
A Tutorial on Quantum Dynamics Simulations on

Quantum Computers. Part II: Open Systems

Yuchen Wang,† Xiaohan Dan,‡ Delmar G. A. Cabral,‡ Saurabh Shivpuje,†

Zixuan Hu,† Ningyi Lyu,‡ Eitan Geva,¶ Victor S. Batista,‡ and Sabre Kais∗,†

†Department of Chemistry, and Purdue Quantum Science and Engineering Institute,

Purdue University, West Lafayette, Indiana 47907, USA

‡Department of Chemistry, Yale Quantum Institute, Yale University, New Haven, CT

06511, USA

¶Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA

E-mail: kais@purdue.edu

Contents

1 Lindblad master equation for the open system quantum dynamics 3

2 Simulations of Lindblad Master Equation on Digital Computers 6

2.1 Matrix Exponential Propagation . 6

2.2 QuTiP method . 7

2.3 Spin-1/2 System . 8

2.4 Spin Chain . 11

2.5 Quantum Simulation of Spin Chain Dynamics 17

3 Quantum simulation of open system described by the Lindblad master

equation 22

1

kais@purdue.edu

3.1 Quantum algorithm utilizing the Sz.-Nagy dilation theorem 23

3.2 Quantum simulation of the amplitude-damping channel with QASM simulator 27

3.3 Quantum circuit generator using the Group Leader Optimization Algorithm 34

4 Conclusion 41

Acknowledgement 42

References 42

2

Abstract

Simulating the open quantum system dynamics is indispensable to a wide range of

studies of physical and chemical systems. Its applications include understanding the

energy and charge transport within the electronic and nuclear processes, investigating

the mechanism in the field of photochemistry, condensed-phase physics, nanoscience,

molecular electronics, quantum optics, spectroscopy and quantum information process-

ing and more. Quantum computer, with the ability to do parallel processing and the

fact that their computational space grows exponentially to the number of the qubits

being used, acts as a good candidate for performing such simulations of open systems.

This article is Part II of a series of tutorials about quantum dynamics simulations

on quantum computers. In this part we explore open quantum systems, employing

the widely-used Lindblad master equation within the framework of the Markovian ap-

proximation. With the Kraus representation of the Lindblad equation, we propose a

quantum algorithm utilizing the Sz.-Nagy dilation theorem and parallelization tech-

niques for the linear expansions of non-unitary propagators. We provide the coding

and simulation details of our algorithm and apply it to simulate a 2-level atom mod-

eled by amplitude-channel damping. We also include a quantum circuit generator that

makes use of the Group Leader Optimization Algorithm. It serves as an alternative

and useful tool in the quantum circuit compiling process of the proposed quantum al-

gorithm. This article serves as a beginner’s guide to simulating open quantum system

dynamics with quantum computers.

1 Lindblad master equation for the open system quan-

tum dynamics

In Part II of the quantum dynamics tutorial paper, we expand the discussion on quantum

dynamics to open systems. The open system refers to a system that interacts with its sur-

rounding environment. In contrast to the deterministic evolution of the state vector in a

3

closed quantum system, the presence of the environment introduces stochastic processes, re-

sulting in stochastic evolution. The state of an open quantum system is therefore described

in terms of ensemble-averaged states using the density matrix formalism. The system den-

sity matrix ρ (also called “reduced density matrix” in the sense that it only contains the

information of the system) describes a probability distribution of quantum states |ψn⟩, in

a matrix representation ρ =
∑

n pn|ψn⟩⟨ψn|, where pn is the classical probability that the

system is in the quantum state |ψn⟩. The time evolution of the system density matrix ρ is

the topic of the remaining portions of this paper.

The standard approach for deriving the equations of motion for a system interacting

with its environment is to expand the scope of the system to include the environment. The

combined quantum system is then closed, and its evolution is governed by the Liouville

(Liouville–von Neumann) equation1

ρ̇tot(t) = −
i

ℏ
[Htot, ρtot(t)], (1)

which is the equivalent of the Schrödinger equation in the density matrix formalism. Here,

ρtot is the density matrix of the combined quantum system, and the total Hamiltonian

Htot = Hsys +Henv +Hint (2)

includes the original system Hamiltonian Hsys, the Hamiltonian for the environment Hev,

and a term representing the interaction between the system and its environment Hint.

Since we are only interested in the dynamics of the system, we can at this point perform

a partial trace over the environmental degrees of freedom in Eq. (1), and thereby obtain a

master equation for the evolution of the reduced system density matrix ρ = Trenv[ρtot]. The

most general trace-preserving and completely positive form of this evolution is the Lindblad

4

master equation1,2 for the reduced density matrix

ρ̇(t) = − i
ℏ
[H, ρ(t)] +

∑
n

1

2
γn[2Lnρ(t)L

†
n − ρ(t)L†

nLn − L†
nLnρ(t)] (3)

where H is the system Hamiltonian Hsys in Eq. (2), Ln are jump operators describing the

dissipative part of the dynamics, and γn are the corresponding damping rates characterizing

the rates of dissipation induced by the environment. Ln and γn are determined by the

environment Henv and the system-environment coupling Hint. The derivation of Eq. (3) may

be found in several sources1,3 and will not be reproduced here. Instead, we emphasize the

approximations that are required to arrive at the master equation in the form of Eq. (3)

from physical arguments, and hence perform a calculation in QuTiP:4,5

Separability: At t = 0 there are no correlations between the system and its environment

such that the total density matrix can be written as a tensor product ρtot(0) = ρ(0)⊗ρenv(0).

Born approximation: (1) The state of the environment does not significantly change as

a result of the interaction with the system. (2) The system and the environment remain

separable throughout the evolution. Hence, ρtot(t) ≈ ρ(t) ⊗ ρenv(t). These assumptions are

justified when the interaction is weak and when the environment is significantly larger than

the system’s size.

Markov approximation: The time-scale of decay for the environment τenv is much shorter

than the smallest time-scale of the system dynamics τsys >> τenv. This approximation is

often deemed a “short-memory environment” as it requires rapid decay of environmental

correlation functions compared to the system’s time scale.

Secular approximation: Stipulates all fast-rotating terms in the master equation can be

neglected. It also ignores terms that lead to a small renormalization of the system energy

levels. This approximation is not strictly necessary for all master-equation formalisms (e.g.,

the Block-Redfield master equation), but it is required for arriving at the Lindblad form

Eq. (3).

5

For systems with environments satisfying the conditions outlined above, the Lindblad

master equation Eq. (3) governs the time evolution of the system density matrix, giving

an ensemble average of the system dynamics. To ensure that these approximations are not

violated, it is important that the damping rates γn be smaller than the minimum energy

splitting in the system Hamiltonian. Situations that demand treatments beyond the above

approximations therefore include, for example, systems strongly coupled to their environment

and systems with degenerate or nearly degenerate energy levels.1,6,7

2 Simulations of Lindblad Master Equation on Digital

Computers

In this section, we demonstrate the simulation of the Lindblad master equation [i.e. Eq. (3)]

on a digital computer. We introduce two methods to simulate the Lindblad master equation:

matrix exponential propagation and QuTiP4,5 method. We will simulate the dynamics of a

spin-1/2 system and then proceed to simulate the dynamics of a larger spin-chain system.

2.1 Matrix Exponential Propagation

We demonstrate how to perform the Lindblad equation by solving a matrix-vector multipli-

cation problem. To do so, we start by vectorizing the density matrix,

ρ→ vρ = [ρ11, ..., ρ1N , ρ21, ..., ρ2N ,, ρN1, ..., ρNN]
T (4)

Where N is the dimension of the system Hilbert space (i.e. dimension of Hamiltonian H).

Then, we recast the Lindblad equation in Eq. (3) into the equivalent matrix-vector form

d

dt
vρ(t) = [AC +AD]vρ(t) (5)

6

with the matrix form of the commutator AC and the matrix form of Lindbladian dissipator

AD as

AC = −i(H ⊗ I− I⊗HT)

AD =
∑
n

1

2
γn
[
2Ln ⊗ L∗

n − I⊗ LT
nL

∗
n − L†

nLn ⊗ I
] (6)

where I is the identity matrix in the Hilbert space of H. By integrating Eq. 18, the den-

sity matrix at time t can be expressed according to the action of the exponential of the

Lindbladian dissipator on the vectorized density matrix at t = 0,

vρ(t) = G(t)vρ(0) = e[AC+AD]tvρ(0) (7)

where G(t) is called the propagator.

