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ABSTRACT
We describe a general-purpose framework for formulating the dynamics of any subset of electronic reduced density matrix elements in terms
of a formally exact generalized quantum master equation (GQME). Within this framework, the effect of coupling to the nuclear degrees of
freedom, as well as to any projected-out electronic reduced density matrix elements, is captured by a memory kernel and an inhomogeneous
term, whose dimensionalities are dictated by the number of electronic reduced density matrix elements included in the subset of interest.
We show that the memory kernel and inhomogeneous term within such GQMEs can be calculated from projection-free inputs of the same
dimensionality, which can be cast in terms of the corresponding subsets of overall system two-time correlation functions. The applicability and
feasibility of such reduced-dimensionality GQMEs is demonstrated on the two-state spin-boson benchmark model. To this end, we compare
and contrast the following four types of GQMEs: (1) a full density matrix GQME, (2) a single-population scalar GQME, (3) a populations-only
GQME, and (4) a subset GQME for any combination of populations and coherences. Using a method based on the mapping Hamiltonian
approach and linearized semiclassical approximation to calculate the projection-free inputs, we find that while single-population GQMEs and
subset GQMEs containing only one population are less accurate, they can still produce reasonable results and that the accuracy of the results
obtained via the populations-only GQME and a subset GQME containing both populations is comparable to that obtained via the full density
matrix GQMEs.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0078040

I. INTRODUCTION

A variety of important chemical processes, ranging from
photosynthesis to photovoltaics, involve multiple intricately inter-
connected electronic energy, charge, and coherence transfer
pathways.1–12 A quantitative molecular-level understanding of the
inherently quantum-mechanical dynamics underlying these path-
ways and their interplay with decoherence, which is key for
function–structure relations as well as rational design principles in
biologically and technologically relevant molecular systems, remains
one of the most formidable challenges facing computational chem-
istry. The exponential scaling of the computational cost with sys-
tem dimensionality makes quantum-mechanically exact simulations
of the entire molecular system [i.e., electronic + nuclear degrees
of freedom (DOF)] non-feasible in complex molecular systems,
with the exception of a rather restrictive subclass of Hamiltonians

whose form makes such a quantum-mechanically exact simula-
tion possible.13–19 Thus, general-purpose reduced-dimensionality
approaches that focus on the dynamics of the electronic observables
of interest are called for.

The generalized quantum master equation (GQME) formal-
ism, which was introduced by Nakajima20 and Zwanzig21 more than
sixty years ago, provides a formal framework for developing such
a general-purpose reduced-dimensionality approach that focuses
on the dynamics of the electronic DOF of interest while keeping
the information on the remaining DOF to the minimum necessary
in order to capture their effect on the electronic DOF of interest.
Within the GQME approach, the electronic DOF of interest are
treated as a quantum open system whose dynamics is described by a
formally exact equation of motion (the so-called GQME) derived by
projecting out the remaining DOF. Within this equation of motion,
or GQME, the effect of the projected-out DOF on the dynamics of
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the electronic DOF of interest is formulated in terms of a memory
kernel and an inhomogeneous term. The memory kernel and inho-
mogeneous term correspond to the minimum information about
the projected-out DOF that is needed in order to fully capture their
effect on the electronic DOF of interest.

A significant amount of effort over the last two decades has
been directed at developing, testing, and applying computational
methods for calculating the memory kernel within the GQME for-
malism for the case where the electronic observable of interest
corresponds to the entire electronic reduced density matrix. These
efforts were mostly based on the fact that the memory kernel can be
calculated from projection-free inputs (PFIs), which can be obtained
using either quantum-mechanically exact or approximate semiclas-
sical and mixed quantum-classical input methods.22–41 It should be
noted that the fact that the memory kernel is often temporally as well
as dimensionally compact makes it possible to limit the use of such
exact or approximate methods to relatively short times, where they
are often more accurate and/or more cost-effective. Indeed, pursu-
ing such an approach has often been observed to produce results that
are more accurate than those obtained via direct application of the
approximate method of choice at a reduced computational cost.

However, the focus on the entire reduced electronic density
matrix as the observable of interest also made it challenging to scale
up the approach with respect to the number of electronic states.
More specifically, the fact that the memory kernel corresponds to
an N2

e ×N2
e super-matrix in the case of a system with Ne electronic

states has restricted the use of the methodology, in practice, to
systems with a relatively small number of electronic states (Ne ∼ 10).

One strategy for addressing this challenge, which was recently
introduced by Pfalzgraff et al., is based on developing algorithms
that accelerate the convergence of the PFIs, when calculated via
mixed quantum-classical methods such as the Ehrenfest method,
by dynamically adjusting the number of classical-like trajectories
allocated for calculating a given matrix element based on its impor-
tance for the relaxation process of interest.37 Indeed, using such an
approach, Pfalzgraff et al. were able to extend the range of applica-
bility of the GQME approach to such systems as the light-harvesting
complex II (LHCII), which has Ne = 14 electronic states.

In this paper, we explore an alternative approach for scaling
up the GQME approach that is based on utilizing the flexibility
offered by the GQME formalism with respect to the choice of pro-
jection operator. To this end, we use the fact that it is possible to
derive a GQME for any subset of electronic reduced density matrix
elements of one’s choice, as well as practical procedures for cal-
culating the corresponding memory kernel and imhomogeneous
term from PFIs. Importantly, the dimensionalities of the memory
kernel, inhomogeneous term, and PFIs are dictated by the number of
electronic reduced density matrix elements included in the subset of
interest, thereby potentially making it possible to reduce the compu-
tational cost associated with their calculation and extend the range of
applicability of the GQME approach. It should be noted that a simi-
lar approach has been previously discussed in Refs. 42 and 33. In this
paper, we expand on the discussion in those papers in several ways,
including comparing different types of projection operators, calcu-
lating the inhomogeneous term, and using a different semiclassical
method for calculating the PFIs.

The remainder of this paper is organized as follows: The objec-
tives and scope of our approach are discussed in Sec. II. The GQME

formalism and its different possible implementations using differ-
ent projection operators, including ones that give rise to reduced-
dimensionality GQMEs, are described in Sec. III. The utility of var-
ious types of GQMEs is demonstrated on a benchmark spin-boson
model with PFIs calculated via a mapping Hamiltonian linearized
semiclassical (LSC) method in Sec. IV. Concluding remarks are pro-
vided in Sec. V. Various technical aspects and further analysis are
provided in Appendices A and B. Additional graphs and data are
included in the supplementary material.

II. PRELIMINARY CONSIDERATIONS
In what follows, we focus on GQMEs designed for molecular

systems with an overall Hamiltonian of the following commonly
encountered form:

Ĥ =
Ne

∑
j=1

Ĥj∣ j⟩⟨ j∣ +
Ne

∑
j,k=1
k≠j

V̂ jk∣ j⟩⟨k∣. (1)

Here, Ĥj = P̂2
/2 + Vj(R̂) is the nuclear Hamiltonian when the sys-

tem is in the diabatic electronic state ∣ j⟩, with the index j running
over the Ne electronic states; {V̂ jk∣ j ≠ k} are coupling terms between
electronic states (which can be either nuclear operators or con-
stants); and R̂ = (R̂1, . . . , R̂Nn) and P̂ = (P̂1, . . . , P̂Nn) are the mass-
weighted position and momentum operators of the Nn ≫ 1 nuclear
DOF. Throughout this paper, boldfaced variables, e.g., A, indicate
vector quantities; a hat over a variable, e.g., B̂, indicates an operator
quantity; and calligraphic font, e.g., L, indicates a superoperator.

We also assume that the initial state of the overall system is of
the following single-product form:

ρ̂(0) = ρ̂n(0)⊗ σ̂(0). (2)

Here, ρ̂n(0) = Tre{ρ̂(0)} and σ̂(0) = Trn{ρ̂(0)} are the reduced
density operators that describe the initial states of the nuclear DOF
and electronic DOF, respectively, and Tre{⋅} and Trn{⋅} stand for
partially tracing over the electronic Hilbert space and the nuclear
Hilbert space, respectively.

Given the overall system Hamiltonian and initial state in
Eqs. (1) and (2), respectively, the overall system state at a later time t
is given by the density operator

ρ̂(t) = e−iĤt/h̵ρ̂n(0)⊗ σ̂(0)eiĤt/h̵

≡ e−iLt/h̵ρ̂n(0)⊗ σ̂(0). (3)

Here, L(⋅) = [Ĥ, ⋅] is the Liouvillian superoperator, with Ĥ being the
overall Hamiltonian given in Eq. (1). The reduced electronic density
operator at time t is given by

σ̂(t) = Trn{ρ̂(t)} =
Ne

∑
j,k=1

σjk(t)∣ j⟩⟨k∣. (4)

The electronic populations and coherences, whose time evolution
underlies decoherence as well as energy, charge, and coherence
transfer dynamics, are given by {σjj(t) = ⟨ j∣σ̂(t)∣ j⟩} and {σjk(t)
= ⟨ j∣σ̂(t)∣k⟩∣ j ≠ k}, respectively.
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III. GENERALIZED QUANTUM MASTER EQUATIONS
The GQME formalism provides a general framework for deriv-

ing exact equations of motion for observables of interest while
keeping the information on the projected-out DOF to the minimum
necessary in order to account for their effect on the observables of
interest. Within this formalism, the dynamics of the projected state,
Pρ̂(t), for any projection superoperator P that satisfies idempotence
(P 2
= P) is given by the Nakajima–Zwanzig equation,43–46

d
dt
Pρ̂(t) = −

i
h̵
PLPρ̂(t) −

1
h̵2∫

t

0
dτPLe−iQLτ/h̵QLPρ̂(t − τ)

−
i
h̵
PLe−iQLt/h̵Qρ̂(0). (5)

Here, Q = 1 −P is the complimentary projection superoperator to
P (i.e., Q projects onto what P projects out). Importantly, there is
a lot of flexibility when it comes to the choice of projection super-
operator, P, and thereby observables of interest. Each such choice
would, in turn, give rise to a different equation of motion, or GQME,
for the observable quantity of interest, as dictated by the choice of
projection superoperator (see below).

