAE can
be used to tackle docking problems with bind-
ing affinity and constrained optimization with
PlogP. Similar but unlimited to the context of
molecule designs, KAE can be effectively employed
to address a wide spectrum of problems, especially
for those that are labeled as sample-property pairs.

4 Methods

4.1 Model Architecture
KAE treats molecule generation as a natural lan-
guage processing task. Phrases in the “source
language” (i.e., SMILES strings) are encoded and
compressed into latent vectors and then decoded
into the target output with corresponding labels.
Major components for KAE include the encoder,
compression layer, mixing layer, and decoder.

Source and target masks are created with spec-
ified padding tokens to ensure that the encoder
and decoder do not attend to padding tokens dur-
ing training. The SMILES tokens are separately
passed through embedding layers of the encoder
and decoder to become vectors of size 128. They are
then added to the corresponding position embed-
dings of the same dimensions. Different from the
original Transformer implementation that uses
fixed sinusoidal functions in the representation, in
this work, each positional token’s embedding is
learned and updated during training.

The input is encoded by the Transformer
encoder and compressed into latent space. The com-
pression layer is a single linear layer that applies to
the sequence length dimensions. This layer takes in
a dimension M , the maximum sequence length in
the relevant dataset and outputs a dimension of 10.
In the case of ZINC250k without using conditions,
M is 113 dimensional. The resulting latent tensor
therefore has dimensions of 10×E where E is the
embedding size of 128. The latent vectors are then
added with noise from a standard Gaussian distri-
bution. In the CKAE variant, the conditions (i.e.,
molecule properties) are attached with additional
embeddings. Condition-multiplied embeddings are
concatenated with the input of the encoder and
the latent representation along the sequence length
dimension. This allows the model to generate
molecules by either interpolating or extrapolating
with a desired condition value. The mixing layer is
a linear layer that takes in the compressed tensors
with the size (10 + number of conditions)×E and
maps them back to 10×E dimensions. These ten-
sors are treated as the new encoder output which
the decoder attends to without encoder masks.
Each decoder layer attends to the encoder out-
puts through encoder-decoder multi-head attention
operations. The decoder outputs are contracted by
a linear layer along the embedding dimension, pro-
ducing a T -dimensional vector per token, where
T is the dictionary size. This T -dimensional vec-
tor is then softmaxed, resulting in a probability
distribution (P) for each possible character (c).

4.2 KAE Loss
The KAE loss function is defined, as follows:

L (λ, δ) = LWCEL(λ, δ) + m-MMD(λ), (2)

where m-MMD(λ) is a modified version of the reg-
ularizing MMD loss, discussed in Sec. 4.3, and
LWCEL is a weighted cross-entropy loss (LWCEL)
obtained from outputs generated by decoding the
latent vector with and without Gaussian noise
added to the latent vector. Based on the original
definition of the cross-entropy loss (CEL):

LCEL = −
∑
s

∑
c

Ys,c log (Ps,c) , (3)

10

where Ps,c is the predicted softmax probability
of token c at sequence position s and Ys,c is
the ground truth label equal to one if the token
belongs to class c at position s, or zero otherwise.
Accordingly, we define LWCEL, as follows:

LWCEL(λ, δ) =
−1

λ+ δ + 1

[∑
s

∑
c

Ys,c log (Ps,c)

+(λ+ δ)
∑
s

∑
c

Ys,c log
(
P ∗
s,c

)]
.

(4)

where Ps,c and P ∗
s,c are the predicted softmax val-

ues obtained upon decoding the latent vector with
and without added Gaussian noise, respectively.

The hyperparameters λ and δ control the signifi-
cance of the second term in the r.h.s. of Eq. (4) (AE
behavior) as well as the relative weight between
the m-MMD term and the weighted cross-entropy
loss, according to Eq. (2). The function of λ is
analogous to the β parameter in β-VAE [46]. By
adjusting λ and δ, the learning objective can be
positioned between the VAE and AE objectives.
At the extremes, the objective becomes VAE-like
(or AE-like) upon weighting more the term with
(or without) noise. For example, when λ = 1 and
δ = −1, L is like the VAE loss except that we use
m-MMD instead of the KL-divergence. For AE-like
behavior, we choose λ = 0 and δ = 1.

The inclusion of λ in the second term of Eq. (4)
allows larger λ values to restrict the latent vectors
closer together, penalized by the m-MMD loss. This
effect increases the probability of sampling valid
latent vectors but reduces distinctions between vec-
tors. Further details on the effect of λ in Section S5.
The normalization factor of 1

λ+δ+1 is derived on
the basis to make a linear interpolation between
the LCEL with and without noise.

During training, both the latent vector and the
decoder outputs with and without noise are neces-
sary for the calculation of the KAE loss. The latent
vectors are penalized based on their differences
from 1000 randomly sampled Gaussian vectors (G⃗i)
using kernel-based metrics[21]. During training, a
noise vector ϵ ∈ RD, with D the dimension of the
latent space, is added to the latent vector before
passing it to the decoder. The noise vector is gener-
ated from a Gaussian normal distribution N (µ, σ2)
with zero mean µ = 0 and unit variance σ = 1.

The center of the Figure 1 captures the training
procedure, where information from the latent space
is passed to the decoder twice.

One pass resembles an AE-like behavior with-
out noise, while the other pass resembles a VAE-like
behavior with added noise to the latent vector
before decoding. The reconstructions are both
penalized by LWCEL. The parameter λ controls
the shape of the latent vector distribution and
the relative weights between the MMD term and
the cross-entropy loss. The parameter δ controls
the relative weights between the AE and VAE
objectives.