2.2 QuTiP method

We can also compute the Lindblad dynamics using QuTiP’s mesolve function. When using

qutip.mesolve, the following things needs to be provided:

1. The system Hamiltonian H

2. Initial density matrix ρ(0)

3. Time list for propagation

4. Collapse operators defined by
√
γnLn. if no collapse operators are given, it will prop-

agate the Liouville equation of the system.

5. The expectation values are to be calculated.

With the above quantities defined, qutip.mesolve can generate the time-dependent ex-

pectation values with respect to Liouville equation (if no collapse operators are given) or

Lindblad master equation (if collapse operators were given).

7

2.3 Spin-1/2 System

The spin-1/2 system Hamiltonian is

H = ∆σx (8)

with tunneling rate ∆ = 0.1×2π, and σx denotes the Pauli-X matrix. For the jump operators

in Eq. (3), we chose the single jump operator as L = σx and the damping rate γ = 0.05.

We define the spin-up state | ↑⟩ and spin-down state | ↓⟩ as

| ↑⟩ = |0⟩ =

1
0

 , | ↓⟩ = |1⟩ =

0
1

 ; (9)

The initial state and the density matrix are set at the spin-up state

|ψ(0)⟩ = |0⟩, ρ(0) = |0⟩⟨0| . (10)

Script 2.1: Importing Libraries 2 3

1 !pip install qiskit

2 !pip install qiskit_aer

3 !pip install qutip

4 import numpy as np

5 import scipy.linalg as sp

6 import matplotlib.pyplot as plt

7 import qiskit

8 from qiskit import *

9 from qiskit_aer import AerSimulator

10 from qiskit.quantum_info.operators import Operator

8

https://www.google.com/

Script 2.2: Spin-1/2 Parameters 2 3

1 #Pauli matries

2 sigmax = np.array([[0, 1], [1, 0]],dtype=np.complex_)

3 sigmaz = np.array([[1, 0], [0, -1]],dtype=np.complex_)

4 sigmay = np.array([[0, -1j], [1j, 0]],dtype=np.complex_)

5 ident = np.eye(2,dtype=np.complex_)

6

7 #The Spin-1/2 system Hamiltonian

8 H_1spin = 2*np.pi * 0.1 * sigmax

9

10 #The jump operator and damping rate of Spin-1/2 system

11 gamma_1spin = 0.05

12 L_1spin = sigmax.copy()

13

14 #spin_up and down state

15 spin_up = np.array([1.0,0.0],dtype=np.float_)

16 spin_down = np.array([0.0,1.0],dtype=np.float_)

17

18 #initial density matrix

19 rho0_1spin = np.outer(spin_up,spin_up.conj())

20

21 #time step

22 dt = 0.1

23 nsteps = 250

With the parameters and Hamiltonian defined in the above code, we can simulate the

dynamics. The following code using matrix exponential propagation to propagate the dy-

namics.

9

https://www.google.com/

Script 2.3: Spin-1/2 Parameters 2 3

1 Nsystem = H_1spin.shape[0] #dimension of Hilbert space

2 vec_rho0_1spin = rho0_1spin.reshape(Nsystem**2)

3

4 #derivation matrix

5 ident_h = np.eye(Nsystem, dtype = np.complex_)

6 Amat = -1j*(np.kron(H_1spin,ident_h)-np.kron(ident_h,H_1spin.T))

7

8 # the lindblad term

9 Amat += (2.0*(np.kron(L_1spin,L_1spin.conj())) - np.kron(ident_h,

L_1spin.T@L_1spin.conj()) -

np.kron(L_1spin.T.conj()@L_1spin,ident_h))*0.5*gamma_1spin

↪→

↪→

10

11 result_1spin_matprop = []

12 for i in range(nsteps):

13 Gt = sp.expm(Amat*dt*i)

14 vec_rhot_1spin = Gt@vec_rho0_1spin

15 rhot_1spin = vec_rhot_1spin.reshape(Nsystem,Nsystem)

16 #the expection value of sigmaz

17 result_1spin_matprop.append(np.trace(rhot_1spin@sigmaz))

The following code using QuTiP to propagate the dynamics, we also propagate the Li-

ouville equation for comparison.

Script 2.4: Spin-1/2 Parameters 2 3

1 from qutip import mesolve, Qobj

2

3 times = np.linspace(0,(nsteps-1)*dt,nsteps)

4

5 #not give collapse operator: Liouville equation

6 result_qutip_Liouv = mesolve(Qobj(H_1spin), Qobj(rho0_1spin), times, e_ops =

Qobj(sigmaz))↪→

7 #QuTiP for Lindblad equation

8 result_qutip = mesolve(Qobj(H_1spin), Qobj(rho0_1spin), times, c_ops = np.sqrt(0.05)

* Qobj(sigmax), e_ops = Qobj(sigmaz))↪→

9

10

11 fig, ax = plt.subplots()

12 ax.plot(times, result_1spin_matprop, label = "Matrix Exponential Propagation")

13 ax.plot(times, result_qutip.expect[0],'--',label = "QuTiP_Lindblad")

14 ax.plot(times, result_qutip_Liouv.expect[0],'*',label = "QuTiP_Liouville")

15 ax.set_xlabel('Time')

16 ax.set_ylabel('Sigma-Z')

17 ax.legend()

18 plt.show()

10

https://www.google.com/
https://www.google.com/

The result shows in Fig. 1. The two methods shows the same result, and compare to the

continuous oscillation of the Liouville results, the Lindblad equation introduce dissipation

and the spin will relax...

Figure 1: Lindblad dynamics of the spin-1/2 system coupled to dissipator. Two methods
are used. Compared to the Liouville equation without bath.

2.4 Spin Chain

As another example, we choose the Heisenberg spin-chain model, which is widely used to

study properties of radical and magnetic materials.8 DC has references for this; adding soon.

The Hamiltonian for the spin-chain is defined as follows:9

H =
N−1∑
n=0

Ωnσ
z
n −

1

2

N−2∑
n=0

(
Jx
n,n+1σ̂

x
nσ̂

x
n+1 + Jy

n,n+1σ̂
y
nσ̂

y
n+1 + Jz

n,n+1σ̂
z
nσ̂

z
n+1

)
(11)

where N denotes the number of spins in the model, σi
n denotes a Pauli matrix acting on the

n-th (n ∈ {0, ..., N − 1}) spin site with i ∈ {x, y, z}. Ωn is the local potential in the n-th

spin site, J i
n,n+1 with i ∈ {x, y, z} denotes the coupling between n-th and n+ 1-th site.

For illustrative purposes we consider the parameters as used in the Ref.9 but with three

spin sites (N=3) rather than twenty.

11

Table 1: Hamiltonian parameters used in the spin chain simulation, from Fiori et al 9

Parameter n = 0 n ̸= 0
Ωn 0.65 1.0

Jx
n,n+1 0.75 1.0
Jy
n,n+1 0.75 1.0
Jz
n,n+1 0.0 0.0

We use the following code to setup the necessary operators and parameters for the open

quantum dynamics simulation of the spin chain Hamiltonian using a digital computer.

Script 2.5: Spin Chain Hamiltonian parameter 2 3

1 from qutip import mesolve, Qobj

2 import numpy as np

3

4 #the system Hamiltonian parameter

5 nsite = 3 #this states how many spins in the simulation

6 ndvr = 2**nsite #this is the dimension of the Hilbert space

7 Omegai_list = [0.65, 1.0, 1.0]

8 Jix_list = [0.75, 1.0]

9 Jiy_list = [0.75, 1.0]

10 Jiz_list = [0.0, 0.0]

11

12 spin_up = np.array([1.0,0.0],dtype=np.float_)

13 spin_down = np.array([0.0,1.0],dtype=np.float_)

14

15 #Pauli matries

16 sigmax = np.array([[0, 1], [1, 0]],dtype=np.complex_)

17 sigmaz = np.array([[1, 0], [0, -1]],dtype=np.complex_)

18 sigmay = np.array([[0, -1j], [1j, 0]],dtype=np.complex_)

19 ident = np.eye(2,dtype=np.complex_)

The initial state and the density matrix are defined as

|ψ(0)⟩ = | ↑↓↓⟩, ρ(0) = |ψ(0)⟩⟨ψ(0)| . (12)

Likewise, we set up the initial state wavefunction by an outer product of the spin-up (first

site) and spin-down vectors, and then the initial density matrix by an outer product of the

initial wavefunction vector (since it is a pure state).