Describing electronic dynamics for a system governed by the
Hamiltonian in Eq. (1) within the GQME formalism is based on
choosing electronic quantities as the observables of interest while
projecting out the nuclear DOF as well as any remaining electronic
DOF. However, this still leaves a lot of flexibility when it comes to
the choice of the observables of interest. We will demonstrate this
in the remainder of this section by considering different choices of
electronic observables of interest and deriving the GQMEs that they
give rise to.

A. A GQME for the full electronic density matrix
A popular choice for the electronic observable of interest is the

full reduced electronic density operator σ̂(t) [see Eq. (4)], which can
be obtained by projecting out the nuclear DOF. This can be done in
multiple ways that lead to different forms of the GQME, and yet all
those forms represent exact equations of motion for σ̂(t).41 For the
sake of concreteness, we will proceed with the GQME of the form
proposed in Ref. 38, which was based on the following choice of
projection superoperator:

P full
(Â) = ρ̂n(0)⊗ Trn{Â}. (6)

Here, Â is an arbitrary overall system operator that the projection
superoperator P operates on. Substituting P full into Eq. (5) and per-
forming a partial trace over the nuclear Hilbert space (Trn) yield the
following equation of motion, or GQME, for σ̂(t):38

d
dt

σ̂(t) = −
i
h̵
⟨L⟩0nσ̂(t) − ∫

t

0
dτ Kfull

(τ)σ̂(t − τ). (7)

Within this GQME, the effect of the projected-out nuclear DOF on
the dynamics of σ̂(t) is fully accounted for by the following two
electronic superoperators:

● The projected Liouvillian,

⟨L⟩0n ≡ Trn{ρ̂n(0)L}, (8)

which can be represented by a time-independent N2
e ×N2

e
matrix, and

● the memory kernel,

Kfull
(τ) =

1
h̵2 Trn{L e−iQfullLτ/h̵QfullLρ̂n(0)}, (9)

which can be represented by a time-dependent N2
e ×N2

e
matrix.

While calculating the matrix elements of ⟨L⟩0n is straight-
forward, this is not the case for the matrix elements of Kfull

(τ).
Significant effort over the last two decades has been directed at
developing, testing, and applying various computational schemes for
calculating Kfull

(τ). Those schemes were all based on the fact that
Kfull
(τ) can be obtained from PFIs by solving integral Volterra equa-

tions, as was first shown in Refs. 22–25. The PFIs can be calculated
using either quantum-mechanically exact or approximate semiclas-
sical and mixed quantum-classical input methods.22–41 Additional
studies advanced the understanding of the pros and cons of differ-
ent implementations and expanded the range of applications of such
GQMEs.26–41

The simulation of electronic dynamics based on Eq. (7) involves
three steps: (1) the calculation of the PFIs necessary for calculating
the memory kernel, which correspond to overall system two-time
correlation functions; (2) the calculation of the memory kernel,
Kfull
(τ), by numerically solving the corresponding Volterra equa-

tion using the PFIs calculated in the first step; and (3) the numerical
solution of the GQME [Eq. (7)] using the memory kernel calcu-
lated in the second step to obtain the time evolution of the reduced
electronic density matrix, σ̂(t).

While there is some variety in how steps (1)–(3) are imple-
mented,41 the scaling of the computational cost associated with
different implementations with increasing Ne is similar and the
computational cost typically becomes prohibitively expensive for a
relatively modest number of electronic states (Ne ∼ 10).37 For the
sake of concreteness, we will demonstrate this scaling on the imple-
mentation based on the GQME in Eq. (7).38–41 Within this imple-
mentation, step (2) corresponds to solving the following Volterra
equation for Kfull

(τ):38

Kfull
(τ) = iḞ(τ) − 1

h̵
F(τ)⟨L⟩0n + i∫

τ

0
dτ′F(τ − τ′)Kfull

(τ′). (10)

Here, F(τ) and Ḟ(τ) are the PFIs, which are given by

F(τ) = 1
h̵

Trn{Le−iLτ/h̵ρ̂n(0)},

Ḟ(τ) = − i
h̵2 Trn{Le−iLτ/h̵Lρ̂n(0)}.

(11)

Thus, given the PFIs F(τ) and Ḟ(τ), Eq. (10) is solved numerically
via an iterative algorithm38 for the projection-dependent Kfull

(τ).
Importantly, F(τ) and Ḟ(τ) are given in terms of N2

e ×N2
e

matrices. A closer inspection reveals that the matrix elements of
F(τ), {Fjk,uv(τ)}, can be given in terms of overall system two-time
correlation functions of the form38

Tr{ρ̂n(0)∣u⟩⟨v∣eiĤτ/h̵ Γ(R̂)∣b⟩⟨a∣e−iĤτ/h̵
}, (12)
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TABLE I. Types of GQMEs and their corresponding projection operators. This table gives the type of GQME in the first column, the projection operator that corresponds to that
GQME acting on the overall density matrix, ρ̂, in the middle column, and the results of the projection operator acting on a two-state system in the last column.

Type of GQME Projection operator Two-state system

Full electronic density matrix Equation (6): P full
(ρ̂) = ρ̂n(0)⊗ Trn{ρ̂} P full

(
ρ̂11 ρ̂12

ρ̂21 ρ̂22
) = ρ̂n(0)⊗ (

σ11 σ12

σ21 σ22
)

Single population Equation (13): P jj
(ρ̂) = Tr{[∣ j⟩⟨ j∣⊗ 1̂n]ρ̂}ρ̂n(0)⊗ ∣ j⟩⟨ j∣ P 11

(
ρ̂11 ρ̂12

ρ̂21 ρ̂22
) = ρ̂n(0)⊗ (

σ11 0

0 0
)

Populations-only Equation (21): P pop
=

Ne

∑
j=1

P jj P pop
(

ρ̂11 ρ̂12

ρ̂21 ρ̂22
) = ρ̂n(0)⊗ (

σ11 0

0 σ22
)

where the nuclear operator Γ(R̂) is either (i) Vj(R̂) − Vk(R̂) with
a = j and b = k, (ii) Vja(R̂) with a ≠ j and b = k, or (iii) Vbk(R̂) with
a = j and b ≠ k (terms with a ≠ j and b ≠ k do not occur) and Vj(R̂)
and Vjk(R̂) are as defined in Eq. (1). Thus, calculating F(τ) in step
(1) reduces to calculating those two-time correlation functions. Ḟ(τ)
can also be described by two-time correlation functions that differ
from Eq. (12) only in the presence of an additional nuclear oper-
ator before or after ρ̂n(0). Once Kfull

(τ) has been obtained from
F(τ) and Ḟ(τ) by numerically solving Eq. (10) via an iterative algo-
rithm, it is substituted back into the GQME [Eq. (7)], which is solved
numerically via a Runge–Kutta fourth-order (RK4) algorithm.40

Within the GQME-based scheme outlined above, calculating
the PFIs F(τ) and Ḟ(τ) calls for calculating their N4

e matrix ele-
ments. Calculating the two-time correlation functions underlying
those matrix elements via mixed quantum-classical methods typ-
ically requires averaging over ∼105

− 107 classical-like trajectories
per each of the N2

e initial states.37–41 While each of the N2
e initial

states can be run in parallel, this requires extensive computational
resources. Additionally, the Volterra equation for the memory ker-
nel [Eq. (10)] is usually solved via an iterative algorithm whose
computational cost scales like ∼N6

e .
One approach for reducing the cost of calculating the PFIs,

which was recently proposed by Pfalzgraff et al. in Ref. 37, is based
on accelerating convergence by dynamically adjusting the number of
classical-like trajectories allocated for calculating a given matrix ele-
ment based on its importance for the relaxation process of interest.
In what follows, we explore an alternative approach33,42 for dimen-
sionality reduction and potentially lowering the computational cost,
which is based on starting out with reduced-dimensionality GQMEs
for a subset of matrix elements of the reduced electronic density
matrix, including scalar GQMEs where the quantity of interest as
well as the projected Liouvillian and memory kernel correspond to
scalar quantities (see Table I).

B. A scalar single-population GQME
In this subsection, we consider the case where the electronic

observable of interest corresponds to the population of one particu-
lar electronic state, σjj(t). It should be noted that a single-population
GQME similar to that developed in this subsection was recently also
considered by Ng et al., who also derived a closed form expres-
sion for the corresponding memory kernel in the case of a purely
electronic two-state system.42 In what follows, we go beyond that

by developing a general procedure for calculating the memory ker-
nel and inhomogeneous term from PFIs and demonstrating it, with
PFIs obtained via an approximate method, on a model system that
involves nuclear as well as electronic DOF.