4.3 KAE m-MMD Loss
The MMD loss [47], between two distributions
having Nx and Ny samples, is defined as their
squared distance calculated in a space F through
the transformer ϕ:

MMD(x⃗, y⃗) = ||µ⃗x − µ⃗y||2F ,
= µ⃗x

T · µ⃗x + µ⃗y
T · µ⃗y

− µ⃗x
T · µ⃗y − µ⃗y

T · µ⃗x,

(5)

where µ⃗x = 1
Nx

∑Nx

i ϕ(x⃗i). The space F is defined
by its dot product which can be calculated using
a kernel function K. Introducing the kernel

K(x⃗i, y⃗j) = ⃗ϕ(xi)
T
· ⃗ϕ(yj), (6)

we can write the inner products, as follows:

µ⃗x
T · µ⃗y =

1

NxNy

Nx∑
i

Ny∑
j

K(x⃗i, y⃗j), (7)

so

MMD(x⃗, y⃗) =
1

N2
y

Ny∑
i

Ny∑
j

K(y⃗i, y⃗j)

+
1

N2
x

Nx∑
i

Nx∑
j

K(x⃗i, x⃗j)

− 2

NxNy

Nx∑
i′

Ny∑
j′

K(x⃗i′ , y⃗j′),

(8)

11

where all y⃗ are sampled from the target Gaussian
distribution, and the kernel is defined as follows:

K(α⃗, β⃗) = exp(
− 1

D

∑D
d=0(αd − βd)

2

2σ2
), (9)

where D = 10 × E is the size of the latent dimen-
sion and σ =

√
0.32 has been empirically chosen

(see comparison in S8).
The first term in the r.h.s. of Eq. (8) corre-

sponds to µ⃗y
T ·µ⃗y. It is typically dropped in the loss

evaluations since this term does not contribute to
the gradients of the loss with respect to the weights
during backpropagation. So, the standard-MMD
(s-MMD) loss is defined, as follows:

s-MMD(λ) = λ

[
1

N2
x

Nx∑
i

Nx∑
j

K(x⃗i, x⃗j)

− 2

NxNy

Nx∑
i′

Ny∑
j′

K(x⃗i′ , y⃗j′)

 .

(10)

For a zero-minimum inner product, the mini-
mum of the first term is achieved at µ⃗x equal zero.
So, minimizing the first term promotes all ϕ(x⃗i) to
spread out in the space F while the second term
brings ϕ(x⃗) to be similar to the distribution of
ϕ(y⃗).

Based on the s-MMD loss, introduced by
Eq. (10), we define the m-MMD loss, as follows:

m-MMD(λ) = λ

1− 1

NxNy

Nx∑
i

Ny∑
j

K(x⃗i, y⃗j)


(11)

The constant 1 is added to make m-MMD range
from 0 to 1 before the λ scaling. A comparative
analysis of the effect of using m-MMD versus s-
MMD is provided in Supplementary Information
(Section S6).

4.4 Decoding Methods
KAE’s generation process involves sampling a vec-
tor, v⃗ ∈ R10×E from a D-dimensional Gaussian
distribution and decoding it. For conditional gener-
ation (CKAE), the sampled vector is concatenated
with a condition C, following its multiplication by

its corresponding embedding vector. The resulting
vector is subsequently mingled by a fully connected
layer, yielding L⃗ again in R10×E . The decoder then
translates the SMILES string sequence, charac-
ter by character, with decoder-encoder attention
applied to L⃗.

During decoding, the token “<SOS>” is initially
supplied. The decoder subsequently generates a
probability distribution across T possible tokens
for each input. One of the approaches is to con-
tinue the predictions using the token possessing
the maximum probability, incorporating the token
into the next-round input sequence and reiterating
the procedure to obtain the next most probable
token. This process is repeated until the end-of-
sequence token (?) is produced or the sequence
length limit is achieved. Besides retaining only the
token of highest probability, KAE employed beam
search, guided by the hyper-parameter beam size,
to derive a broader array of interpretations of the
same vector, L⃗. With a beam size, B, where B ≤ T ,
a maximum of B outputs are produced from a
single decoding procedure.

The beam search algorithm logs the probabil-
ity of each step for each of the B sequences. For
the first step, the top B most probable tokens are
selected. In subsequent steps, the model decodes
from B input sequences concurrently. Given that
each of the B sequences has T potential outcomes
for the succeeding token, the total number of poten-
tial next-step sequences equates to B × T . These
sequences are then ranked according to the sum of
their probabilities for all S characters.

In a beam search, the probability of a sequence
of tokens indexed from s, s− 1, s− 2... to 0 can be
represented, as follows:

P (s, s− 1, s− 2, ..., 0)

= P (s|s− 1, s− 2, ..., 0)× P (s− 1, s− 2, ..., 0)

(12)

This can be interpreted as the product of individual
probabilities,

P (s, s− 1, s− 2, ..., 0) = P (s|s− 1, s− 2, ..., 0)

× P (s− 1|s− 2, s− 3, ..., 0)× ... P (0)

(13)

12

However, calculations of long sequences based on
this equation yield impractically small numbers as
every term is smaller than one. Therefore, we sum
the log probabilities instead.

For the B × T sequences with equal sequence
length S, the probability of the ith sequence at
each position s is denoted as Pi,s. Excluding the
probabilities of padding tokens, the sum of log
probabilities, Pi for the ith sequence is computed
as:

Pi =
1√
Ni

S∑
s ̸=pad

Log(Pi,s) (14)

Here, Ni represents the quantity of non-padding
tokens in sequence i.

To foster diversity in decoding, sequence
lengths are factored into the computation of Pi.
The 1√

Ni
term counteracts the preference for

shorter sequences over longer ones, as longer
sequences typically yield smaller sums of log
probabilities.

The top B most probable tokens are selected
and serve as the inputs for the subsequent itera-
tion, which continues until the maximum sequence
length M is attained or all top B candidates have
produced the end-of-sequence token, signaling the
cessation of decoding.