12

https://www.google.com/

Script 2.6: Spin Chain Hamiltonian parameter 2 3

1 #set up the initial state at [up,down,down...]

2 init_state = spin_up.copy()

3 for i in range(nsite-1):

4 init_state = np.kron(init_state,spin_down)

5

6 #ste up the initial density matrix according to initial state

7 rho0 = np.zeros((ndvr,ndvr),dtype=np.complex_)

8 rho0 += np.outer(init_state,init_state.conj())

With the parameters above, we can define the spin chain Hamiltonian through the outer

product of the Pauli matrices constituting the Hamiltonian operators.

Script 2.7: Spin Chain Hamiltonian 2 3

1 #the diagnoal part of the Hamiltonian

2 H_diag = np.zeros((ndvr,ndvr),dtype=np.complex_)

3 for n in range(nsite):

4 tmp = 1.0

5 for i in range(nsite):

6 if(i==n):

7 tmp = np.kron(tmp,sigmaz)

8 else:

9 tmp = np.kron(tmp,ident)

10 H_diag += Omegai_list[n]*tmp

11 #the non-diagnoal (coupling) part of the Hamiltonian

12 H_coup = np.zeros((ndvr,ndvr),dtype=np.complex_)

13 XX = np.kron(sigmax,sigmax)

14 YY = np.kron(sigmay,sigmay)

15 ZZ = np.kron(sigmaz,sigmaz)

16 for n in range(nsite-1):

17 coup_tmp = Jix_list[n]*XX+Jiy_list[n]*YY+Jiz_list[n]*ZZ

18 tmp = 1.0

19 for i in range(nsite-1):

20 if(n==i):

21 tmp = np.kron(tmp,coup_tmp)

22 else:

23 tmp = np.kron(tmp,ident.copy())

24 H_coup += tmp

25 hsys = H_diag - 0.5 * H_coup

26 hsys_qobj = Qobj(hsys)

(Maybe remove the Lindblad equation since we have defined it in Eq 3) The Lindblad

equation for the spin-chain was chosen to model the effect of dissipation of an analogous spin

13

https://www.google.com/
https://www.google.com/

system on a quantum device10

ρ̇(t) = −i[H, ρ(t)] +
2∑

m=1

N−1∑
n=0

1

2
γm,n

(
2Lm,nρ(t)L

†
m,n − ρ(t)L†

m,nLm,n − L†
m,nLm,nρ(t)

)
(13)

Here m denotes two different noise channels, the amplitude damping noise (m = 1) and the

dephasing noise (m = 2), acting on the n-th spin site. The collapse operators Lm,n for the

Lindblad equation is chosen as10

L1,n = σ̂−
n (14)

L2,n = σ̂+
n σ̂

−
n . (15)

with σ̂±
n ≡ (σ̂x

n ± σ̂y
n)/2. The damping rate γ1,n and γ2,n can be determined experimentally

by measuring the spin relaxation process.10 Here, we choose γ1,n and γ2,n corresponds to

the average noise determined by Dang and coworkers in Ref.10 Where they determined the

average noise for the second processor is T1,n = 24.9 ∗ 5 and T2,n = 15.3 ∗ 5 (in units of 1/J),

where J denotes nearest-neighbor coupling. Using J has a scale of 1.0 in our Table 1, and

relate T1,n and T2,n to dampling rate through γ1,n = 2/T1,n, γ2,n = 4/T2,n, then we have

γ1,n = 0.016 and γ2,n = 0.0523.

With this Lindbladian operator in mind, we implement it in a manner analogous to the

Hamiltonian above. For convenience, we store two copies of the Lindbladian operator, one

for the digital computer simulation (Lindbladian_qobj) and another for the qubit-device

simulation (Lindbladian).

14

Script 2.8: Spin Chain Lindbladian Operators 2 3

1 #The lindblad damping rate

2 Gamma1 = [2/24.9]*nsite

3 Gamma2 = [4/15.3]*nsite

4

5 Lindbladian = []

6 Lindbladian_qobj = []

7

8 sigmap = (sigmax+1j*sigmay)*0.5

9 sigmam = (sigmax-1j*sigmay)*0.5

10 sigma2 = sigmap@sigmam

11

12 for isite in range(nsite):

13 #Lindbladian for type 1

14 res = 1.0

15 for j in range(nsite):

16 if(j==isite):

17 res = np.kron(res,sigmam)*np.sqrt(Gamma1[isite])

18 else:

19 res = np.kron(res,ident)

20 Lindbladian.append(res)

21 Lindbladian_qobj.append(Qobj(res))

22

23 #Lindbladian for type 2

24 res = 1.0

25 for j in range(nsite):

26 if(j==isite):

27 res = np.kron(res,sigma2)*np.sqrt(Gamma2[isite])

28 else:

29 res = np.kron(res,ident)

30 Lindbladian.append(res)

31 Lindbladian_qobj.append(Qobj(res))

The observable of interest for our example is the time-evolved survival amplitude, defined

as

Ps(t) =
√

Tr[ρ(t)ρ(0)] . (16)

When starting from a pure state |ψ(0)⟩, this expression is equal to |⟨ψ(0)|ψ(t)⟩|.

Using Matrix exponential propagation, the Lindblad dynamics for the spin chain can be

simulated as follows

15

https://www.google.com/

Script 2.9: Spin Chain dynamics using Matrix exponential propagation 2

3

1 vec_rho0 = rho0.reshape(Nsystem**2)

2

3 #derivation matrix

4 ident_h = np.eye(Nsystem, dtype = np.complex_)

5 Amat = -1j*(np.kron(hsys,ident_h)-np.kron(ident_h,hsys.T))

6

7 # the lindblad term

8 for i in range(len(Lindbladian)):

9 Amat += (2.0*(np.kron(Lindbladian[i],Lindbladian[i].conj())) - np.kron(ident_h,

Lindbladian[i].T@Lindbladian[i].conj()) -

np.kron(Lindbladian[i].T.conj()@Lindbladian[i],ident_h))*0.5

↪→

↪→

10

11 # the propagator

12 Gprop = []

13 Prob_exp = np.zeros(nsteps,dtype=np.float_)

14 for i in range(nsteps):

15 Gt = sp.expm(Amat*dt*i)

16 Gprop.append(Gt)

17 vec_rhot = Gt@vec_rho0

18 survi_prob = np.sqrt((np.dot(vec_rho0.conj(),vec_rhot)).real)

19 Prob_exp[i] = survi_prob

Using QuTiP, the Lindblad dynamics for the spin chain can be simulated as follows,

16

https://www.google.com/

Script 2.10: Spin Chain dynamics using QuTiP 2 3

1 from qutip import mesolve, Qobj

2

3 #time step

4 dt = 0.1

5 nsteps = 250

6

7 time = np.linspace(0,dt*(nsteps-1),nsteps)

8

9 rho0_qobj = Qobj(rho0)

10 #using QuTip to simulate the spin-chain Lindblad equation

11 result = mesolve(hsys_qobj, rho0_qobj, time, c_ops=Lindbladian_qobj, e_ops=rho0_qobj)

12 #compare to spin-chain pure system dynamics without Lindbladian

13 result_liouv = mesolve(hsys_qobj, rho0_qobj, time, e_ops=rho0_qobj)

14

15 Prob = np.sqrt(result.expect[0][:])

16 Prob_liouv = np.sqrt(result_liouv.expect[0][:])

17

18 plt.plot(time,Prob_exp, label="Matrix Exponential Prop")

19 plt.plot(time,Prob,'--',label="QuTiP_Lindblad")

20 plt.plot(time,Prob_liouv,'*',label="Pure system evolution")

21 plt.legend()

The results shown in Fig. 2 showcase the dynamics of the pure system without dissipation,

with the system oscillating between different spin configurations and recovering the initial

state after some time. However, the inclusion of dissipation leads to coherence loss and the

initial state is not recovered.