The equation of motion for σjj(t), or single-population GQME,
can be obtained by substituting the following projection superoper-
ator into Eq. (5) (1̂n is the nuclear identity operator):

P jj
(Â) = Tr{[∣ j⟩⟨ j∣⊗ 1̂n]Â}ρ̂n(0)⊗ ∣ j⟩⟨ j∣ (13)

and tracing over both nuclear and electronic Hilbert spaces (Tr
= Trn Tre). This results in the following scalar GQME for σjj(t):

d
dt

σjj(t) = −∫
t

0
dτK jj

(τ)σjj(t − τ) + Ijj
(t). (14)

A comparison to Eq. (7) reveals that this GQME lacks a Liouvillian
term, includes a memory kernel term where K jj

(τ) is the mem-
ory kernel, and also includes an additional so-called inhomogeneous
term, Ijj

(t), which accounts for the effect of the initial state on σjj(t).
The memory kernel and inhomogeneous term are explicitly given by

K jj
(τ) =

1
h̵2 Tr{(∣ j⟩⟨ j∣⊗ 1̂n)Le−iQjjLτ/h̵QjjL ρ̂n(0)⊗ ∣ j⟩⟨ j∣}, (15)

Ijj
(t) = −

i
h̵

Tr{(∣ j⟩⟨ j∣⊗ 1̂n)Le−iQjjLt/h̵

× [ρ̂(0) − ρ̂n(0)⊗ ∣ j⟩⟨ j∣ σjj(0)]}. (16)

It should be noted that K jj
(τ) and Ijj

(t) are scalar quantities. This
should be contrasted withKfull

(τ), which corresponds to an N2
e ×N2

e
matrix. It should also be noted that K jj

(τ) is distinctly different from
the corresponding (jj, jj)matrix elements of Kfull

(τ) and that unlike
the GQME for the full density matrix [Eq. (7)], the inhomogeneous
term does not always vanish. For example, given that the initial state
of the overall system is of the form ρ̂(0) = ρ̂n(0)⊗ ∣k⟩⟨k∣, it can be
shown that while Ijj(t) = 0 when j = k, Ijj(t) ≠ 0 when j ≠ k.

Importantly, despite the dramatic reduction in dimensionality
compared to Eq. (7), Eq. (14) still corresponds to an exact equation
of motion for σjj(t). Thus, provided that K jj

(τ) and Ijj
(t) can be

estimated accurately, Eq. (14) is guaranteed to yield the dynamics
of σjj(t) as accurately as the full electronic density matrix GQME
[Eq. (7)] would.
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TABLE II. PFIs for a two-state system. This table gives elements of F(τ) that serve as PFIs in the case of the full electronic density matrix GQME in the first column, the
elements of F(τ) that serve as PFIs in the case of the populations-only GQME in the second column, and elements of F(τ) that serve as PFIs in the case of the single-
population scalar GQME in the third column. The elements are color-coded to show which elements are the same across the PFIs for the three types of GQMEs. In this example,
the initial state of the system is ρ̂ = ρ̂n(0)⊗ ∣1⟩⟨1∣ to show how the single-population scalar PFI Zjj

(τ) is equivalent to −iFjj,αα(τ) and −iFjj,αα(τ) from the full electronic

density matrix PFIs and populations-only PFIs, respectively, when the initial state is in single-product form, i.e., ρ̂(0) = ρ̂n(0)⊗ ∣α⟩⟨α∣. The elements of Ḟjj,kk(τ), Ḟjj,kk(τ),
and Ḟjj

(τ) follow the same pattern of equivalence as those of Fjj,kk(τ), Fjj,kk(τ), and Fjj
(τ).

Full electronic density matrix PFIs Populations-only PFIs Single-population scalar PFIs

Fjj,kk(τ) Eq. (11) Fjj,kk(τ) Eq. (26) Fjj
(τ) Eq. (18) and Zjj

(τ) Eq. (20)

Ô⇒ Ô⇒

Similar to Kfull
(τ), K jj

(τ) can also be obtained from PFIs by
solving the following Volterra equation [the derivation of Eq. (17) is
provided in Appendix A]:

K jj
(τ) = iḞjj

(τ) + i∫
τ

0
dτ′ Fjj

(τ − τ′)K jj
(τ′), (17)

where the PFIs are given by

Fjj
(τ) =

1
h̵

Tr{(∣ j⟩⟨ j∣⊗ 1̂n)Le−iLτ/h̵ρ̂n(0)⊗ ∣ j⟩⟨ j∣},

Ḟjj
(τ) = −

i
h̵2 Tr{(∣ j⟩⟨ j∣⊗ 1̂n)Le−iLτ/h̵L ρ̂n(0)⊗ ∣ j⟩⟨ j∣}.

(18)

Furthermore, Ijj
(τ) can also be obtained from PFIs by solving

another Volterra equation (see Appendix A),

Ijj
(t) = Zjj

(t) + iFjj
(t)σjj(0) + i∫

t

0
dτ Fjj

(t − τ)Ijj
(τ), (19)

where the PFI Fjj
(t) is as given in Eq. (18) and the PFI Zjj

(t) is given
by

Zjj
(t) = −

i
h̵

Tr{(∣ j⟩⟨ j∣⊗ 1̂n)Le−iLt/h̵ρ̂(0)}. (20)

Notably, the scalar PFIs Fjj
(τ) and Ḟjj

(τ) correspond to the
specific matrix elements Fjj,jj(τ) and Ḟjj,jj(τ), respectively [both
F(τ) and Ḟ(τ) are given in Eq. (11)]. Furthermore, if the overall
initial state is of the commonly encountered form ρ̂(0) = ρ̂n(0)⊗
∣k⟩⟨k∣, then Zjj

(t) is equivalent to −iFjj,kk(t). In other words, the
PFIs needed for calculating K jj

(τ) and Ijj
(t) correspond to a sub-

set of the matrix elements of the PFIs needed for calculating Kfull
(τ)

(see Table II).

C. A populations-only GQME
In this subsection, we consider the case where the electronic

observables of interest correspond to the populations of all elec-
tronic states, [σ11(t), σ22(t), . . . , σNeNe(t)]. It should be noted that
a populations-only GQME similar to that developed in this subsec-
tion was previously also studied by Montoya-Castillo and Reich-
man.33 More specifically, the NIBA-type GQME in Ref. 33 is such
a populations-only GQME. Montoya-Castillo and Reichman also

introduced a procedure for calculating the memory kernel of the
populations-only GQME from PFIs, but it differs from the proce-
dure in this section in two notable ways: (1) the Volterra equation
for the memory kernel incorporates different PFIs than the ones in
this section and (2) these PFIs were given in a form specific to the
spin-boson Hamiltonian, while the PFIs in this section are generally
applicable. Additionally, the populations-only GQME in Ref. 33 did
not contain a procedure for the inhomogeneous term, should it be
necessary.

The equation of motion for [σ11(t), σ22(t), . . . , σNeNe(t)] can be
obtained by substituting the following projection superoperator into
Eq. (5):

P pop
=

Ne

∑
j=1

P jj (21)

and tracing over the nuclear Hilbert space. This leads to the GQME

Ne

∑
j=1
∣ j⟩⟨ j∣

d
dt

σjj(t) = −
Ne

∑
j,k=1
∣ j⟩⟨ j∣∫

t

0
dτ Kpop

jj,kk(τ)σkk(t − τ)

+

Ne

∑
j=1
∣ j⟩⟨ j∣Ipop

jj (t), (22)

where the memory kernel matrix elements are given by

Kpop
jj,kk(τ) =

1
h̵2 Tr{(∣ j⟩⟨ j∣⊗ 1̂n)Le−iQpopLτ/h̵QpopL ρ̂n(0)⊗ ∣k⟩⟨k∣}

(23)
and the inhomogeneous term vector elements are given by

Ipop
jj (t) = −

i
h̵

Tr{(∣ j⟩⟨ j∣⊗ 1̂n)Le−iQpopLt/h̵

× [ρ̂(0) −
Ne

∑
k=1

ρ̂n(0)⊗ ∣k⟩⟨k∣ σkk(0)]}. (24)

The memory kernel and inhomogeneous term in this case corre-
spond to an Ne ×Ne matrix and an Ne-dimensional vector, respec-
tively. This should be contrasted with the memory kernel in the
case of the GQME for the full electronic reduced density matrix
[Eq. (7)], where the memory kernel corresponds to an N2

e ×N2
e
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matrix (and the inhomogeneous term would have corresponded to
an N2

e -dimensional vector if it did not vanish). It should be noted
that Ipop

jj (t) = 0 when the initial electronic reduced density matrix is
diagonal, σjk(0) = δ( j, k)σjj(0).

Here too, {Kpop
jj,kk(τ)} can be obtained from PFIs by solving the

following set of N2
e coupled Volterra equations [the derivation of

Eq. (25) is provided in Appendix A]:

Kpop
jj,kk(τ) = iḞjj,kk(τ) + i

Ne

∑
λ=1
∫

τ

0
dτ′ Fjj,λλ(τ − τ′)Kpop

λλ,kk(τ
′
), (25)

where the PFIs are given by

Fjj,kk(τ) =
1
h̵

Tr{(∣ j⟩⟨ j∣⊗ 1̂n)Le−iLτ/h̵ρ̂n(0)⊗ ∣k⟩⟨k∣},

Ḟjj,kk(τ) = −
i

h̵2 Tr{(∣ j⟩⟨ j∣⊗ 1̂n)Le−iLτ/h̵L ρ̂n(0)⊗ ∣k⟩⟨k∣}.
(26)

It should be noted that the PFIs in this case correspond to a subset
of the matrix elements of the N2

e ×N2
e matrices that serve as PFIs for

obtaining Kfull
(τ) [see Eq. (11)]. More specifically, the PFIs needed

for calculating {Kpop
jj,kk(τ)} correspond to the N2

e (jj, kk) elements of
the N2

e ×N2
e matrices that represent F(τ) and Ḟ(τ) (see Table II).