4.5 Docking Methods
The generated molecular structures were evaluated
using Autodock Vina [25], following a procedure
that ensures meaningful comparisons to other
molecular generation models, such as GFlowNet [5].
All results were independently tested by using
Glide docking from Schrodinger Inc. [26, 27] to
ensure the results are robust across different
docking software packages.

Autodock Vina is known for its efficiency and
speed, making it suitable for high-throughput
screening. It employs an empirical scoring func-
tion for accurate prediction of binding affinities.
On the other hand, Glide utilizes a force field-
based scoring function that is widely recognized
for its accuracy. In particular, Glide excels at pre-
dicting binding poses with high precision and has
undergone extensive validation. Its efficacy in han-
dling large and flexible ligands has established it as
the gold standard in the field. To ensure meaning-
ful comparisons to GFlowNet [5], we followed the

same procedure implemented for Autodock Vina
calculations. Specifically, 20 conformers were used
per ligand, exhaustiveness was set to 32, and a
maximum of 10 binding modes were generated.

4.5.1 Glide calculations

The model protein receptor (PDB ID: 4jnc) was
prepared by using the adept Protein Preparation
Wizard tool in Maestro [48]. The protonation states
were defined at a neutral pH = 7.0. The protein
was subsequently refined via energy minimization
using the OPLS4 force field [49].

The 3D grid representation of the receptor bind-
ing site was prepared by using the Maestro Grid
Generation tool, ensuring that the grid size and
positioning was perfectly aligned with those used
in GFlowNet calculations. All model structures for
docking were preared using the LigPrep tool of
Maestro. Utilizing the Pre-Dock tool in Maestro,
the docked molecules were prepared and assigned
charges and protonation states via the OPLS4 force
field [49]. The XP (extra precision) [26, 27] flexible
docking protocol was then implemented, employ-
ing a range of settings designed to optimize the
docking accuracy and precision. These included
a selection of all predefined functional groups for
biased torsional sampling, the addition of Epik
state penalties [50] to the docking scores [48], and
the enhanced planarity setting for conjugated pi
groups.

In the initial step of the docking procedure,
10,000 poses were filtered through the Glide screens,
and the top 1,000 poses were selected for energy
minimization. The expanded sampling option was
utilized to maximize pose flexibility during the
search. Ultimately, a single pose was retained for
each ligand. The final stage involved refining the
best docking poses. Two consecutive refinement
steps were performed, each consisting of a post-
docking energy minimization on the selected pose,
eliminating the need for additional sampling. As
a result, highly optimized and reliable docking
poses were obtained and compared against those
obtained with Autodock Vina [25] calculations.

13

Acknowledgments
VSB acknowledges support from the NSF CCI
grant (Award No. 2124511) and computational
resources from the National Energy Research Sci-
entific Computing Center (NERSC), a U.S. Depart-
ment of Energy Office of Science User Facility
located at Lawrence Berkeley National Laboratory,
operated under Contract No. DE-AC02-05CH11231
using NERSC award BES-ERCAP0024372.

Data Availability
Pretrained KAE can be accessed through API calls
at https://demo.ischemist.com/login. The key to
viewing KAE example results is publicdemo. To use
the API, please contact victor.batista@yale.edu.

References
[1] Lukasz Maziarka, Agnieszka Pocha, Jan Kacz-

marczyk, Krzysztof Rataj, Tomasz Danel, and
Michał Warchoł. Mol-cyclegan: a generative
model for molecular optimization. Journal of
Cheminformatics, 12(1):1–18, 2020.

[2] Michael Moret, Lukas Friedrich, Francesca
Grisoni, Daniel Merk, and Gisbert Schnei-
der. Generative molecular design in low
data regimes. Nature Machine Intelligence,
2(3):171–180, 2020.

[3] Miha Skalic, José Jiménez, Davide Sabbadin,
and Gianni De Fabritiis. Shape-based gen-
erative modeling for de novo drug design.
Journal of chemical information and modeling,
59(3):1205–1214, 2019.

[4] Jike Wang, Chang-Yu Hsieh, Mingyang Wang,
Xiaorui Wang, Zhenxing Wu, Dejun Jiang,
Benben Liao, Xujun Zhang, Bo Yang, Qiaojun
He, et al. Multi-constraint molecular genera-
tion based on conditional transformer, knowl-
edge distillation and reinforcement learning.
Nature Machine Intelligence, 3(10):914–922,
2021.

[5] Yoshua Bengio, Tristan Deleu, Edward J Hu,
Salem Lahlou, Mo Tiwari, and Emmanuel
Bengio. Gflownet foundations. arXiv preprint
arXiv:2111.09266, 2021.

[6] Emiel Hoogeboom, Vıctor Garcia Satorras,
Clément Vignac, and Max Welling. Equiv-
ariant diffusion for molecule generation in
3d. In International Conference on Machine
Learning, pages 8867–8887. PMLR, 2022.

[7] Oleksii Prykhodko, Simon Viet Johansson,
Panagiotis-Christos Kotsias, Josep Arús-Pous,
Esben Jannik Bjerrum, Ola Engkvist, and
Hongming Chen. A de novo molecular gen-
eration method using latent vector based
generative adversarial network. Journal of
Cheminformatics, 11(1):1–13, 2019.

[8] Diederik P Kingma and Max Welling. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[9] Rafael Gómez-Bombarelli, Jennifer N Wei,
David Duvenaud, José Miguel Hernández-
Lobato, Benjamín Sánchez-Lengeling, Dennis
Sheberla, Jorge Aguilera-Iparraguirre, Tim-
othy D Hirzel, Ryan P Adams, and Alán
Aspuru-Guzik. Automatic chemical design
using a data-driven continuous representation
of molecules. ACS central science, 4(2):268–
276, 2018.

[10] Matt J Kusner, Brooks Paige, and José Miguel
Hernández-Lobato. Grammar variational
autoencoder. In International conference on
machine learning, pages 1945–1954. PMLR,
2017.