2.5 Quantum Simulation of Spin Chain Dynamics

We demonstrate how to perform the qubit-based simulation of the open quantum dynamics

of the spin chain Hamiltonian by solving a matrix-vector multiplication problem. To do so,

we start by vectorizing the density matrix,

ρ→ vρ = [ρ11, ..., ρ1n, ρ21, ..., ρ2n,, ρn1, ..., ρnn]
T (17)

17

https://www.google.com/

Figure 2: Quantum dynamics of the spin-chain for the closed system (dashed orange line)
and the open system described by the Lindbladian dissipator described in the text (blue
continuous line). The closed system oscillates between the available spin configurations of
the system, while the open system gradually loses energy and resemblance with the initial
state with increased simulation time.

Then, we recast the Lindblad equation in Eq. (13) into the equivalent matrix-vector form

d

dt
vρ(t) = [AC +AD]vρ(t) (18)

with the matrix form of the commutator AC and the matrix form of Lindbladian dissipator

AD as

AC = −i(H ⊗ I− I⊗HT)

AD =
2∑

m=1

N−1∑
n=0

1

2
γm,n

[
2Lm,n ⊗ L∗

m,n − I⊗ LT
m,nL

∗
m,n − L†

m,nLm,n ⊗ I
] (19)

where I is the identity matrix in the Hilbert space of H. By integrating Eq. 18, the den-

sity matrix at time t can be expressed according to the action of the exponential of the

Lindbladian dissipator on the vectorized density matrix at t = 0,

vρ(t) = G(t)vρ(0) = e[AC+AD]tvρ(0) (20)

18

whereG(t) is called the propagator. In our particular example, vρ(0) = | ↑↓↓↑↓↓⟩ = |011011⟩

is the vectorized form of ρ(0).

Script 2.11: Vectorized Lindblad equation 2 3

1 vec_rho0 = rho0.reshape(ndvr**2)

2

3 #derivation matrix

4 ident_h = np.eye(ndvr, dtype = np.complex_)

5 Amat = -1j*(np.kron(hsys,ident_h)-np.kron(ident_h,hsys.T))

6

7 # the lindblad term

8 for i in range(len(Lindbladian)):

9 Amat += (2.0*(np.kron(Lindbladian[i],Lindbladian[i].conj())) - np.kron(ident_h,

Lindbladian[i].T@Lindbladian[i].conj()) -

np.kron(Lindbladian[i].T.conj()@Lindbladian[i],ident_h))*0.5

↪→

↪→

10

11 # the propagator

12 Gprop = []

13 for i in range(nsteps+1):

14 Gprop.append(sp.expm(Amat*dt*i))

Since the propagator G(t) for the Lindblad equation is non-unitary, we apply the Sz.-

Nagy’s dilation in Eq. (31) to convert G(t) into the unitary UG(t). Application of the

dilation procedure requires doubling each dimension of the matrix, which in practice means

adding an ancilla qubit for quantum simulation.

19

https://www.google.com/

Script 2.12: Sz.-Nagy 1-dilation of Lindbladian Propagator 2 3

1 from numpy import linalg as la

2 import scipy.linalg as sp

3

4 def dilate(array):

5

6 # Normalization factor of 1.5 to ensure contraction

7 norm = la.norm(array,2)*1.5

8 array_new = array/norm

9

10 ident = np.eye(array.shape[0])

11

12 # Calculate the conjugate transpose of the G propagator

13 fcon = (array_new.conjugate()).T

14

15 # Calculate the defect matrix for dilation

16 fdef = sp.sqrtm(ident - np.dot(fcon, array_new))

17

18 # Calculate the defect matrix for the conjugate of the G propagator

19 fcondef = sp.sqrtm(ident - np.dot(array_new, fcon))

20

21 # Dilate the G propagator to create a unitary operator

22 array_dilated = np.block([[array_new, fcondef], [fdef, -fcon]])

23

24 return array_dilated, norm

Thus, the dynamics in the dilated space are given by the expression

ṽρ(t) = UG(t)ṽρ(0) (21)

with ṽρ(0) = [vρ(0), 0, · · · , 0] = |0011011⟩ being the zero-padded input vector to match

the dimensionality of the expanded Hilbert space. Since ṽρ(t) = [vρ(t),vN(t)], the relevant

information regarding the time evolved density vector, vρ(t), can be extracted from ṽρ(t)

while the remaining vN(t) in the extend space can be discarded.

To calculate the survival amplitude in Eq. (16) in this dilated formalism, we use the

transformed expression

Ps(t) =
√
⟨ṽρ(t)|ṽρ(0)⟩ (22)

whre ⟨ṽρ(t)|ṽρ(0)⟩ can be obtained by taking the square root of the probability of measuring

20

https://www.google.com/

the ṽρ(0) = |0011011⟩ component in the quantum circuit and multiplying by the normaliza-

tion factor nc (explain?...this seems defined in the Yuchen’s section...) utilized in the dilation

process.

Script 2.13: Quantum Device Simulation of Spin Chain Dynamics 2 3

1 # initial state in the dilated space

2 rho0_dilated = np.concatenate((vec_rho0,np.zeros(ndvr**2)))

3

4 Prob_qc = np.zeros(nsteps+1,dtype=np.float_)

5

6 #aersim=AerSimulator(method='statevector')

7 aersim=AerSimulator()

8 shots = 10000

9 for i in range(nsteps):

10 if(i%10==0):print('istep',i)

11 qr = QuantumRegister(nsite*2+1) # Create a quantum register

12 cr = ClassicalRegister(nsite*2+1) # Create a classical register to store

measurement results↪→

13 qc = QuantumCircuit(qr, cr) # Combine the quantum and classical registers to

create the quantum circuit↪→

14

15 # Initialize the quantum circuit with the initial state

16 qc.initialize(rho0_dilated, qr)

17

18 # Dilated propagator

19 U_G, norm = dilate(Gprop[i])

20

21 # Create a custom unitary operator with the dilated propagator

22 U_G_op = Operator(U_G)

23

24 # Apply the unitary operator to the quantum circuit's qubits

25 qc.unitary(U_G_op, qr)

26

27 qc.measure(qr, cr)

28

29 counts1 = aersim.run(qc,shots=shots).result().get_counts()

30 if '0011011' in counts1:

31 aa = np.sqrt(counts1['0011011']/shots)*norm

32 #print(aa)

33 Prob_qc[i] = np.sqrt(aa)

34

35 plt.plot(time,Prob_qc,'*',label="quantum")

36 plt.plot(time,Prob,'--',label="QuTip benchmark")

37 plt.legend()

It is noteworthy to mention that the simulation needs to be executed many times for each

21

https://www.google.com/

time point to obtain statistically meaningful results after averaging. To demonstrate this

importance, we showcase results obtained for the open quantum dynamics by performing

the simulation for 10000 shots (Fig. 3, blue stars).

times for each time point. It can be observed that while the the results agree with the

classical computer benchmark for short propagation time, more shots are necessary to obtain

agreement at longer times

Figure 3: Quantum simulation of the Lindbladian dynamics of the spin-chain model system
using a quantum device simulator (blue stars) as compared to those obtained by a digital
computer simulation with QuTip.

3 Quantum simulation of open system described by

the Lindblad master equation

In Sec. 1 we introduce the open quantum dynamics governed by the Lindblad equation:

d

dt
ρ(t) = −i[H, ρ(t)] + LD[ρ(t)], (23)

in which ρ(t) is the density matrix of the system. We trace out the environment density ma-

trix in the derivation of the Lindblad equation and represent the environmental interactions

22

with the dissipative term LD[ρ(t)] as follows:

LD[ρ(t)] =
K∑
k=1

γk

(
Lkρ(t)L

†
k −

1

2
{L†

kLk, ρ(t)}
)
. (24)

The Lindblad operators are shown as Lk and are taken to be dimensionless. As the Lindblad

equation models a dissipative system, the rates of dissipation or decay, represented as γk,

are non-negative quantities with the dimension of inverse time.

3.1 Quantum algorithm utilizing the Sz.-Nagy dilation theorem

In this subsection, we introduce a general algorithm utilizing the Sz.-Nagy dilation theorem

for open quantum system dynamics that is described by the Lindblad equation Eq.(23).