The Ne vector elements of the inhomogeneous term
{Ipop

11 (t), . . . , Ipop
NeNe
(t)} can also be obtained from PFIs by solving the

following set of Ne coupled Volterra equations (see Appendix A):

Ipop
jj (t) = Zjj

(t) + i
Ne

∑
k=1

Fjj,kk(t)σkk(0)

+ i
Ne

∑
λ=1
∫

t

0
dτ Fjj,λλ(t − τ)Ipop

λλ (τ), (27)

where {Zjj
(t)} is as given in Eq. (20).

D. A subset GQME for any combination
of populations and coherences

In this subsection, we consider the case where the elec-
tronic observables of interest correspond to a subset of the elec-
tronic reduced density matrix elements, {σab(t)}. It should be
noted that this GQME can be used to obtain the previous three
GQMEs outlined in this section: the full GQME can be obtained by
setting {ab} = {11, 12, . . . , 21, 22, . . . , NeNe}, the populations-only
GQME can be obtained by setting {ab} = {11, 22, . . . , NeNe},
and the single-population scalar GQME can be obtained by setting
{ab} = {jj}.

The equation of motion for {σab(t)} can be obtained by
substituting the following projection superoperator into Eq. (5):

P subÂ = ∑
jk ∈{ab}

P jkÂ

= ∑
jk ∈{ab}

Tr{(∣k⟩⟨ j∣⊗ 1̂n)Â}ρ̂n(0)⊗ ∣ j⟩⟨k∣ (28)

and tracing over the nuclear Hilbert space. This leads to the GQME,

∑
jk ∈{ab}

∣ j⟩⟨k∣
d
dt

σjk(t) = −
i
h̵ ∑

jk ∈{ab}
lm ∈{ab}

∣ j⟩⟨k∣⟨Ljk,lm⟩
0
n σlm(t)

− ∑
jk ∈{ab}
lm ∈{ab}

∣ j⟩⟨k∣∫
t

0
dτ Ksub

jk,lm(τ)σlm(t − τ)

+ ∑
jk ∈{ab}

∣ j⟩⟨k∣Isub
jk (t), (29)

where the memory kernel matrix elements are given by

Ksub
jk,lm(τ) =

1
h̵2 Tr{(∣k⟩⟨ j∣⊗ 1̂n)Le−iQsubLτ/h̵

× QsubL ρ̂n(0)⊗ ∣l⟩⟨m∣} (30)

and the inhomogeneous term vector elements are given by

Isub
jk (t) = −

i
h̵

Tr
⎧⎪⎪
⎨
⎪⎪⎩

(∣k⟩⟨ j∣⊗ 1̂n)Le−iQsubLt/h̵

×

⎡
⎢
⎢
⎢
⎢
⎣

ρ̂(0) − ∑
lm ∈{ab}

ρ̂n(0)⊗ ∣l⟩⟨m∣ σlm(0)
⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

. (31)

Given Nsub equal to the number of elements in {σab(t)}, the mem-
ory kernel and inhomogeneous term in this case correspond to an
Nsub ×Nsub matrix and an Nsub-dimensional vector, respectively.

The memory kernel {Ksub
jk,lm(τ)} can also be obtained from PFIs

by solving the following set of N2
sub coupled Volterra equations [the

derivation of Eq. (32) is provided in Appendix A]:

Ksub
jk,lm(τ) = iḞjk,lm(τ) −

1
h̵ ∑

uv ∈{ab}
Fjk,uv(τ)⟨Luv,lm⟩

0
n

+ i ∑
uv ∈{ab}

∫

τ

0
dτ′ Fjk,uv(τ − τ′)Ksub

uv,lm(τ
′
), (32)

where the PFIs are given by

Fjk,lm(τ) =
1
h̵

Tr{(∣k⟩⟨ j∣⊗ 1̂n)Le−iLτ/h̵ρ̂n(0)⊗ ∣l⟩⟨m∣},

Ḟjk,lm(τ) = −
i

h̵2 Tr{(∣k⟩⟨ j∣⊗ 1̂n)Le−iLτ/h̵L ρ̂n(0)⊗ ∣l⟩⟨m∣}.
(33)

It should be noted that the PFIs in this case correspond to a subset
of the matrix elements of the N2

e ×N2
e matrices that serve as PFIs for

obtaining Kfull
(τ) [see Eq. (11)]. More specifically, the PFIs needed

for calculating {Ksub
jk,lm(τ)} correspond to the N2

sub (jk, lm) elements
of the N2

e ×N2
e matrices that represent F(τ) and Ḟ(τ) (see Table II).

The Nsub vector elements of the inhomogeneous term {Isub
jk (t)}

can also be obtained from PFIs by solving the following set of Nsub
coupled Volterra equations (see Appendix A):

Isub
jk (t) = Zjk

(t) + i ∑
lm ∈{ab}

Fjk,lm(t)σlm(0)

+ i ∑
uv ∈{ab}

∫

t

0
dτ Fjk,uv(t − τ)Isub

uv (τ), (34)
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where {Zjk
(t)} is given by

Zjk
(t) = −

i
h̵

Tr{(∣k⟩⟨ j∣⊗ 1̂n)Le−iLt/h̵ρ̂(0)}. (35)

If the overall initial state is of the commonly encountered form
ρ̂(0) = ρ̂n(0)⊗ ∣α⟩⟨α∣, then Zjk

(t) is equivalent to −iFjk,αα(t).

E. A GQME for any electronic observable
In this sub section, we outline a procedure to simulating the

dynamics of any electronic observable in terms of GQMEs for elec-
tronic populations. To this end, consider a general electronic observ-
able of interest that corresponds to the expectation value of the
Hermitian electronic operator Ôe. Casting Ôe in terms of its eigen-
representation, we obtain Ôe = ∑

Ne
j=1λj∣λj⟩⟨λj∣, where Ôe∣λj⟩ = λj∣λj⟩.

Thus, the expectation value of Ôe is given by ⟨Ôe⟩ = ∑
Ne
j=1λj⟨λj∣σ̂∣λj⟩,

which means that it can be obtained from just the diagonal elements
of the matrix that represents σ̂ in terms of the eigen-basis of Ôe,
{∣λ1⟩, . . . , ∣λNe⟩}. Thus, a populations-only projection superopera-
tor of the form of Ppop for the electronic populations in terms of this
eigen-basis would give rise to a GQME for the Ne-dimensional vec-
tor {⟨λ1∣σ̂∣λ1⟩, . . . , ⟨λNe ∣σ̂∣λNe⟩} and thereby allow for the calculation
of ⟨Ôe⟩.

To summarize, multiple types of GQMEs of various dimen-
sionalities, which range from one-dimensional (scalar) to N4

e -
dimensional, can be derived for any subset of electronic populations
and coherences in terms of any electronic basis. Each of those
GQMEs corresponds to the exact equation of motion for the sub-
set of electronic observables it was written for, with the effect of the
projected-out DOF accounted for by quantities such as the projected
Liouvillian, memory kernel, and inhomogeneous term. The mem-
ory kernel and inhomogeneous term can be obtained from PFIs by
solving the corresponding Volterra equation that can also be derived
in each case. Finally, the PFIs for reduced-dimensionality GQMEs
correspond to subsets of the PFIs for the full density matrix GQME.

IV. A DEMONSTRATIVE APPLICATION
TO THE SPIN-BOSON MODEL

In this section, we demonstrate the applicability of the
aforementioned four GQMEs [the full electronic density matrix
GQME, Eq. (7); the scalar single-population GQME, Eq. (14); the
populations-only GQME, Eq. (22); and the subset GQME, Eq. (29)]
on a benchmark spin-boson model. To this end, we compare and
contrast the population difference between the two electronic states
as predicted by the four GQMEs with the PFIs calculated via a
previously introduced method based on the mapping Hamiltonian
approach and the LSC approximation that was labeled as LSCII.39 It
should be noted that LSCII has also been previously referred to as
the linearized semiclassical initial value representation (LSC-IVR)
method.47 The reader is referred to Ref. 39 for a detailed discussion
of the protocols used for calculating PFIs via LSCII.

A. Model
The spin-boson Hamiltonian has the form of Eq. (1) with {Ĥj}

and {V̂ jk → Vjk} given by

Ĥ1 ≡ ĤD = ϵ +
Nn

∑
k=1

P̂2
k

2
+

1
2

ω2
kR̂2

k − ckR̂k,

Ĥ2 ≡ ĤA = −ϵ +
Nn

∑
k=1

P̂2
k

2
+

1
2

ω2
kR̂2

k + ckR̂k,

V12 ≡ VDA = V21 ≡ VAD = Γ.

(36)

Here, the two electronic states are designated as donor and accep-
tor (∣D⟩ and ∣A⟩, respectively), 2ϵ is the shift in equilibrium energy
between the donor (D) and acceptor (A) states, and Γ is a positive
constant describing the electronic coupling between the donor and
acceptor states. Since Γ is a constant, this system satisfies the Condon
approximation.

The nuclear modes’ frequencies and coupling coefficients,
{ωk, ck}, are sampled from an Ohmic spectral density with an
exponential cutoff,

J(ω) =
π
2

Nn

∑
k=1

c2
k

ωk
δ(ω − ωk)

Nn→∞
ÐÐÐÐ→

πh̵
2

ξωe−ω/ωc . (37)

Here, ξ is the Kondo parameter and ωc is the cutoff frequency. The
reader is referred to Appendix C of Ref. 38 for a description of the
procedure used to obtain a discrete set of Nn nuclear mode frequen-
cies, {ωk}, and coupling coefficients, {ck}, from the spectral density
in Eq. (37).