[11] Wengong Jin, Regina Barzilay, and Tommi
Jaakkola. Junction tree variational autoen-
coder for molecular graph generation. In
International conference on machine learning,
pages 2323–2332. PMLR, 2018.

[12] Dana H Ballard. Modular learning in neural
networks. In Aaai, volume 647, pages 279–284,
1987.

[13] Samuel C Hoffman, Vijil Chenthamarakshan,
Kahini Wadhawan, Pin-Yu Chen, and Payel
Das. Optimizing molecules using efficient
queries from property evaluations. Nature
Machine Intelligence, 4(1):21–31, 2022.

[14] Han Van De Waterbeemd, Dennis A Smith,
Kevin Beaumont, and Don K Walker.

14

https://demo.ischemist.com/login
publicdemo

Property-based design: optimization of drug
absorption and pharmacokinetics. Journal of
medicinal chemistry, 44(9):1313–1333, 2001.

[15] Jiazhen He, Huifang You, Emil Sandström,
Eva Nittinger, Esben Jannik Bjerrum, Chris-
tian Tyrchan, Werngard Czechtizky, and Ola
Engkvist. Molecular optimization by cap-
turing chemist’s intuition using deep neu-
ral networks. Journal of cheminformatics,
13(1):1–17, 2021.

[16] Ziqi Chen, Martin Renqiang Min, Srinivasan
Parthasarathy, and Xia Ning. A deep gen-
erative model for molecule optimization via
one fragment modification. Nature machine
intelligence, 3(12):1040–1049, 2021.

[17] Ashish Vaswani, Noam Shazeer, Niki Par-
mar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin.
Attention is all you need. Advances in neural
information processing systems, 30, 2017.

[18] Orion Dollar, Nisarg Joshi, David AC Beck,
and Jim Pfaendtner. Attention-based gen-
erative models for de novo molecular design.
Chemical Science, 12(24):8362–8372, 2021.

[19] Junyan Jiang, Gus G Xia, Dave B Carlton,
Chris N Anderson, and Ryan H Miyakawa.
Transformer vae: A hierarchical model for
structure-aware and interpretable music rep-
resentation learning. In ICASSP 2020-2020
IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
516–520. IEEE, 2020.

[20] Tianming Wang and Xiaojun Wan. T-cvae:
Transformer-based conditioned variational
autoencoder for story completion. In IJCAI,
pages 5233–5239, 2019.

[21] Shengjia Zhao, Jiaming Song, and Stefano
Ermon. Infovae: Balancing learning and
inference in variational autoencoders. In
Proceedings of the aaai conference on artifi-
cial intelligence, volume 33, pages 5885–5892,
2019.

[22] Talip Ucar. Bridging the elbo and mmd. arXiv
preprint arXiv:1910.13181, 2019.

[23] Christos Louizos, Kevin Swersky, Yujia Li,
Max Welling, and Richard Zemel. The vari-
ational fair autoencoder. arXiv preprint
arXiv:1511.00830, 2015.

[24] Ryan J Richards and Austen M Groener.
Conditional β-vae for de novo molecular gen-
eration. arXiv preprint arXiv:2205.01592,
2022.

[25] Oleg Trott and Arthur J Olson. Autodock
vina: improving the speed and accuracy of
docking with a new scoring function, efficient
optimization, and multithreading. Journal of
computational chemistry, 31(2):455–461, 2010.

[26] Thomas A. Halgren, Robert B. Murphy,
Richard A. Friesner, Hege S. Beard, Leah L.
Frye, W. Thomas Pollard, and Jay L. Banks.
Glide: A New Approach for Rapid, Accurate
Docking and Scoring. 2. Enrichment Factors
in Database Screening. Journal of Medicinal
Chemistry, 47(7):1750–1759, 2004.

[27] Richard A. Friesner, Robert B. Murphy,
Matthew P. Repasky, Leah L. Frye, Jeremy R.
Greenwood, Thomas A. Halgren, Paul C.
Sanschagrin, and Daniel T. Mainz. Extra
precision glide: Docking and scoring incor-
porating a model of hydrophobic enclosure
for protein-ligand complexes. Journal of
Medicinal Chemistry, 49(21):6177–6196, 2006.

[28] Chengxi Zang and Fei Wang. Moflow: an
invertible flow model for generating molecu-
lar graphs. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 617–626,
2020.

[29] Chaochao Yan, Jinyu Yang, Hehuan Ma,
Sheng Wang, and Junzhou Huang. Molecule
sequence generation with rebalanced varia-
tional autoencoder loss. Journal of Computa-
tional Biology, 2022.

[30] Youzhi Luo, Keqiang Yan, and Shuiwang Ji.
Graphdf: A discrete flow model for molecular
graph generation. In International Confer-
ence on Machine Learning, pages 7192–7203.
PMLR, 2021.

15

[31] Zaccary Alperstein, Artem Cherkasov,
and Jason Tyler Rolfe. All smiles vari-
ational autoencoder. arXiv preprint
arXiv:1905.13343, 2019.

[32] Greg Landrum et al. Rdkit: Open-source
cheminformatics software. 2016.

[33] Hiroshi Kajino. Molecular hypergraph gram-
mar with its application to molecular opti-
mization. In International Conference on
Machine Learning, pages 3183–3191. PMLR,
2019.

[34] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay
Pande, and Jure Leskovec. Graph convolu-
tional policy network for goal-directed molec-
ular graph generation. Advances in neural
information processing systems, 31, 2018.

[35] Zhenpeng Zhou, Steven Kearnes, Li Li,
Richard N Zare, and Patrick Riley. Opti-
mization of molecules via deep reinforcement
learning. Scientific reports, 9(1):1–10, 2019.

[36] Chencheng Xu, Qiao Liu, Minlie Huang, and
Tao Jiang. Reinforced molecular optimiza-
tion with neighborhood-controlled grammars.
Advances in Neural Information Processing
Systems, 33:8366–8377, 2020.