11,12 To start with, the time-evolution for such open systems can be given in terms of Kraus

operators

ρ(t) =
∑
k

Mk(t)ρ(0)M
†
k(t). (25)

To relate the Kraus operator sum representation to the dissipative terms of the Lindblad

equation Eq.(24) we associate each of Lk with a Kraus operator Mk(δt):

Mk(δt) = e−iHδt
√
γkδtLk, (26)

and set M0(δt) = e−iHδt(I− 1
2
δt
∑

k>0 γkL
†
kLk). Starting with ρ(t) and incrementing time by

a infinitesimal δt we get:

eiHδtρ(t+ δt)e−iHδt =M0(δt)ρ(t)M
†
0(δt) +

∑
k>0

Mk(δt)ρ(t)M
†
k(δt) (27)

= ρ(t)− 1

2
δt
∑
k>0

γk{L†
kLk, ρ(t)}+O(δt2) + δt

∑
k>0

γkLkρ(t)L
†
k

23

It is easy to see that when δt→ 0 Eq.(27) is converging to Eq.(23). Meanwhile

∑
k

M †
k(δt)Mk(δt) =M †

0(δt)M0(δt) +
∑
k>0

M †
k(δt)Mk(δt) (28)

= I− δt
∑
k>0

γkL
†
kLk +O(δt2) + δt

∑
k>0

γkL
†
kLk

= I+O(δt2).

Therefore the condition of
∑

kM
†
k(δt)Mk(δt) = I in the Kraus’ theorem is satisfied if the

higher order terms of δt are ignored. In our quantum algorithm, we redefine

M0(δt) =

√
I−

∑
k>0

M †
k(δt)Mk(δt) (29)

in order to avoid any problems caused by the approximation. Notice that the Lindblad

equation which governs the dynamics of the system is a differential equation on the density

operator. Now that this dynamics is described by the Kraus operators, the sum represen-

tation essentially evolves the differential equation with the Euler method. For example,

the evolution after the first 3 time steps looks like (omitted the δt dependence of Mk for

simplicity)

ρ(δt) =
∑
k

Mkρ(0)M
†
k (30)

ρ(2δt) =
∑
k

Mkρ(δt)M
†
k =

∑
j

∑
k

MjMkρ(0)M
†
kM

†
j

ρ(3δt) =
∑
k

Mkρ(2δt)M
†
k =

∑
i

∑
j

∑
k

MiMjMkρ(0)M
†
kM

†
jM

†
i

The full dynamics can be obtained by dividing the time length into small enough steps and

applying the corresponding Kraus operators of each time step to the density function ρ. In

other words, the dynamic of the system is calculated in a step-by-step manner for each of

the designated time steps.

24

To simulate this process and transform the Kraus operators into quantum gates we need

to convert the non-unitary process into a unitary operator. The conversion of a non-unitary

process to a unitary operation is facilitated by Sz.-Nagy’s unitary dilation procedure.13 This

procedure starts with a non-unitary contraction T , which means the operator norm of T

is less than or equal to 1, i.e. ||T ||op = sup ||Tv||
||v|| ≤ 1. Since the Kraus operators M are

contractions themselves by definition which is demonstrated in Ref. 11, we replace T with

M for the rest of the tutorial for simplicity. With Sz.-Nagy’s unitary dilation procedure, we

can convert M into a unitary UM of the form:

UM =

M DM†

DM −M †

 Where DM =
√
I −M †M, DM† =

√
I −MM †. (31)

Here DM is called the defect operator of M and the operation to get UM is called the 1-

dilation. Recently, this 1-dilation technique is used in simulating open system dynamics.14–16

The circuit depth of the dilated UM can be further reduced by utilizing the singular-value

decomposition of the operator M , as detailed in Ref.15

The 1-dilation procedure can be generalized to convert a sequence composed by k number

of {Mi|i = 1, · · · , k} to a sequence of unitary operations via the k-dilation for each of the

Mi as follows:

UMi
=



Mi DM†
i

DMi
−M †

i

I

. . .

I


. (32)

The empty slots in Eq.(32) should be filled with 0s, and the sub-diagonal dots are filled

with identity matrices I of the same dimension as Mi and there are k − 1 of Is. Given

the dimension of Mi to be n × n, the k-dilation creates a unitary matrix of the dimension

(k + 1)n× (k + 1)n. This k-dilation has the minimal dimension possible compared to other

25

schemes of dilation which is proved by the Sz.-Nagy’s Dilation Theorem.13 The physical

explanation of the k-dilation is that applying k-number of contractions Mi on a smaller

Hilbert space can be replicated by applying a list of unitary UMi
where i = 1, · · · , k on a

(k + 1)n times larger Hilbert space and projected the output vector of the larger Hilbert

space into the smaller Hilbert space. It is worth mentioning that the input state in the

dilated space should match the dimension of the dilated operators by adding zeros in the

ancillary space.

Next, we show the details of the quantum algorithm.11,14 For simplicity, the nota-

tion of time dependency is omitted hereafter for superoperators M and superoperators

derived from it.In the first step, the density matrix is flattened to vector form: ρ →

vρ = (ρ11, ..., ρ1n, ρ21, ..., ρ2n,, ρn1, ..., ρnn)
T . We calculate the Frobenius norm of vρ as

∥vρ∥F =
√∑

ij

|ρij|2 and divide vρ by ∥vρ∥F to normalize vρ. The operator Mk is then

transformed into M̃k = Mk ⊗ I; similarly, the M †
k is transformed into Ñk = I ⊗ M̄k. The ⊗

stands for the Kronecker product and the bar over Mk indicates complex conjugation. The

new equivalent form for the Kraus representation is:

MkρM
†
k

equivalent←→ ÑkM̃kvρ. (33)

To build the quantum circuit of ÑkM̃kvρ with unitary gates, we need two separate 2-dilations

as there are 2 operators multiplying to vρ:

ÑkM̃kvρ
unitary dilation−−−−−−−−→ UNk

UMk

(
vT
ρ , 0, ..., 0

)T
. (34)

For Mk of dimension n × n, M̃k and Ñk are n2 × n2; and consequently, the 2-dilation UMk

and UNk
are 3n2 × 3n2. All the evolved density matrices in the circuit calculated at each

time-step are obtained as the output vector vk (t) = ÑkM̃kvρ. The desired information to

be collected from the density matrix is extracted by applying projection measurements on

vk (t).

26

3.2 Quantum simulation of the amplitude-damping channel with

QASM simulator

In this subsection, we show the example Python code of the algorithm with an example of

the spontaneous emission of a 2-level atom modeled by amplitude-channel damping. The

corresponding Lindblad master equation is:

ρ̇ (t) = γ

[
σ+ρ(t)σ− − 1

2
{σ−σ+, ρ(t)}

]
,

where the spontaneous emission rate is γ = 1.52 × 109 s−1, and the σ+ = |0⟩⟨1| and σ− =

(σ+)
†
are Pauli raising and lowering operators, respectively. The density matrix ρ(t) in the

Kraus representation is as follows:

ρ(t) = M0(t)ρM0(t)
† +M1(t)ρM1(t)

†,

M0(t) = 1+
√
e−γt

2
I+ 1−

√
e−γt

2
σz =

 1 0

0
√
e−γt

 ,

M1(t) =
√
1− e−γtσ+ =

 0
√
1− e−γt

0 0

 .

(35)

For Mk of dimension 2× 2, M̃k, Ñk, and DA are 4× 4 matrices, as given in Eq. (36). In

this way, the 2-dilations UMk
and UNk

are 12 × 12 following the k-dilation.11,13 Although

these superoperators are time dependent, we omitted the notation of time dependency for

simplicity. Since the dimension of n-qubits is 2n × 2n, we append the dilated matrix with

an ancillary 12× 4 zero matrix on the right and 4× 12 at the bottom, and an 4× 4 identity

matrix along the diagonal. The resulting dilated superoperator matrix is 16× 16, requiring

4 qubits for the quantum implementation.

27

Below we list the explicit matrix forms of each of the operators we mentioned:

M̃0 =



1 0 0 0

0 1 0 0

0 0
√
e−γt 0

0 0 0
√
e−γt


, Ñ0 =



1 0 0 0

0
√
e−γt 0 0

0 0 1 0

0 0 0
√
e−γt


,

DM̃0
=



0 0 0 0

0 0 0 0

0 0
√
1− e−γt 0

0 0 0
√
1− e−γt


, DÑ0

=



0 0 0 0

0
√
1− e−γt 0 0

0 0 0 0

0 0 0
√
1− e−γt


.