The initial state is assumed to be of the form of Eq. (2), with
σ̂(0) = ∣D⟩⟨D∣ for all the GQMEs and the initial nuclear density
operator given by

ρ̂n(0) =
e−β(ĤD+ĤA)/2

Trn{e−β(ĤD+ĤA)/2}
. (38)

Calculations were carried out for five different sets of param-
eter values (see Table III). The model numbers for models 1, 2, 4,
and 5 were chosen as such to match the model numbering of Refs.
38 and 39. Model 3 from Refs. 38 and 39 was not included due to the
difficulty in converging its populations-only results. Models 1 and
2 correspond to systems with a bias between the donor and accep-
tor states (ϵ = 1.0) and only differ with respect to the value of ωc.
Model 4 corresponds to a biased system with higher friction than
models 1 and 2. Models 5 and 6 correspond to systems with zero
bias between the donor and acceptor states (ϵ = 0.0) that differ with
respect to Γ, β, ξ, and ωc. Model 6 was adopted from Ref. 30 in order
to include a symmetric system for which exact results are available
on a longer time scale compared to model 5. The results reported
in this paper were obtained with a time step of Δt = 0.005 Γ−1

and by averaging over Ntraj = 106 trajectories for each initial state

TABLE III. Spin-boson model and simulation parameters.

Model parameters Numerical parameters

Model No. ϵ Γ β ξ ωc ωmax Nn Δt Ntraj

1 1.0 1.0 5.0 0.1 1.0 5 400 0.005 106

2 1.0 1.0 5.0 0.1 2.0 10 400 0.005 106

4 1.0 1.0 5.0 0.4 2.0 10 400 0.005 106

5 0.0 0.333 3.0 0.1 1.0 5 400 0.005 106

6 0.0 1.0 5.0 0.2 2.5 12 400 0.005 106
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and model. Quantum-mechanically exact results were adopted from
Ref. 34 for models 1–4, from Ref. 48 for model 5, and from Ref. 30
for model 6.

B. Results
Shown in Figs. 1 and 2 are the matrix elements of F(τ) and

Ḟ(τ), respectively [see Eq. (11)], for model 1 (see Table III), as
obtained using LSCII as the input method. These matrix elements
can be used for the PFIs of the reduced-dimensionality GQMEs,
as discussed and demonstrated in Sec. III. Graphs with the matrix
elements of the PFIs for the other four realizations of the spin-
boson benchmark model described in Table III are included in the
supplementary material.

In Fig. 3, the real part of the matrix elements of the nine dif-
ferent memory kernels for model 1 (see Table III) is shown. While
the grid has 16 graphs in it, only the full density matrix GQME
memory kernel has elements in all 16 graphs. The other GQMEs,
being of reduced dimensionality, have less memory kernel elements.
Graphs with the imaginary part for model 1 along with the results
for the other four realizations of the spin-boson benchmark model
described in Table III are included in the supplementary material.
Shown in Fig. 4 is the single-population scalar inhomogeneous term
I11
(t) [see Eq. (16)] for model 1 (see Table III). Graphs with the

inhomogeneous terms for the other four models in Table III are
included in the supplementary material.

In Figs. 5–9, we compare the time evolution of the electronic
population difference, σz(t) = σDD(t) − σAA(t), obtained based on
single-population, populations-only, subset, and full density matrix
GQMEs [Eqs. (14), (22), (29), and (7), respectively]. The results
shown were obtained for the five realizations of the spin-boson
benchmark model described in Table III using LSCII as the input
method.39 For each of the GQMEs, the values of σDD(t) and σAA(t)
were calculated and then σz(t) was obtained via σz(t) = σDD(t)
− σAA(t) [as opposed to obtaining σAA(t) from σDD(t), or vice versa,
by using σDD(t) + σAA(t) = 1].

A close inspection of Figs. 5–9 reveals the following trends:

● Restricting the use of LSCII to calculating the PFIs yields
more accurate results than the direct application of LSCII.
This is particularly clear for models 1, 2, 4, and 6 (less
so for model 5 for which exact results are available on a
relatively short range). This observation is consistent with
similar observations made previously in the context of the
full density matrix GQME.39 The results in Figs. 5–9 demon-
strate that this is also the case for the single-population,
populations-only, and subset GQMEs.

● From the GQMEs explored in this paper, the full den-
sity matrix GQME, the populations-only GQME, and the
subset GQME with {ab} = {00, 01, 11} yield the most con-
sistently accurate results, while the combination of the
single-population GQMEs, the combination of the subset

FIG. 1. Shown are the matrix elements of the PFI F(τ), given in Eq (11), for model 1 in Table III obtained with LSCII. The real part of each element is depicted by a solid
line and the imaginary part is depicted by a dashed line. These matrix elements can be used for the PFIs of the reduced-dimensionality GQMEs as well. Graphs for the
other four models in Table III are included in the supplementary material.
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FIG. 2. Shown are the matrix elements of the PFI Ḟ(τ), given in Eq. (11), for model 1 in Table III obtained with LSCII. The real part of each element is depicted by a solid
line and the imaginary part is depicted by a dashed line. These matrix elements can be used for the PFIs of the reduced-dimensionality GQMEs as well. Graphs for the
other four models in Table III are included in the supplementary material.

GQMEs with {ab} = {00, 01} and {ab} = {10, 11}, and the
combination of the subset GQMEs with {ab} = {00, 01, 10}
and {ab} = {01, 10, 11} are less accurate.
These differences in accuracy are likely due to the fact that
projecting out the electronic populations and/or coherences
causes the effect of those projected-out electronic matrix
elements on the matrix elements of interest to be treated
more approximately and could therefore lead to discrep-
ancies when the approximate method used is less accurate.
Indeed, the difference in accuracy is made more significant
by making the model more quantum. Both trends are partic-
ularly clear in the case of models 2 and 4, where the relatively
high cutoff frequency, relatively low temperature, and the
non-zero energy bias between the donor and acceptor states
conspire to make these the most challenging cases for qua-
siclassical approximate methods such as LSCII (see Figs. 6
and 7). However, it should be noted that the accuracy of
the results obtained via the populations-only GQME and
the subset GQME with {ab} = {00, 01, 11} is still compara-
ble to that obtained via the full density matrix GQME. This
suggests that the coherences have a relatively small effect
on the populations so that projecting them out and treat-
ing their effect in an approximate manner have a relatively
small effect on the accuracy. This is less so when one also
projects out the population of one of the states, as in the case
of the single-population GQME and the subset GQMEs with
{ab} = {00, 01},{10, 11},{00, 01, 10}, and {01, 10, 11}. The
difference in the effect of projecting-out a population vs.

a coherence is not entirely surprising, as at least in Red-
field theory, dephasing is affected by population relaxation,
but population relaxations are not affected by dephasing.
This can be traced back to the fact that inelastic interactions
can change both phase and energy, while elastic collisions
can only change the phase (so-called pure dephasing). Fur-
thermore, within the secular approximation, the populations
and coherences are decoupled within Redfield theory. In
light of this, it looks sensible to hypothesize that the cou-
pling between populations is expected to be stronger more
generally so that projecting one of them out and treating it
approximately would have a bigger effect on the accuracy
(see Appendix B for a more detailed discussion on the ori-
gin and nature of those inaccuracies). However the results
for models 1, 5, and 6 also suggest that single-population
GQMEs and subsets without a population can still produce
reasonably accurate results when the model is not overly
quantum.

The results in Figs. 5–9 are encouraging since they suggest
that reduced-dimensionality GQMEs can still produce reasonably
accurate results.

C. Computational cost analysis
In this section, we examine the scaling of the computational

cost of the GQME-based approach with respect to the dimen-
sionality of the electronic observable of interest. To this end, we
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FIG. 3. Shown are the real part of the matrix elements of the memory kernels for model 1 in Table III obtained with LSCII-based PFIs. Depicted are the matrix elements
of nine different memory kernels: (1) the memory kernel of the full GQME Kfull

(τ), given in Eq. (9), which is depicted with blue lines and has all 16 elements in the
graphs above; (2) the memory kernel of a subset GQME Ksub

(τ), given in Eq. (30), with {ab} = {00, 01, 11}, which is depicted with yellow lines and has nine elements:
{0000, 0001, 0011, 0100, 0101, 0111, 1100, 1101, 1111}; (3) the memory kernel of a subset GQME Ksub

(τ), with {ab} = {00, 01, 10}, which is depicted with orange
lines and has nine elements: {0000, 0001, 0010, 0100, 0101, 0110, 1000, 1001, 1010}; (4) the memory kernel of a subset GQME Ksub

(τ), with {ab} = {01, 10, 11},
which is depicted with black lines and has nine elements: {0101, 0110, 0111, 1001, 1010, 1011, 1101, 1110, 1111}; (5) the memory kernel of a subset GQME Ksub

(τ),
with {ab} = {00, 01}, which is depicted with cyan lines and has four elements: {0000, 0001, 0100, 0101}; (6) the memory kernel of a subset GQME Ksub

(τ), with
{ab} = {10, 11}, which is depicted with light gray lines and has four elements: {1010, 1011, 1110, 1111}; (7) the memory kernel of the populations-only GQME Kpop

(τ),
given in Eq. (23), which is depicted with red lines and has four elements: {0000, 0011, 1100, 1111}; and (8) and (9) the single-element memory kernels of the scalar single-
population GQMEs K00

(τ) and K11
(τ), given in Eq. (15), which are depicted with green lines in the 0000 and 1111 elements, respectively. Graphs with the imaginary part

for model 1 along with the results for the other four models are included in the supplementary material.

consider the scaling of the multiple computational components that
the GQME-approach consists of: (1) the number of quasiclassi-
cal trajectories averaged over in order to obtain the PFIs, (2) the
number of time steps per trajectory, (3) the number of initial elec-
tronic states that one needs to account for when calculating the PFIs,
(4) the time of each iteration in the iterative Volterra algorithms
for the memory kernel and inhomogeneous term, (5) the number of
iterations required for the iterative Volterra algorithms to converge,
(6) the necessity of the inhomogeneous term, and (7) the length of
the memory time.