[37] Scott A Wildman and Gordon M Crippen.
Prediction of physicochemical parameters by
atomic contributions. Journal of chemical
information and computer sciences, 39(5):868–
873, 1999.

[38] Peter Ertl and Ansgar Schuffenhauer. Esti-
mation of synthetic accessibility score of
drug-like molecules based on molecular com-
plexity and fragment contributions. Journal
of cheminformatics, 1(1):1–11, 2009.

[39] Jaechang Lim, Seongok Ryu, Jin Woo Kim,
and Woo Youn Kim. Molecular generative
model based on conditional variational autoen-
coder for de novo molecular design. Journal
of cheminformatics, 10(1):1–9, 2018.

[40] Changsheng Ma and Xiangliang Zhang. Gf-
vae: a flow-based variational autoencoder
for molecule generation. In Proceedings of

the 30th ACM International Conference on
Information & Knowledge Management, pages
1181–1190, 2021.

[41] Emmanuel Bengio, Moksh Jain, Maksym
Korablyov, Doina Precup, and Yoshua Ben-
gio. Flow network based generative models
for non-iterative diverse candidate generation.
Advances in Neural Information Processing
Systems, 34:27381–27394, 2021.

[42] M.; Korablyov M.; Precup D.; Bengio Y. Ben-
gio, E.; Jain. Flow network based generative
models for non-iterative diverse candidate
generation. https://github.com/GFNOrg/
gflownet, 2022.

[43] Alex Graves. Sequence transduction with
recurrent neural networks. arXiv preprint
arXiv:1211.3711, 2012.

[44] Yoshua Bengio, Nicolas Boulanger-
Lewandowski, and Razvan Pascanu. Advances
in optimizing recurrent networks. In 2013
IEEE international conference on acoustics,
speech and signal processing, pages 8624–8628.
IEEE, 2013.

[45] Jeff Guo and Philippe Schwaller. Beam enu-
meration: Probabilistic explainability for sam-
ple efficient self-conditioned molecular design.
arXiv preprint arXiv:2309.13957, 2023.

[46] Irina Higgins, Loic Matthey, Arka Pal,
Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander
Lerchner. beta-vae: Learning basic visual
concepts with a constrained variational frame-
work. In International conference on learning
representations, 2017.

[47] Arthur Gretton, Karsten M Borgwardt,
Malte J Rasch, Bernhard Schölkopf, and
Alexander Smola. A kernel two-sample test.
The Journal of Machine Learning Research,
13(1):723–773, 2012.

[48] New York NY Schrödinger, LLC. Schrödinger
release 2023-2: Maestro, 2023.

[49] Chao Lu, Chuanjie Wu, Delaram Ghoreishi,
Wei Chen, Lingle Wang, Wolfgang Damm,

16

https://github.com/GFNOrg/gflownet
https://github.com/GFNOrg/gflownet

Gregory A. Ross, Markus K. Dahlgren, Ellery
Russell, Christopher D. Von Bargen, Robert
Abel, Richard A. Friesner, and Edward D.
Harder. OPLS4: Improving Force Field Accu-
racy on Challenging Regimes of Chemical
Space. Journal of Chemical Theory and
Computation, 17(7):4291–4300, 2021.

[50] Jeremy R. Greenwood, David Calkins,
Arron P. Sullivan, and John C. Shelley.
Towards the comprehensive, rapid, and accu-
rate prediction of the favorable tautomeric
states of drug-like molecules in aqueous solu-
tion. Journal of Computer-Aided Molecular
Design, 24(6-7):591–604, 2010.

17

Supplemental Materials: Kernel-Elastic Autoencoder for Molecular Design

S1 Training Datasets
The KAE model has been trained on 90% (225,000) of the entries of the ZINC250K dataset. Within the
other split, 1,000 molecules were used for validation and 24,000 were used for testing. In CKAE, the
training data included the molecular properties from the ZINC250K library. For the dataset with 300,000
docking candidates from GFlowNet, all entries were used for training.

S2 Data Preparation
We used the ZINC250K dataset. During dataset preparation, all SMILES strings were first canonicalized
and added to the start of sequence tokens “!" and the end of sequence tokens “?". The canonicalization
gives a unique and unambiguous representation of the molecule. There were 41 unique characters from
the database. They were extracted and put into a character-to-token dictionary that allows conversions
from characters to tokens. Paddings were added at the end as the 42nd token, making the dictionary
size T . A token-to-character dictionary was created at the same time for the interpretation of the model
output in tokens. With the character-to-token dictionary, all SMILES representations were converted to
the corresponding tokens. Since we use the Transformer architecture, model inputs were made into the
same shape for batch training by adding paddings to all sequences. After padding, all sequences have
the same length. The numerical values of the penalized octanol-water partition coefficient (PLogP) were
concatenated to the end of the corresponding tokenized molecules. This adds one extra dimension in the
sequence length. The maximum sequence length for each molecule in the dataset is denoted as M . The
tokenized dataset is then partitioned into 256-size batches.

S3 Comparison with Scaled KL Divergence
In Figure 2, we initially set all λ values to 1. However, this choice may not represent the optimal λ value
for KL models when conducting a fair comparison with m-MMD models. To explore the impact of varying
λ values on KL models, we conducted a similar analysis as depicted in Figure S1. The results indicate
that higher λ values tend to enhance validity at the expense of reduced reconstruction rates. Specifically,
for the KL model, the optimal λ value is found around 1.5, yielding an NUVR value of 0.51, whereas the
model applying m-MMD, at λ = 1 , achieves a NUVR of 0.85. It’s worth noting that although KL models
incorporate an additional layer for variance prediction, the increase in parameters is minimal compared to
the overall parameter count (1e-3 over the total parameter counts). Thus, this comparison appropriately
underscores the advantage of the m-MMD loss in terms of the NUVR metric.