M̃1 =



0 0
√
1− e−γt 0

0 0 0
√
1− e−γt

0 0 0 0

0 0 0 0


, Ñ1 =



0
√
1− e−γt 0 0

0 0 0 0

0 0 0
√
1− e−γt

0 0 0 0


,

DM̃1
=



1 0 0 0

0 1 0 0

0 0
√
e−γt 0

0 0 0
√
e−γt


, DÑ1

=



1 0 0 0

0
√
e−γt 0 0

0 0 1 0

0 0 0
√
e−γt


.

(36)

For an initial density ρ(0) = 1
4

1 1

1 3

, we calculate the populations in the basis {|0⟩, |1⟩}

from t = 0 to t = 1000 ps with a time step of 10 ps. With ∥ρ∥F =
√
3
2
, the input state is:

v0 =
1

∥ρ∥F

(
vT
ρ ,

m︷ ︸︸ ︷
0, ..., 0

)T

=
1

2
√
3

(
1, 1, 1, 3,

m︷ ︸︸ ︷
0, ..., 0

)T

, (37)

where m = 12 for the vector vT
ρ to be of length 16. After extracting the output vk (t), the

28

ground state and excited state populations are obtained as the first and fourth entry of the

vector, respectively. More technical details of the quantum algorithm and the amplitude-

channel damping model can be found in the Appendix of Refs.11,14

Next, we include a Python coding example of the quantum algorithm working for the

amplitude-channel damping model. Qiskit package from IBM quantum are required for the

execution of the code.17 We start with importing essential packages and the four major

libraries imported for this code are: ”numpy” for all matrix related numerical calculations,

”scipy” for calculating square root of matrix, ”matplotlib” for generating plots from results

obtained, ”qiskit” for all types of quantum implementation. If one faces any issues importing

these libraries, one must check their respective official user-manuals for the recent changes

made to them.

Script 3.1: Importing Qiskit packages 2 3

1 #These libraries might vary depending on the version of qiskit.

2 import numpy as np

3 import scipy.linalg as sp

4 import matplotlib.pyplot as plt

5 import qiskit

6 from qiskit import *

7 from qiskit_aer import AerSimulator

8 from qiskit.quantum_info.operators import Operator

Next we defining the density matrix and parameters used to build the Kraus operators.

There are in total two Kraus operators used in this calculation and we encode them as k0

and k1.

29

https://github.com/saurabhshivpuje/Dilation_OQS/blob/master/Kraus_tutorial.ipynb

Script 3.2: Setting up the input parameters 2 3

1 #defining the initial density matrix rho

2 rho = np.zeros((2,2),'complex')

3 rho[0,0]=1/4

4 rho[0,1]=1/4

5 rho[1,0]=1/4

6 rho[1,1]=3/4

7 gamma=1.52e9# gamma is the spontaneous emission rate

8

9 iden=np.eye(2)

10 iden2= np.eye(4)

11

12 #flattening or vectorize the density matrix

13 rho_norm=sp.norm(rho)

14 rho_flat= rho.flatten()/rho_norm

15 #defining the Kraus operators

16 def k_0(x):

17 k = np.zeros((2,2),'complex')

18 k[0,0]=1

19 k[0,1]=0

20 k[1,0]=0

21 k[1,1]= np.sqrt(np.exp(-gamma*x))

22 return k

23 def k_1(x):

24 k = np.zeros((2,2),'complex')

25 k[0,0]=0

26 k[0,1]=np.sqrt(1-np.exp(-gamma*x))

27 k[1,0]=0

28 k[1,1]=0

29 return k

Then we defining the function that does the 2-dilation process and transforms the Kraus

operators into unitary operators of a larger dimension.

30

https://github.com/saurabhshivpuje/Dilation_OQS/blob/master/Kraus_tutorial.ipynb

Script 3.3: Functions for dilation 2 3

1 #defining the function for dilation

2 def udil(k):

3 #first and second stands for the M and N, i.e. Kraus and its complex conjugate

4 first= np.kron(k,iden)

5 kc=k.conjugate() #complex conjugate of k

6 second= np.kron(iden,kc)

7 fcon = (first.conjugate()).T

8 scon = (second.conjugate()).T

9 #calculate the defect operators of each Kraus operators

10 fdef = sp.sqrtm(iden2-np.dot(fcon,first))

11 sdef = sp.sqrtm(iden2 -np.dot(scon,second))

12 fcondef = sp.sqrtm(iden2-np.dot(first,fcon))

13 scondef = sp.sqrtm(iden2-np.dot(second,scon))

14 #2-dilation process

15 Ufirst= np.block([[first, np.zeros((4,4)),fcondef,np.zeros((4,4))],

16 [fdef,np.zeros((4,4)),-fcon,np.zeros((4,4))],

17 [np.zeros((4,4)),np.eye(4),np.zeros((4,4)),np.zeros((4,4))],

18 [np.zeros((4,4)),np.zeros((4,4)),np.zeros((4,4)),np.eye(4)]])

19

20 Usecond=np.block([[second, np.zeros((4,4)),scondef,np.zeros((4,4))],

21 [sdef,np.zeros((4,4)),-scon,np.zeros((4,4))],

22 [np.zeros((4,4)),np.eye(4),np.zeros((4,4)),np.zeros((4,4))],

23 [np.zeros((4,4)),np.zeros((4,4)),np.zeros((4,4)),np.eye(4)]])

24

25 ufre=np.reshape(Ufirst,(1,256))

26 usec=np.reshape(Usecond,(1,256))

27 #returning the unitaries for both the Kraus operator and its complex conjugate

28 return ufre,usec

In the following code we assigning the time steps and defining various lists used to store

the simulation results.

31

https://github.com/saurabhshivpuje/Dilation_OQS/blob/master/Kraus_tutorial.ipynb

Script 3.4: Defining Python lists to record the results 2 3

1 #defining lists used to store the results

2 rho_at_t=np.zeros((1000,2), "complex")

3 time=np.zeros((1000,1),)

4 udil01=np.zeros((1000,256),"complex")

5 udil02=np.zeros((1000,256),"complex")

6 udil11=np.zeros((1000,256),"complex")

7 udil12=np.zeros((1000,256),"complex")

8 # assigning the time-steps

9 for t in range(0,1000):

10 tt=t*10**-12

11 k0=k_0(tt)

12 k1=k_1(tt)

13 udil01[t],udil02[t] = udil(k0)

14 udil11[t],udil12[t] = udil(k1)

15

16 shots = 2000

17 #create dictionaries to store the results. three binary digits due to 8*8 matrix needs

three qubits↪→

18 result = {'0000': 0, '0001': 0, '0010': 0, '0011': 0,'0100': 0, '0101': 0, '0110': 0,

'0111': 0, '1000': 0, '1001': 0, '1010': 0, '1011': 0,'1100': 0, '1101': 0,

'1110': 0, '1111': 0}

↪→

↪→

19 result2 = {'0000': 0, '0001': 0, '0010': 0, '0011': 0,'0100': 0, '0101': 0, '0110': 0,

'0111': 0, '1000': 0, '1001': 0, '1010': 0, '1011': 0,'1100': 0, '1101': 0,

'1110': 0, '1111': 0}

↪→

↪→

20 p_excited = []# create list to store probability for acceptor state

21 p_ground = []# create list to store probability for donor state

Below is the code used to perform the iterations of the quantum algorithm that goes over

all 1000 times steps used in this specific case. Noticed that the two Kraus operators are

implemented separately and sum up at the end to generate the results. In the case of a more

general Lindblad equation, all the derived Kraus operators can be calculated in parallel to

reduce the total computational time.