We look at each of these factors in more detail:

● (1) and (2): In general, the number of trajectories and time
steps per trajectory needed for convergence of the electronic
population difference with LSCII-based PFIs is similar for
all the GQMEs used to obtain the results in this paper. To
show this, included in the supplementary material are results
obtained for ten sets of numerical parameters for each of the
five models in this paper for each of the GQMEs used. Thus,
the scaling of the computational cost with respect to time
step and number of trajectories appears to be insensitive to
the dimensionality of the electronic observable of interest.

● (3): When considering the number of initial states that
one needs to account for when calculating the PFIs, it is

important to note that the matrix elements of Ḟ(τ) have the
following form:

Ḟabcd(τ) = −
i

h̵2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Tr{(Ĥc ρ̂n(0) − ρ̂n(0)Ĥd)∣c⟩⟨d∣Υ̂(τ)}

+

Ne

∑
j=1
j ≠ c

Tr{V̂ jc ρ̂n(0)∣ j⟩⟨d∣Υ̂(τ)}

−

Ne

∑
k=1
k ≠ d

Tr{ρ̂n(0)V̂dk∣c⟩⟨k∣Υ̂(τ)}

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where

Υ̂(τ) = eiĤτ/h̵

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(Ĥa − Ĥb)∣b⟩⟨a∣ +
Ne

∑
l=1
l ≠ a

V̂al∣b⟩⟨l∣

−

Ne

∑
m=1
m ≠ b

V̂mb∣m⟩⟨a∣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

e−iĤτ/h̵.
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FIG. 4. Shown is the scalar single-population inhomogeneous term I11
(t), given

in Eq. (16), for model 1, obtained with LSCII-based PFIs. The real part is
depicted with a solid green line and the imaginary part with a dashed green line.
Graphs for the inhomogeneous terms of the other four models are included in the
supplementary material.

Thus, calculating the PFI Ḟabcd(τ) calls for the initial states
∣c⟩⟨d∣; {∣ j⟩⟨d∣} for j = 1, . . . , Ne with the condition that j ≠ c;
and {∣c⟩⟨k∣} for k = 1, . . . , Ne with the condition that k ≠ d.
This means that the reduced-dimensionality GQMEs have
less of an advantage when it comes to the number of
initial states needed to be accounted for when calculating the

FIG. 5. Electronic population difference, σz(t) = σDD(t) − σAA(t), as a function
of time for model 1 in Table III. Shown are exact results (black circles) and results
obtained based on the following: direct application of LSCII (dashed blue line); a
combination of the two single-population scalar GQMEs of the form of Eq. (14) for
σDD(t) and σAA(t) with LSCII-based PFIs (solid green line); a populations-only
GQME of the form of Eq. (22) with LSCII-based PFIs (solid red line); a subset
GQME of the form of Eq. (29) with {ab} = {00, 01, 11} with LSCII-based PFIs
(solid yellow line); a combination of two subset GQMEs with {ab} = {00, 01} and
{ab} = {10, 11} with LSCII-based PFIs (solid cyan line); a combination of two
subset GQMEs with {ab} = {00, 01, 10} and {ab} = {01, 10, 11} with LSCII-
based PFIs (solid orange line); and the full density matrix GQME of the form of
Eq. (7) with LSCII-based PFIs (solid blue line).

FIG. 6. Electronic population difference, σz(t) = σDD(t) − σAA(t), as a function
of time for model 2 in Table III. Shown are exact results (black circles) and results
obtained based on the following: the direct application of LSCII (dashed blue line);
a combination of the two single-population scalar GQMEs of the form of Eq. (14)
for σDD(t) and σAA(t) with LSCII-based PFIs (solid green line); a populations-
only GQME of the form of Eq. (22) with LSCII-based PFIs (solid red line); a subset
GQME of the form of Eq. (29) with {ab} = {00, 01, 11} with LSCII-based PFIs
(solid yellow line); a combination of two subset GQMEs with {ab} = {00, 01} and
{ab} = {10, 11} with LSCII-based PFIs (solid cyan line); a combination of two
subset GQMEs with {ab} = {00, 01, 10} and {ab} = {01, 10, 11} with LSCII-
based PFIs (solid orange line); and the full density matrix GQME of the form of
Eq. (7) with LSCII-based PFIs (solid blue line).

FIG. 7. Electronic population difference, σz(t) = σDD(t) − σAA(t), as a function
of time for model 4 in Table III. Shown are exact results (black circles) and results
obtained based on the following: the direct application of LSCII (dashed blue line);
a combination of the two single-population scalar GQMEs of the form of Eq. (14)
for σDD(t) and σAA(t) with LSCII-based PFIs (solid green line); a populations-
only GQME of the form of Eq. (22) with LSCII-based PFIs (solid red line); a subset
GQME of the form of Eq. (29) with {ab} = {00, 01, 11} with LSCII-based PFIs
(solid yellow line); a combination of two subset GQMEs with {ab} = {00, 01} and
{ab} = {10, 11} with LSCII-based PFIs (solid cyan line); a combination of two
subset GQMEs with {ab} = {00, 01, 10} and {ab} = {01, 10, 11} with LSCII-
based PFIs (solid orange line); and the full density matrix GQME of the form of
Eq. (7) with LSCII-based PFIs (solid blue line).
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FIG. 8. Electronic population difference, σz(t) = σDD(t) − σAA(t), as a function
of time for model 5 in Table III. Shown are exact results (black circles) and results
obtained based on the following: the direct application of LSCII (dashed blue line);
a combination of the two single-population scalar GQMEs of the form of Eq. (14)
for σDD(t) and σAA(t) with LSCII-based PFIs (solid green line); a populations-
only GQME of the form of Eq. (22) with LSCII-based PFIs (solid red line); a subset
GQME of the form of Eq. (29) with {ab} = {00, 01, 11} with LSCII-based PFIs
(solid yellow line); a combination of two subset GQMEs with {ab} = {00, 01} and
{ab} = {10, 11} with LSCII-based PFIs (solid cyan line); a combination of two
subset GQMEs with {ab} = {00, 01, 10} and {ab} = {01, 10, 11} with LSCII-
based PFIs (solid orange line); and the full density matrix GQME of the form of
Eq. (7) with LSCII-based PFIs (solid blue line).

FIG. 9. Electronic population difference, σz(t) = σDD(t) − σAA(t), as a function
of time for model 6 in Table III. Shown are exact results (black circles) and results
obtained based on the following: the direct application of LSCII (dashed blue line);
a combination of the two single-population scalar GQMEs of the form of Eq. (14)
for σDD(t) and σAA(t) with LSCII-based PFIs (solid green line); a populations-
only GQME of the form of Eq. (22) with LSCII-based PFIs (solid red line); a subset
GQME of the form of Eq. (29) with {ab} = {00, 01, 11} with LSCII-based PFIs
(solid yellow line); a combination of two subset GQMEs with {ab} = {00, 01} and
{ab} = {10, 11} with LSCII-based PFIs (solid cyan line); a combination of two
subset GQMEs with {ab} = {00, 01, 10} and {ab} = {01, 10, 11} with LSCII-
based PFIs (solid orange line); and the full density matrix GQME of the form of
Eq. (7) with LSCII-based PFIs (solid blue line).

PFIs than one may expect based on just the dimensionality.
For example, three initial states are needed in the case of a
scalar single-population GQME for a two-state model, com-
pared to the four initial states needed for full density matrix
GQME.

● (4): The computational complexity of each iteration in the
Volterra algorithm for the memory kernel is expected to be
O(N3

mat) and was found empirically to be ∼1.25 N3
mat (based

on the data included in the excel file in the supplementary
material), where Nmat is the number of matrix elements in a
row of the memory kernel super-matrix (e.g., Nmat = N2

e for
the full GQME, Nmat = Ne for the populations-only GQME,
and Nmat = 1 for the single-population scalar GQME). It
should be noted that using a non-iterative Volterra algo-
rithm, as was done in Ref. 37, is expected to give rise to
a similar computational complexity as a single iteration.
Finally, we note that the computational complexity of each
iteration in the Volterra algorithm for the inhomogeneous
term is O(N2

mat).
● (5): The number of iterations required for the iterative

Volterra algorithm for the memory kernel to converge
is rather sensitive to the dimensionality of the electronic
observable of interest. More specifically, for the spin-boson
model, while 2–3 iterations were required for calculating the
scalar single-population memory kernels and 2–4 iterations
were needed in the case of the populations-only memory
kernel for all the models and sets of parameters, 5–10 iter-
ations were required in cases of higher dimensionality. The
number of iterations required for the iterative Volterra algo-
rithm for the inhomogeneous term was observed to follow
a similar trend. While we do not know before running the
Volterra algorithm how many iterations it will take and do
not expect it to be the same number across different systems,
this trend with respect to dimensionality that was observed
for the spin-boson model could hold across systems. Further
study is needed to confirm or reject this hypothesis.

● (6): The inhomogeneous term was only required for
the scalar single-population GQME for σ11(t), and the
subset GQMEs with subsets {ab} = {10, 11} and {ab}
= {01, 10, 11} and would be required for any subset that
did not contain the initial electronic state. Given the scal-
ing of the Volterra algorithm for the inhomogeneous term
and the observation that it is necessary to include all pop-
ulations involved in the electronic dynamics to obtain the
best improvement in accuracy with any subset GQME, it
can be concluded that subsets requiring the calculation of
the inhomogeneous term are less favorable.