S4 Similarity Exhaustion Search Procedures
The hyperparameters of SES include the beam size (B), the interval (δs), the maximum increase in
condition (∆), and the number of repetitions in Phase-two (R). In our implementation, the parameters
were set as B = 15, δs = 0.1, ∆ = 20, and R = 4.

Condition Search: The Condition Search, the initial stage of SES, begins by assigning each molecule
to be optimized, denoted as mi, with its corresponding PLogP value as the initial condition ci. The index
i represents the molecule’s position. The latent vector zi is obtained through the encoding process.

During each step sj , where j starts from zero, a search is conducted for the vector zi with an adjusted
condition ci + jδs. The concatenated vector of zi and the updated condition vector are then passed to the
decoder. By utilizing beam search, a set of B results is generated at each step. This process continues until
the increment jδs reaches the maximum allowed value, ∆. In total, B + B∆

δs
candidates are produced for

the molecule mi through this procedure. Subsequently, all candidates are filtered, retaining only those that
exhibit a Tanimoto similarity within the range of 0.4 compared to the original molecule. The PLogP values

1

(a) (b)

(c) (d)

Fig. S1: Comparison of learning rates for models trained with different λ values for KL
divergence loss. (a) Validity evaluated at each epoch. (b) Fraction of molecules properly reconstructed as
a function of epochs. (c) Novelty evaluated at each epoch. (d) The uniqueness at each epoch. The models are
trained with the loss LV AE = LCEL +KL(λ). The m-MMD model with the loss LCEL +m-MMD(λ = 1).

of the remaining candidates are calculated and ranked. The optimization process is deemed successful if
the highest PLogP value among the candidates for the ith molecule surpasses its original value. In such
cases, the corresponding PLogP value and the SMILES representation of the candidate are recorded.

The purpose of condition search is to look for a set of candidates with similar encoder-estimated zi
but with higher PLogP conditions. However, this procedure does not guarantee good samplings around all
candidates. This means the decoded molecules would be dissimilar or even out of the similarity constraints
from the encoded targets. In addition, despite the correct reconstruction, because these molecules represent
the tail of the distribution of the PLogP conditions in the training data, they could have poor latent space
definitions around them. This can cause a similar problem to reconstruction where better candidates
within the constraint cannot be found due to a decrease in factors such as validity, uniqueness, and novelty.

2

Therefore, a repositioning step is developed to ensure all molecules, especially for those zi that cannot be
reconstructed correctly, can explore possibly better-starting points in the later search.

Repositioning: Repositioning is used to encourage sampling from regions farther away from the
encoded latent vectors. To achieve this, sampling around the vector zi at the corresponding condition
ci is performed. The sampling process involves adding a noise term ϵ drawn from the same Gaussian
distribution employed during training.

If the sampled vector z̃i yields a superior outcome compared to the previous search, it is recorded.
Whenever a recorded z̃i exists, the subsequent sampling iteration starts from this repositioned vector.
This repositioning step aims to expand exploration towards molecules that exhibit a greater separation
from zi, especially for vectors that display limited or no improvement during the condition search. This
repositioning procedure is iterated 100 times to enhance the exploration process. A visual representation
of this procedure can be seen in Figure S2.

Fig. S2: Repositioning. A z̃i is selected around zi if the generated molecule falls within the similarity
threshold (σ) and exhibits an improvement in the optimized property. The subsequent search repetition is
then conducted around z̃i. Through repositioning, the search space expands for molecules that showed
little improvements during the condition search.

Phase Two: The preceding stages of the SES, namely the condition search and repositioning, yield
two distinct sets of latent vectors. The first set comprises the original encoded z vectors, while the second
set consists of the repositioned z̃ vectors. In the second phase, the search process is performed in parallel
using a combination of the condition search and repositioning approaches.

For each set, noise is added in a similar manner as during the repositioning stage. However, in this
phase, every ci is adjusted by ci + jδs, following the same procedure as the condition search.

By applying the filtering and selection criteria identical to those used in the condition search, new
molecules with the highest PLogP values are recorded for both sets. The phase two process is repeated R
times. After completing the R repetitions, for each molecule candidate, the superior result between the
two sets is chosen.

3

S5 Impact of the λ Parameter
The reason for increasing λ is similar to that of increasing β in the case for β-VAE by Richards et al.
Both λ in KAE and β in β-VAE encourage the model to learn more efficient latent representations and to
construct smoother latent space. However, since KAE has different architecture and loss objectives from
VAE, the aforementioned regularisation does not lead to the same result in terms of the NUVR metric
when both λ and β are set to one for KAE and β-VAE.

For the best model using m-MMD in Figure 2, all validities are lower than 90%. This can be improved
by increasing the λ value for the m-MMD term as shown in Table S1. The models in Table S1 were first
trained with λ = 1 for 85 epochs then with higher values for an additional 1 epoch. δ values were set to
−λ throughout the training process to exclude any effects from LWCEL in the comparison.

Increasing the λ value tightens the placement of latent vectors together in the Gaussian distribution
penalized by the m-MMD loss. This is reflected by the increase in the probability of sampling valid
molecules when the latent vectors are drawn from the same distribution. However, as the latent vectors
become closer, it becomes more challenging for the decoder to differentiate them, resulting in a decrease
in reconstruction. The decrease in uniqueness and novelty with increased λ values can be attributed to
the decoder more frequently identifying different molecules with overlapping latent representations as the
same ones.

The overall effects of λ are shown by the NUVR metrics. Table S1 shows the trend of NUV and NUVR
as λ is adjusted. It is observed that validity peaks with larger λ and the model trained with λ = 24.5 has
the highest NUV. However, the reconstruction rate decreases significantly with increasing λ values.

Table S1: Model performance with varying λ. The result shows sampling 1k latent vectors by
continued training of the model from the same checkpoint (85 epochs) with the loss function being
L(λ = 1, δ = −1), but then followed by an additional epoch with different λ values (loss functions are
then L(λ = λ, δ = −λ)).