32

https://github.com/saurabhshivpuje/Dilation_OQS/blob/master/Kraus_tutorial.ipynb

Script 3.5: QASM simulations 2 3

1 # Below are the loop of the QASM simulation

2 aersim=AerSimulator()

3 for i in range (0,1000):

4 #for Kraus operator 1

5 U1first=np.reshape(udil01[i],(16,16))

6 U1second=np.reshape(udil02[i],(16,16))

7 # qiskit quantum circuit generation process

8 initial_state = np.concatenate([rho_flat,np.zeros(12)])

9 qr = QuantumRegister(4)

10 cr = ClassicalRegister(4)

11 qc = QuantumCircuit(qr, cr)

12 qc.initialize(initial_state, qr)

13 # generating self-defined quantum gates with dilated unitaries

14 A = Operator(U1first)

15 B = Operator(U1second)

16 U_G_op = A.compose(B)

17 qc.unitary(U_G_op, qr)

18 qc.measure(qr, cr)

19 counts1 = aersim.run(qc,shots=shots).result().get_counts()

20 for x in counts1:

21 result[x] = counts1[x]

22 # multiply the norm factor to retrieve the original data, sqrt because the results

is probability not prob density↪→

23 pg1 = np.sqrt(result['0000'] / 2000)*rho_norm

24 pe1 = np.sqrt(result['0011'] / 2000)*rho_norm

25 #for Kraus operator 2

26 U2first=np.reshape(udil11[i],(16,16))

27 U2second=np.reshape(udil12[i],(16,16))

28 initial_state2 = np.concatenate([rho_flat,np.zeros(12)])

29 qr2 = QuantumRegister(4)

30 cr2 = ClassicalRegister(4)

31 qc2 = QuantumCircuit(qr2, cr2)

32 qc2.initialize(initial_state, qr2)

33 C = Operator(U2first)

34 D = Operator(U2second)

35 U_G_op2 = C.compose(D)

36 qc2.unitary(U_G_op2, qr2)

37 qc2.measure(qr2, cr2)

38 counts2 = aersim.run(qc2, shots=shots).result().get_counts()

39 for x in counts2:

40 result2[x] = counts2[x]

41 # multiply the norm factor to retrieve the original data, sqrt because the results

is probability not prob density↪→

42 pg2 = np.sqrt(result2['0000'] / 2000)*rho_norm

43 pe2 = np.sqrt(result2['0011'] / 2000)*rho_norm

44 pe=pe1+pe2

45 pg=pg1+pg2

46 p_excited.append(pe)

47 p_ground.append(pg)

33

https://github.com/saurabhshivpuje/Dilation_OQS/blob/master/Kraus_tutorial.ipynb

The distribution probability of each states is used to calculate the population of the

donor state and acceptor state and the following code is used to plot the results for a better

visualization of the system dynamics. The plot of the simulation is shown as Fig. 4.

Script 3.6: Plotting the results 2 3

1 #plotting the QASM simulation results

2 time_array_QASM = np.arange(0, 1000, 1)

3

4 plt.plot(time_array_QASM, p_ground, 'r-', label="Ground state")

5 plt.plot(time_array_QASM, p_excited, 'b-', label='Excited state')

Figure 4: Population of ground state and excited state for the amplitude-damping model
obtained by the quantum implementation on the QASM simulator.The population of the
ground state is denoted in red and the population of the excited state is denoted in blue.
The population distributions are simulated for 1000 time steps. The number of projection
measurements applied by the QASM simulator to obtain a single time step is 2000 shots.

3.3 Quantum circuit generator using the Group Leader Optimiza-

tion Algorithm

In this section, we introduce a heuristic method that generates a quantum circuit for any

given unitary matrix.18 The goal of this subsection is to present an alternative way to generate

34

https://github.com/saurabhshivpuje/Dilation_OQS/blob/master/Kraus_tutorial.ipynb

a quantum circuit. It is worth pointing out that this method does not guaranteed to produce

the optimal quantum circuit compares to other commonly used circuit generator such as the

‘transpile’ function in Qiskit. Instead we just provide a perspective on how this specific

circuit generator works and hopefully this can enhance the reader’s understanding of this

important process in the realm of quantum computing.

This quantum circuit generator utilizes the Group Leader Optimization Algorithm

(GLOA) which takes its inspiration from the influence of the leaders to other members of

social groups.19 GLOA is an evolutionary algorithm that decomposes the unitary matrices

into a set of quantum gates by randomly generating a large amounts of circuit candidates,

dividing them into groups and doing optimization in parallel under the guidance of the group

leaders within each groups. Here the group leader is the member with best performance and

is constantly updating after each iteration.

The goal of the optimization process is to generate and compile the quantum circuits

with minimum costs and errors. So we variate and optimize the generated quantum circuits

to have the lowest cost in terms of the number of the gate and the lowest fidelity error in

terms of the distance between the target and the generated quantum circuits in the form of

unitary matrix. In our case, one qubit gate has a cost of 1 and two-qubit gate has a cost

of 2. It is worth noting that the minimization of the error to an acceptable level has more

priority than lowering the cost because we prefer to get more accurate and reliable results

before reducing the number of gates in the circuit. In the optimization process, the balance

of the weight of the cost and the error in the approximated circuit can be adjusted by an

objective function. Here the trace fidelity is given by:

F =
1

N
|Tr(UaU

†
t)|, (38)

where N = 2n (n is the number of qubits); the dagger symbol † represents the complex

conjugate transpose of a matrix; Tr(·)is the trace of a matrix; | · | means taking the absolute

35

value and Ua is the matrix representation of the approximated circuit and Ut is the target

unitary matrix. The fidelity error used in the optimization is defined as:

ϵ = 1−F2 (39)

where F is squared to amplify the effects of small fidelity changes in the error.

In the optimization we utilize the method of the Cartesian genetic programming so that

each quantum gate within the generated circuit is represented as integer strings that in-

clude information of the position, free parameters (if applicable) and controllability if it is a

controlled gate. The variation of the group member following the mutation rule which is:

new member = r1 portion of old member

∪ r2 portion of group leader

∪ r3 portion of random

In our case this mutation rule is apply to the free parameters of the applicable quantum

gates. In addition to the mutation, after a given number of iterations, one-way-crossover

(also called the parameter transfer) is done between a member from the target group and

a member from a different group all chosen at random. The full process of the iteration is

showing as a flowchart in Fig. 5. The replacement criteria in our optimization is as follow:

if a new formed (or mutated) member results in less error compared to the old member, or

they have the same error values but the cost of the new member is less than the old member,

then the new member survives and replaces the old member; otherwise, the old member is

kept for the next iteration.

In the rest of this section we demonstrate a demo code that allows you to utilize this

circuit generator after you have all the necessary packages installed and configured. To begin

with, we need to import the necessary packages and functions required for the procedure.

The definition of all the functions used can be found in the qtoolkit package and the brief

36

explanation of each called function is listed as comments. Noticed that it is important to

install and configure the Qiskit package as there is a function in the qtoolkit to transform

the quantum circuit generated into a Qiskit quantum circuit object.

Figure 5: The flow chart of the Group Leaders Optimization Algorithm.

37

Script 3.7: Importing Functions from qtoolkit 2 3

1 import numpy as np

2 import qtoolkit.gloa.group_leader as gloa #core function of gloa

3 import qtoolkit.solovay_kitaev.maths.distances as qdists

4 #measuring distance between the target and generated as parts of cost function

5 import qtoolkit.core.utils.constants.operations as qopconsts# all the default

quantum gate↪→

6 import qtoolkit.core.utils.timeit as qtimeit # run time tracking

7 import qtoolkit.core.data_structures.quantum_circuit as qcirc #building the

quantum circuit↪→

8 import qtoolkit.core.data_structures.quantum_operation as qop # operations to the

quantum gates↪→

9 import qtoolkit.core.utils.types as qtypes # datatype used in this program

With all the necessary package imported, we first declare the the basis quantum gates to

be used in the algorithm and then include the unitary matrix we want to build the circuit

for.

38

https://www.google.com/

Script 3.8: Declaring basis quantum gate set and the unitary matrix 2 3

1 # 1.Define the basis quantum gates to be used in the algorithm

2 # supported gates includes: X Y Z S(phase) H (Hadamard)T(pi/8) ID CX(control-not) Rx

Ry Rz Sx(sqrt X)↪→

3 basis = [

4 qopconsts.SX,

5 qopconsts.Rz,

6 qopconsts.CX

7]

8 # enter the boundary for the gates with parameters such as rotation gates. use None for

those don't have parameters↪→

9 bounds = [

10 None,

11 np.array([[0], [2 * np.pi]]),

12 None,

13]

14 timer = qtimeit.Timer()

15

16 # 2. U is the unitary we want to approximate.

17 # Make sure the dimension of the matrix is to the power of 2 i.e. dim=2^n

18 U = np.array(

19 [

20 [0.59416024+3.91441004e-16j, 0.13258395-4.03129458e-16j,

21 0.78700436+8.27518375e-33j, -0.10009615+6.08222076e-18j],

22 [0.13258395-3.89089610e-16j , 0.59416024+4.00729831e-16j,

23 -0.10009615-6.08222076e-18j , 0.78700436+1.23259516e-32j],

24 [0.78700436-1.03520189e-35j, -0.10009615+4.51736357e-18j,

25 -0.59416024+3.91441004e-16j, -0.13258395-3.89089610e-16j],

26 [-0.10009615-4.51736357e-18j , 0.78700436+1.54074396e-33j,

27 -0.13258395-4.03129458e-16j, -0.59416024+4.00729831e-16j],

28]

29)

Once we have all the input setting up we can start the GLOA iteration. After each itera-

tion the decomposition characteristics will be printed for your reference and the ”U approx”

object returned is the quantum circuit object used by the qtoolkit package.