● (7): The converged memory time for each of the models and
GQME types was found using an algorithm similar to that
from Appendix D of Ref. 39, although it checks all elements
of the reduced electronic density matrix rather than just
the electronic population difference, σz(t). The full descrip-
tion of the convergence algorithm used for this paper is
provided in the supplementary material. The basic premise
of the algorithm is to first calculate the dynamics at the
highest possible memory time, tmem, max, based on the max-
imum time of the PFI dynamics and then walk backward in
memory time to find the shortest memory time that keeps

J. Chem. Phys. 156, 044119 (2022); doi: 10.1063/5.0078040 156, 044119-12

Published under an exclusive license by AIP Publishing

 06 M
arch 2024 17:37:49

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0078040
https://www.scitation.org/doi/suppl/10.1063/5.0078040
https://www.scitation.org/doi/suppl/10.1063/5.0078040


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

each element and time step of the electronic density matrix
within a convergence parameter of the same element and
time step of the dynamics with the highest possible memory
time. For the models studied in this paper, the highest pos-
sible memory time was tmem, max = 20 Γ−1 and the converged
memory time for each model and GQME type is given in the
excel file within the supplementary material. The full GQME
typically corresponds to the shortest memory time, while
the reduced-dimensionality GQMEs required significantly
longer memory times. While the RK4 algorithm is expected
to have computational complexity O(tmem) and was found
empirically to scale sublinearly with respect to the memory
time, tmem, the cost of a single iteration of the Volterra algo-
rithm for the memory kernel is expected to have quadratic
computational complexity O(t2

mem) and was found empiri-
cally to scale ∼ 0.95 t2.166

mem (where empirical scaling was found
based on the data included in the excel file in the sup-
plementary material). Thus, situations where the reduced
dimensionality of the electronic observable of interest leads
to longer memory time would increase the computational
cost. It should be noted that those observations are consis-
tent with similar observations previously made in Ref. 33,
where it was reported that the populations-only GQME gave
rise to longer memory times and argued that projecting-out
the coherences made it so due to their slower time scale
compared to nuclear motion.

To summarize, the scaling of the computational cost with the dimen-
sionality of the electronic observable of interest appears to depend
on multiple factors that follow different and sometimes opposing
scaling trends. Thus, the computational cost benefits of dimen-
sionality reduction would depend on the balance between those
opposing trends, and further work will be needed in order to deter-
mine whether or not using a reduced-dimensionality GQME leads
to significant saving in computational cost.

V. CONCLUDING REMARKS
The GQME approach provides a general framework for simu-

lating electronic energy, charge, and coherence transfer dynamics, as
well as electronic decoherence, in complex molecular systems. Most
previous work (with the exception of Refs. 33 and 42) has focused
on one specific type of GQME that corresponds to the equation of
motion of the full electronic density matrix and can be obtained by
projecting-out the nuclear DOF. However, the unfavorable scaling
associated with the fact that the memory kernel in this case is N4

e -
dimensional meant that the range of applicability of this full density
matrix GQME was limited to model systems with a relatively small
number of electronic states (Ne ∼ 10).

The reduced-dimensionality GQMEs under consideration in
this paper may lead to a more favorable scaling and thereby lower the
computational cost. The derivation of those reduced-dimensionality
GQMEs is based on the fact that projection superoperators can be
chosen that would lead to a GQME for any subset of electronic
matrix elements in terms of the electronic basis of one’s choice.
The dimensionality of the memory kernel and inhomogeneous term
in such reduced-dimensionality GQMEs reflects the dimensional-
ity of the subset of electronic matrix elements of choice. Since

the PFIs have the same dimensionality as the memory kernel and
inhomogeneous term, their calculation, which is typically the com-
putational bottleneck, can be made much more cost effective as a
result.

The results reported in this paper for the spin-boson model
provide explicit demonstrations of the utility and usefulness of
reduced-dimensionality GQMEs. More specifically, we have shown
that populations-only, subset, and even scalar single-population
GQMEs can improve the accuracy relative to direct application of
the input method.

At the same time, it is also important to point out that the
scaling of the computational cost with dimensionality depends on
other factors as well, some of which appear to follow opposing
scaling trends. For example, reduced dimensionality can lead to
longer memory times, which would increase the computational
cost. Furthermore, reduced dimensionality also can come at the
expense of accuracy when approximate input methods are used
(although reduced-dimensionality GQMEs are observed to still pro-
duce more accurate results than direct application of the input
method). Further work will be needed in order to determine
the conditions for making reduced-dimensionality GQMEs signif-
icantly more cost-effective and finding the optimal balance between
reduced dimensionality and accuracy.

Extending the range of applicability of reduced-dimensionality
GQMEs to systems with a larger number of electronic states, as
well as using a wider variety of inputs methods, both exact and
approximate, would be of great interest. Work on such extensions
is currently underway and will be reported in future publications.

SUPPLEMENTARY MATERIAL

The supplementary material includes a pdf with graphs of the
PFIs, memory kernels, and inhomogeneous terms for models 2, 4,
5, and 6 along with the imaginary part of the memory kernels of
model 1; graphs showing the convergence of the GQME results with
the increasing number of trajectories and decreasing time step; and
the convergence algorithm used to find the minimum memory time
of the GQMEs. The pdf also describes the excel file, also included
in the supplementary material, that gives the computational
costs of the LSCII dynamics algorithm to obtain the PFIs, the
Volterra algorithms for the memory kernels and inhomogeneous
terms, and the RK4 algorithm for the GQMEs.
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The data that support the findings of this study are available
within the article and its supplementary material.

APPENDIX A: DERIVATION OF THE VOLTERRA
EQUATIONS OF THE SUBSET GQME FOR ANY
COMBINATION OF POPULATIONS AND COHERENCES

In this appendix, we derive the Volterra equations for the
memory kernel and inhomogeneous term for the general form of
the GQME for any subset of populations and coherences, with the
subset of the indices of interest denoted by {ab}. For the single-
population scalar GQME for σjj(t), the subset would be {ab} = {jj},
and for the populations-only GQME, the subset would be {ab}
= {11, 22, . . . , NeNe}.

We start with the explicit expression for the memory kernel,
Eq. (30). We then substitute the following identity for e−iQsubLτ/h̵ (the

identity is valid for any projection superoperator Q):

e−iQLτ/h̵
= e−iLτ/h̵

+
i
h̵∫

τ

0
dτ′e−iL(τ−τ′)/h̵PLe−iQLτ′/h̵. (A1)

This yields the following expression for the matrix elements of
Ksub
(τ):

Ksub
jk,lm(τ) =

1
h̵2 Tr{(∣k⟩⟨ j∣⊗ 1̂n)Le−iLτ/h̵QsubLρ̂n(0)⊗ ∣l⟩⟨m∣}

+
i

h̵3∫

τ

0
dτ′ Tr{(∣k⟩⟨ j∣⊗ 1̂n)Le−iL(τ−τ′)/h̵P sub

× Le−iQsubLτ′/h̵QsubL ρ̂n(0)⊗ ∣l⟩⟨m∣}.

Plugging in Qsub
= 1 −P sub into the first term splits it into two

terms. Using P sub from Eq. (28) in the term that involves P sub leads
to Eq. (32),

Ksub
jk,lm(τ) =

1
h̵2 Tr{(∣k⟩⟨ j∣⊗ 1̂n)Le−iLτ/h̵Lρ̂n(0)⊗ ∣l⟩⟨m∣}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= iḞjk,lm(τ)

−
1
h̵ ∑

uv ∈{ab}

1
h̵

Tr{(∣ j⟩⟨ j∣⊗ 1̂n)Le−iLτ/h̵ρ̂n(0)⊗ ∣u⟩⟨v∣}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= Fjk,uv(τ)

Tr{(∣v⟩⟨u∣⊗ 1̂n)Lρ̂n(0)⊗ ∣l⟩⟨m∣}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=⟨Luv,lm⟩
0
n

+ i ∑
uv ∈{ab}

∫

τ

0
dτ′

1
h̵

Tr{(∣k⟩⟨ j∣⊗ 1̂n)Le−iL(τ−τ′)/h̵ρ̂n(0)⊗ ∣u⟩⟨v∣}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= Fjk,uv(τ−τ′)

1
h̵2 Tr{(∣v⟩⟨u∣⊗ 1̂n)Le−iQsubLτ′/h̵QsubL ρ̂n(0)⊗ ∣l⟩⟨m∣}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Ksub
uv,lm(τ

′)

.

Note that ⟨Ljj,kk⟩
0
n = 0.

Next, we consider the explicit expression for the inhomogeneous term [Eq. (31)]. We then substitute the identity in Eq. (A1) for e−iQsubLτ/h̵,
which yields

Isub
jk (t) = −

i
h̵

Tr
⎧⎪⎪
⎨
⎪⎪⎩

(∣k⟩⟨ j∣⊗ 1̂n)Le−iLt/h̵
⎡
⎢
⎢
⎢
⎢
⎣

ρ̂(0) − ∑
lm ∈{ab}

ρ̂n(0)⊗ ∣l⟩⟨m∣σlm(0)
⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

+
1
h̵2∫

t

0
dτ Tr

⎧⎪⎪
⎨
⎪⎪⎩

(∣k⟩⟨ j∣⊗ 1̂n)Le−iL(t−τ)/h̵P subLe−iQsubLτ/h̵
⎡
⎢
⎢
⎢
⎢
⎣

ρ̂(0) − ∑
lm ∈{ab}

ρ̂n(0)⊗ ∣l⟩⟨m∣ σlm(0)
⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

.