λ Validity Novelty Uniqueness NUV Reconstruction NUVR

1.0 0.782 1.000 0.995 0.778 0.988 0.769
2.0 0.802 1.000 1.000 0.802 0.978 0.784
5.0 0.849 1.000 1.000 0.849 0.933 0.792
10.0 0.847 0.999 0.999 0.845 0.792 0.669
15.0 0.913 0.998 1.000 0.911 0.527 0.480
20.0 0.929 1.000 1.000 0.929 0.246 0.229
24.5 0.961 0.999 0.998 0.958 0.060 0.057
25.0 0.940 0.998 1.000 0.938 0.043 0.040
25.5 0.943 1.000 1.000 0.943 0.039 0.037
26.0 0.965 0.998 0.999 0.962 0.029 0.028
27.5 0.962 0.996 0.999 0.957 0.010 0.010
30.0 0.970 1.000 0.987 0.957 0.000 0.000

We seek to find a solution that can increase validity while maintaining other metrics at the same level.
Therefore controlling the model via LWCEL was the key to this problem. Model performance with a range
of δ values were compared in S8 and δ = 1 was chosen in LWCEL; We then compared different λ values
with δ fixed to 1. In Figure S3, models are trained with the loss function L(λ, δ = 1) for 200 epochs. It
can be observed in Figure S3a that higher λ values lead to better final validity. However, uniqueness in
Figure S3b breaks down for the case of when λ = 4 while novelty and reconstruction rates converge to
around 100% in (Figure S3c and Figure S3d). Therefore, the λ = 3.5 model is trained for additional 200
epochs (total 400 epochs) to give final performance metrics in Table 1.

4

(a) (b)

(c) (d)

Fig. S3: The performance comparison of models trained with different λ values, while keeping
δ = 1, using the m-MMD loss. (a) Validity evaluated at every epoch. (b) Uniqueness evaluated at
every epoch. (c) Novelty evaluated at every epoch. (d) Reconstruction rate evaluated at every epoch. The
evaluation metrics include validity, uniqueness, and novelty, which are computed at the end of each epoch
based on 1000 randomly generated molecules from each model. Additionally, the reconstruction rate is
calculated using 1000 molecules from the validation set. In the legend, the notation LxDy represents a
model trained with λ = x and δ = y. For instance, the model labeled L3D1 corresponds to L(λ = 3, δ = 1).

S6 Latent Space And Model Performance

In m-MMD, with the RBF-kernel function, removing the µ⃗x
T µ⃗x term is believed to be helpful since as it

allows the distributions of individual molecules to be closer together. This makes the sampling region
have fewer places where the decoder cannot infer valid molecules. A demonstration and a comparison
with the latent spaces of s-MMD and m-MMD is presented in Figure S4.

It can be seen from Figure 2b that, with or without noise, the models trained with s-MMD have a faster-
converging reconstruction rate than the models trained with m-MMD. This is because the extra K(x⃗, x⃗)
term in s-MMD promotes the separation of the latent representations of the data points such that the
decoder can easily differentiate the representations. However, since the latent vectors that represent valid
molecules are far from each other, the validity is significantly lower for the models trained with s-MMD.

We consider increasing λ as an approach to optimize the model performance in N, U, and V, reducing
the uninterpreted regions while still making individual molecules distinct from each other.

5

(a) (b)

(c) (d)

Fig. S4: Latent vectors obtained by passing 10k ZINC250K molecules to the encoder and
transforming under the same principal components extracted from the standard Gaussian
distribution. (a) m-MMD results showing all latent vectors well-incorporated in the Gaussian. (b) s-
MMD loss makes the latent vectors more scattered relative to the Gaussian, making it less likely to obtain
valid output by sampling from the Gaussian. (c) and (d) show the actual vectors passed into the decoder
in the training process with latent noise added.

S7 Enhancing Generation Performance through Beam Search
To further improve the performance of our model, we employ beam search, a popular decoding technique
in sequence generation tasks. Beam search involves selecting a single output from a set of B potential
candidates, based on specific criteria outlined in the decoding method (see Section 4.4).

Similar to previous studies that have employed checking methods to enhance model performance, we
propose a new approach with beam search as a post-generation evaluation step. During the molecule
generation process, we consider one of the outputs obtained from the beam search results. For instance,

6

(a) Molecules found with a beam size of one (b) Molecules found with a beam size of two

Fig. S5: Molecules obtained by sampling from the 0.1-SD Gaussian distribution centered
around a specific latent vector, while varying the beam size. Figure (a) illustrates the molecules
found using a beam size of one, where only the original encoded molecule is identified despite the added
noise. In contrast, Figure (b) showcases the molecules discovered when a beam size of two is employed,
revealing seven distinct molecules out of the ten samples.

Table S2: Model performance with varying beam sizes. This table shows the model’s generation
performance with various beam sizes by sampling 10k latent vectors each time. One output is selected out
of the interpretations given by all beam search results for each latent vector. The result with a beam size
of one is an equivalent measurement to other methods that do not use beam search and grammar checks.

Beam Size Novelty Uniqueness Validity NUV

1 0.996 0.974 0.998 0.968
2 1.000 0.996 1.000 0.996
3 1.000 0.998 1.000 0.998
4 1.000 1.000 1.000 1.000
5 1.000 1.000 1.000 1.000

with a beam size of two, two possible interpretations are generated for the same latent vector. We iterate
through the B results, starting with the top-ranked interpretation. If any of the generated SMILES strings
are novel, unique, and valid, the evaluation process is stopped and the corresponding SMILES string is
retained. Priority is given to retaining valid molecules over those that are unique and novel. By checking
and selecting from all the beam-searched outputs, we increase the likelihood of finding SMILES strings
that meet the criteria of novelty, uniqueness, and validity. For a latent vector, if all its beam search results
fail to meet the validity criterion, the top-one result is returned. We believe the beam search can help
differentiate two latent vectors that are similar by providing alternative interpretations per vector.