39

https://www.google.com/

Script 3.9: Starting the GLOA process with the user-defined parameters

2 3

1 # 3. Starting the GLOA process.

2 timer.tic()

3

4 cost, U_approx = gloa.group_leader(

5 U, length=40, n=10, p=20, basis=basis, max_iter=100, parameters_bound=bounds,r

= [0.6, 0.2, 0.2]↪→

6)

7 '''

8 Parameter meaning:

9 length: number of gates allowed, not necessarily used all of them

10 n: number of groups

11 p: number of members inside each groups

12 max_iter: maximum iteration

13 r: rates determining the portion of old (r[0]), leader (r[1]) and

14 random (r[2]) that are used to generate new candidates. If None, the

15 default value of the GLOA article is used: r = [0.8, 0.1, 0.1].

16 '''

17

18 timer.toc("GLOA algorithm")

19

20 print("Decomposition characteristics:")

21 print(f"Fowler error: {qdists.fowler_distance(U, U_approx.matrix)}.")

22 print(f"Trace error: {qdists.trace_distance(U, U_approx.matrix)}.")

23 print(f"GLOA cost: {cost}.")

24 print(f"Gate count: {len(list(U_approx.operations))}")

Finally we show a useful function that transform the resulting circuit object into a Qiskit

circuit object. Qiskit package have many built in functions that work with this object. For

example, there is a function that can draw the resulting circuit into a fancy figure that allows

us to visualized the circuit in an direct way as shown in Fig. 6. It is worth noting that the

resulting circuit can be different after each execution due to the randomness in the members

creation process. The form of the circuit also depends on all the user-defined parameters

given in the code such as the length of the circuit and types of the quantum gates used.

The readers are encouraged to refer to Ref.18 for more detailed evaluation and discussion

of this method used for generating quantum circuit for the propagator of the Hamiltonian

of hydrogen molecule, water molecule and more. Furthermore, the readers are welcomed to

compare the results generating from GLOA to that from the Qiskit package and to explore

40

https://www.google.com/

the optimal parameters sets that gives the best approximation of the given matrix in a case

by case manner.

Script 3.10: Visualization of the generated circuit 2 3

1 #U_approx.to_qiskit() is a qiskit circuit objects so .draw() can be called to draw it.

2 U_approx.to_qiskit().draw(output='mpl')

Figure 6: The quantum circuit generated by the Group Leaders Optimization Algorithm.
The blue squre is the SX gate, the purple squre is the RZ gate with the rotation parameter
listed below and the two-qubit gate is the CX gate. The circuit figure is rescaled and
adjusted to show more details.

4 Conclusion

In part II of the whole series we delve into the realm of open quantum system, described by

the popular methods like the Lindblad equation that rely on the Markovian approximation.

We first introduce the Lindblad master equation and the conditions this equation is applica-

ble and provide a classical simulation example with QuTiP. Next, we introduce a quantum

algorithm that can simulate the open quantum system governed by the Lindblad equation

41

https://www.google.com/

with the help of the Kraus representation and dilation. We provide an coding example of the

algorithm that works for the amplitude damping model. Lastly we introduce a quantum cir-

cuit generator that allows one to approximate a general unitary matrix with a variationally

derived quantum circuit. We hope this part serves as a good guidance to the simulations of

open quantum systems following the Markovian approximation with quantum computers.

Acknowledgement

We acknowledge the financial support of the National Science Foundation under award num-

ber 2124511, CCI Phase I: NSF Center for Quantum Dynamics on Modular Quantum Devices

(CQD-MQD).

References

(1) Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems ; Oxford Univer-

sity Press, 2007.

(2) Milz, S.; Pollock, F. A.; Modi, K. An introduction to operational quantum dynamics.

Open Systems & Information Dynamics 2017, 24, 1740016.

(3) Manzano, D. A short introduction to the Lindblad master equation. AIP Adv. 2020,

10, 025106.

(4) Johansson, J.; Nation, P.; Nori, F. QuTiP: An open-source Python framework for the

dynamics of open quantum systems. Computer Physics Communications 2012, 183,

1760–1772.

(5) Johansson, J.; Nation, P.; Nori, F. QuTiP 2: A Python framework for the dynamics of

open quantum systems. Comput. Phys. Commun. 2013, 184, 1234–1240.

42

(6) Nitzan, A. Chemical Dynamics in Condensed Phases ; Oxford University Press: New

York, 2006.

(7) Jang, S. Dynamics of Molecular Excitons ; Nanophotonics; Elsevier Science, 2020.

(8) Wang, T.; Sanz, S.; Castro-Esteban, J.; Lawrence, J.; Berdonces-Layunta, A.;

Mohammed, M. S. G.; Vilas-Varela, M.; Corso, M.; Peña, D.; Frederiksen, T.;

de Oteyza, D. G. Magnetic Interactions Between Radical Pairs in Chiral Graphene

Nanoribbons. Nano Letters 2022, 22, 164–171, PMID: 34936370.

(9) Fiori, E. R.; Pastawski, H. Non-Markovian decay beyond the Fermi Golden Rule: Sur-

vival collapse of the polarization in spin chains. Chem. Phys. Lett. 2006, 420, 35–41.

(10) Dong, H. et al. Measuring Spectral Form Factor in Many-Body Chaotic and Localized

Phases of Quantum Processors. 2024.

(11) Hu, Z.; Xia, R.; Kais, S. A quantum algorithm for evolving open quantum dynamics

on quantum computing devices. Sci. Rep. 2020, 10, 1–9.

(12) Hu, Z.; Head-Marsden, K.; Mazziotti, D. A.; Narang, P.; Kais, S. A general quantum

algorithm for open quantum dynamics demonstrated with the Fenna-Matthews-Olson

complex. Quantum 2022, 6, 726.

(13) Levy, E.; Shalit, O. M. Dilation theory in finite dimensions: the possible, the impossible

and the unknown. Rocky Mt. J. Math. 2014, 44, 203–221.

(14) Wang, Y.; Mulvihill, E.; Hu, Z.; Lyu, N.; Shivpuje, S.; Liu, Y.; Soley, M. B.; Geva, E.;

Batista, V. S.; Kais, S. Simulating Open Quantum System Dynamics on NISQ Com-

puters with Generalized Quantum Master Equations. J. Chem. Theory Comput. 2023,

19, 4851–4862.

(15) Schlimgen, A. W.; Head-Marsden, K.; Sager-Smith, L. M.; Narang, P.; Mazziotti, D. A.

43

Quantum state preparation and nonunitary evolution with diagonal operators. Phys.

Rev. A 2022, 106, 022414.

(16) Seneviratne, A.; Walters, P. L.; Wang, F. Exact Non-Markovian Quantum Dynamics

on the NISQ Device Using Kraus Operators. ACS Omega 2024, 9, 9666–9675.

(17) Aleksandrowicz, G. et al. Qiskit: An Open-source Framework for Quantum Computing.

2019; https://doi.org/10.5281/zenodo.2562111.

(18) Daskin, A.; Kais, S. Decomposition of unitary matrices for finding quantum circuits:

application to molecular Hamiltonians. J. Chem. Phys 2011, 134 .

(19) Daskin, A.; Kais, S. Group leaders optimization algorithm. Molecular Physics 2011,

109, 761–772.

44

https://doi.org/10.5281/zenodo.2562111

	Lindblad master equation for the open system quantum dynamics
	Simulations of Lindblad Master Equation on Digital Computers
	Matrix Exponential Propagation
	QuTiP method
	Spin-1/2 System
	Spin Chain
	Quantum Simulation of Spin Chain Dynamics

	Quantum simulation of open system described by the Lindblad master equation
	Quantum algorithm utilizing the Sz.-Nagy dilation theorem
	Quantum simulation of the amplitude-damping channel with QASM simulator
	Quantum circuit generator using the Group Leader Optimization Algorithm

	Conclusion
	Acknowledgement
	References