Splitting the first term into two terms at the minus sign and plugging P sub from Eq. (28) into the second term lead to Eq. (34),

Isub
jk (t) = −

i
h̵

Tr{(∣k⟩⟨ j∣⊗ 1̂n)Le−iLt/h̵ρ̂(0)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Zsub
jk (t)

+ i ∑
lm ∈{ab}

1
h̵

Tr{(∣k⟩⟨ j∣⊗ 1̂n)Le−iLt/h̵ρ̂n(0)⊗ ∣l⟩⟨m∣}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= Fjk,lm(t)

σlm(0)

+ i ∑
uv ∈{ab}

∫

t

0
dτ

1
h̵

Tr{(∣k⟩⟨ j∣⊗ 1̂n)Le−iL(t−τ)/h̵ρ̂n(0)⊗ ∣u⟩⟨v∣}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= Fjk,uv(t−τ)

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
i
h̵

Tr
⎧⎪⎪
⎨
⎪⎪⎩

(∣λ⟩⟨λ∣⊗ 1̂n)Le−iQsubLτ/h̵
⎡
⎢
⎢
⎢
⎢
⎣

ρ̂(0) − ∑
lm ∈{ab}

ρ̂n(0)⊗ ∣k⟩⟨k∣σkk(0)
⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Isub

uv (τ)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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FIG. 10. The trace of the density matrix, Tr{σ(t)} = σDD(t) + σAA(t), as a function of time for the five models in Table III. Shown are the results obtained based on
the following: direct application of LSCII (dashed blue lines); a combination of the two single-population scalar GQMEs of the form of Eq. (14) for σDD(t) and σAA(t)
with LSCII-based PFIs (solid green lines); the full density matrix GQME of the form of Eq. (7) with LSCII-based PFIs (solid blue lines); the populations-only GQME of the
form of Eq. (22) with LSCII-based PFIs (solid red lines); a subset GQME of the form of Eq. (29) with {ab} = {00, 01, 11} with LSCII-based PFIs (solid yellow lines); a
combination of two subset GQMEs with {ab} = {00, 01} and {ab} = {10, 11} with LSCII-based PFIs (solid cyan lines); and a combination of two subset GQMEs with
{ab} = {00, 01, 10} and {ab} = {01, 10, 11} with LSCII-based PFIs (solid orange lines).

APPENDIX B: ACCURACY TESTS BASED
ON Tr{σ̂(t)} = 1

Within exact quantum dynamics, the reduced electronic den-
sity operator remains normalized at all times such that Tr{σ̂(t)}
= ∑

Ne
j=1σjj(t) = 1. For a two-state system, this implies that σDD + σAA

= 1. Since the GQMEs correspond to exact equations of motion, they
are also expected to satisfy Tr{σ̂(t)} = 1 at all times if the mem-
ory kernel and inhomogeneous term are obtained from quantum-
mechanically exact PFIs. However, this need not be the case when
the PFIs are calculated via approximate methods, such as LSCII. In
this appendix, we consider the ability of the various GQMEs with
LSCII-based PFIs to satisfy Tr{σ̂(t)} = 1.

The time evolution of Tr{σ̂(t)} as obtained from the four
types of GQMEs under consideration in this paper with LSCII-based
PFIs is shown in Fig. 10. Whereas the full GQME, populations-only
GQME, and subset GQME with both populations satisfy Tr{σ̂(t)}
= 1 (see proof below), the scalar single-population GQMEs and
subset GQMEs with only one population exhibit significant devi-
ations from it on the population relaxation time scale. This

is consistent with and provides an explanation for our previ-
ous observation that single-population scalar GQMEs and subset
GQMEs with only a single population underperformed compared
to the populations-only, subset with both populations, and full
GQMEs.

It can also be shown analytically that any GQME that
contains all the populations in its subset of interest (i.e.,
{11, 22, . . . , NeNe} ∈ {ab}) satisfies Tr{σ̂(t)} = 1. This includes
the full and populations-only GQMEs. Since we know Tr{σ̂(0)}
= 1, the proof is based on showing that its time derivative vanishes.
Assuming an initial state σjk(0) = δj,kσjj(0) so that Isub

jj (t) = 0, the
equation of motion for the trace is given by

Ne

∑
j=1

d
dt

σ̂jj(t) = −
i
h̵

Ne

∑
j=1
∑

ik ∈{ab}
⟨Ljj,ik⟩

0
nσ̂ik(t)

−

Ne

∑
j=1
∑

ik ∈{ab}
∫

t

0
dτ Ksub

jj,ik(τ)σ̂ik(t − τ). (B1)

The properties of the Liouvillian give

Ne

∑
j=1
∑

ik ∈{ab}
⟨Ljj,ik⟩

0
n =

Ne

∑
j=1
∑

ik ∈{ab}
δk,j⟨V̂ ji⟩

0
n − δi,j⟨V̂kj⟩

0
n

=

Ne

∑
j=1
∑

ik ∈{ab}
δk,j⟨V̂ ji⟩

0
n −

Ne

∑
j=1
∑

ik ∈{ab}
δi,j⟨V̂kj⟩

0
n

= ∑
ik ∈{ab}

⟨V̂ki⟩
0
n − ∑

ik ∈{ab}
⟨V̂ki⟩

0
n = 0. (B2)

So now we just need to prove that the second term, ∑Ne
j=1 ∑

ik ∈{ab}
∫

t
0 dτ Ksub

jj,ik(τ)σ̂ik(t − τ), is also zero. Starting with the memory kernel and

summing and expanding over j give
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Ne

∑
j=1

Ksub
jj,ik(τ) =

Ne

∑
j=1

1
h̵2 Tr{∣ j⟩⟨ j∣L e−iQsubLτ/h̵QsubLρ̂n(0)∣i⟩⟨k∣} =

Ne

∑
j=1

1
h̵2 Tr{[∣ j⟩⟨ j∣, Ĥ]e−iQsubLτ/h̵QsubLρ̂n(0)∣i⟩⟨k∣}

=

Ne

∑
j=1

1
h̵2 Tr{(Ĥj − Ĥj)∣ j⟩⟨ j∣ e−iQsubLτ/h̵QsubLρ̂n(0)∣i⟩⟨k∣}

+

Ne

∑
j,l=1
l≠j

1
h̵2 Tr{V̂ jl∣ j⟩⟨l∣ e

−iQsubLτ/h̵QsubLρ̂n(0)∣i⟩⟨k∣} −
Ne

∑
j,l=1
l≠j

1
h̵2 Tr{V̂ lj∣l⟩⟨ j∣ e−iQsubLτ/h̵QsubLρ̂n(0)∣i⟩⟨k∣}

=

Ne

∑
j,l=1
l≠j

1
h̵2 Tr{V̂ jl∣ j⟩⟨l∣ e

−iQsubLτ/h̵QsubLρ̂n(0)∣i⟩⟨k∣} −
Ne

∑
l,j=1
j≠l

1
h̵2 Tr{V̂ jl∣ j⟩⟨l∣ e

−iQsubLτ/h̵QsubLρ̂n(0)∣i⟩⟨k∣}

= 0. (B3)

Plugging the results of Eqs. (B2) and (B3) into Eq. (B1) shows
that the equation of motion for the trace is zero, ∑Ne

j=1
d
dt σjj(t) = 0,

and therefore, the trace will remain at 1.
The ability of the various GQMEs with LSCII-based PFIs to

satisfy Tr{σ̂(t)} = 1 can also be elucidated from another perspective

by considering the following three ways for calculating σz(t), which
should give the same result if Tr{σ̂(t)} = 1:

1. σz(t) = σDD(t) − σAA(t),
2. σz(t) = 2σDD(t) − 1, and
3. σz(t) = 1 − 2σAA(t).

FIG. 11. Electronic population difference, σz(t), as a function of time for the five models in Table III. In the first row, shown are exact results (black circles) and results
obtained based on single-population scalar GQMEs of the form of Eq. (14) calculated in three ways: (1) σz(t) = σDD(t) − σAA(t) with LSCII-based PFIs (solid green lines),
(2) σz(t) = 2σDD(t) − 1 with LSCII-based PFIs (dashed green lines), and (3) σz(t) = 1 − 2σAA(t) with LSCII-based PFIs (dashed-dotted green lines). In the second
row, shown are exact results (black circles) and results obtained based on a subset GQME of the form of Eq. (29) where {ab} = {00, 01} for the σ00(t) dynamics and
{ab} = {10, 11} for the σ11(t) dynamics. This subset GQME can be calculated in three ways: (1) σz(t) = σDD(t) − σAA(t) with LSCII-based PFIs (solid cyan lines),
(2) σz(t) = 2σDD(t) − 1 with LSCII-based PFIs (dashed cyan lines), and (3) σz(t) = 1 − 2σAA(t) with LSCII-based PFIs (dashed-dotted cyan lines). In the third row,
shown are exact results (black circles) and results obtained based on a subset GQME of the form of Eq. (29) where {ab} = {00, 01, 10} for the σ00(t) dynamics and
{ab} = {01, 10, 11} for the σ11(t) dynamics. This subset GQME can be calculated in three ways: (1) σz(t) = σDD(t) − σAA(t) with LSCII-based PFIs (solid orange lines),
(2) σz(t) = 2σDD(t) − 1 with LSCII-based PFIs (dashed orange lines), and (3) σz(t) = 1 − 2σAA(t) with LSCII-based PFIs (dashed-dotted orange lines).
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Indeed, we verified that those three ways of calculating σz(t)
yield the same results in the case of the populations-only and full
GQMEs and the subset with both populations. However, this is not
the case for the single-population scalar GQMEs and subset GQMEs
with only one of the populations, where there are significant differ-
ences between the results obtained via the three ways (see Fig. 11).
Calculating σz(t) the first way appears to give the best results with
the exception of model 4, where calculating it the third way gives the
best results.
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