In the case where the beam size is equal to one, the method is identical to greedy search which takes
only the next-step candidate with maximum probability; We compare the results done at different beam
sizes. 10k vectors are sampled for each listed beam size. The result of the beam size of one is used as the
control group.

Table S2 presents the model’s generation performance across different beam sizes, as measured by
various metrics. The metrics assessed include novelty, uniqueness, validity, and the combined metric NUV.
The results clearly indicate that as the beam size increases, the model’s performance improves consistently.
Notably, when the beam size exceeds three, the performance reaches a plateau, achieving the highest
possible value of 1.0 for the NUV metric.

To further highlight the capabilities of beam search, we conduct additional experiments where we
sample from a small distribution around a specific latent vector Fig . We start by selecting a molecule
from the training set and encoding it into its corresponding latent vector. Next, we generate 10 noise
vectors by sampling from a Gaussian distribution with a standard deviation one-tenth of that used during

7

(a) (b)

(c) (d)

Fig. S6: Performance comparison of the models trained with different sigma values using
modified MMD loss. (a) Validity evaluated at every epoch. (b) Uniqueness evaluated at every epoch.
(c) Novelty evaluated at every epoch. (d) Reconstruction rate evaluated at every epoch. Note that 2ss (2
sigma squared) in the legend represents the value used for 2σ2 in Eq. 9 and E is the embedding dimension.
Validity, uniqueness, and novelty are calculated at the end of each epochs using 1000 randomly generated
molecules from each of the models. And the reconstruction rate is calculated using 1000 molecules from
the validation set.

training (0.1-SD). These noisy latent vectors are then decoded using the beam search approach. The
results obtained from beam search demonstrate the ability to find diverse candidates that are similar to
the molecule being sampled. Notably, when a beam size of two is employed, six additional candidates are
discovered compared to the case where beam search is not utilized (i.e., beam size of one).

S8 σ Comparison
In Figure S6 and Figure S7, we compare the model performance of different sigma values of the kernel
(Eq. 9). It can be observed that the final uniqueness, novelty, and reconstruction rate are similar, while
there are clear differences in validity performance. Therefore, the sigma value that gives the highest final
validity rate is considered optimal. It can be observed that lower 2σ2 values give higher validity rates and
2σ2 = 0.0005× E is the optimal value for both m-MMD and s-MMD models. At the optimal sigma value,
the m-MMD model has higher validity rate than the s-MMD model. Besides, if models are trained with

8

(a) (b)

(c) (d)

Fig. S7: Performance comparison of the models trained with different sigma values using
standard MMD loss. (a) Validity evaluated at every epoch. (b) Uniqueness evaluated at every epoch.
(c) Novelty evaluated at every epoch. (d) Reconstruction rate evaluated at every epoch. Note that 2ss (2
sigma squared) in the legend represents the value used for 2σ2 in Eq. 9 and E is the embedding dimension.
Validity, uniqueness, and novelty are calculated at the end of each epochs using 1000 randomly generated
molecules from each of the models. And the reconstruction rate is calculated using 1000 molecules from
the validation set.

even lower sigma values (2σ2 = 0.00005× E for example), the models would break down because they
cannot get gradient information from the MMD loss term (results not shown).

S9 δ Comparison
We designed the δ such that when λ is 1, and δ is greater than -1, the AE-like term contributes to the
model reconstruction performance. When δ is large, the model ignores the regions with added noise and
thus is turned into a pure auto-encoder. When δ is equal to -1, the model is VAE-like where each latent
vector is treated as a distribution. When δ is in between these two extrema, the model achieves the AE-like
reconstruction rate while obtaining better generative performance in NUV metrics (Figure S8).

9

(a) (b)

(c) (d)

Fig. S8: Performance comparison of the models trained with different δ values (with λ = 1)
using modified MMD loss and KL loss. (a) Validity evaluated at every epoch. (b) Uniqueness
evaluated at every epoch. (c) Novelty evaluated at every epoch. (d) Reconstruction rate evaluated at every
epoch. Validity, uniqueness, and novelty are calculated at the end of each epoch using 1000 randomly
generated molecules from each of the models. And the reconstruction rate is calculated using 1000 molecules
from the validation set. Note that LxDy in the legend means that the model is trained with lambda = x
and delta = y. For example, the model labeled with L1D-1 is trained with L(λ = 1, δ = −1)

S10 KAE Interpolation
KAE has near 100% reconstruction rate and this gives it an advantage to perform modifications precisely
around the input molecules. We show an example by linearly interpolating from Atrazine to Plastoquinone.
The two molecules were encoded into their latent representations and the model decoded Atrazine to the
Plastoquinone in 100 evenly spaced steps with a beam size of 30. The NUV molecules along this trajectory
is plotted in Figure S9. The result shows an effective mixing/transitioning of the two molecules’ motifs
and exact reconstructions of the starting and ending compounds.

10

Fig. S9: Interpolation of KAE Latent Space Atrazine and Plastoquinone are encoded into two latent
vectors. The model then decodes from Atrazine to Platsoquinone in 100 evenly spaced steps with a beam
size of 30.

11

	Introduction
	Result
	KAE Performance
	Learning Behavior
	Conditional KAE
	CKAE for Ligand Docking
	Comparison to GFlowNet
	Glide Analysis

	Discussion
	Methods
	Model Architecture
	KAE Loss
	KAE m-MMD Loss
	Decoding Methods
	Docking Methods
	Glide calculations

	Training Datasets
	Data Preparation
	Comparison with Scaled KL Divergence
	Similarity Exhaustion Search Procedures
	Impact of the Parameter
	Latent Space And Model Performance
	Enhancing Generation Performance through Beam Search
	 Comparison
	 Comparison

	KAE Interpolation

