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Abstract

Finite temperature simulations of quantum dynamics in complex chemical systems

represent an outstanding and ongoing challenge. In practice, it is often advantageous

to focus on the quantum dynamics of a quantity of interest, such as the reduced density

matrix of a system coupled to a bath, which can be treated as an open quantum sys-

tem. The Nakajima-Zwanzig generalized quantum master equation (GQME) provides

a formally exact framework for simulating the non-Markovian quantum dynamics of

such an open system. This article is Part III of a series of tutorials about simulating

quantum dynamics on quantum computers. In this part, we focus on simulating the

non-Markovian open quantum system dynamics described by a GQME. The quantum

algorithm, which is based on the Sz.-Nagy dilation theorem, is demonstrated on the

spin-boson model.

1 Introduction

We focus on molecular systems with an overall Hamiltonian of the following form, which is

suitable and commonly used for modeling electronic energy and charge transfer reactions in

chemical systems:

Ĥ =
Ne∑
j=1

Ĥj(R̂, P̂) |j⟩⟨j|+
Ne∑

j,k=1
k ̸=j

V̂jk(R̂) |j⟩⟨k| . (1)

Here, Ĥj(R̂, P̂) = P̂2/2 + Vj(R̂) is the nuclear Hamiltonian when the system is in

the diabatic electronic state |j⟩, with the index j running over the Ne electronic states;

{V̂jk(R̂)|j ̸= k} are coupling terms between electronic states; and R̂ = {R̂1, R̂2, ..., R̂Nn} and

P̂ = {P̂1, P̂2, ..., P̂Nn} are the mass-weighted position and momentum operators of the Nn

nuclear degrees of freedom (DOFs). Throughout this paper, boldfaced variables, e.g., A,

indicate vector quantities; a hat over a variable, e.g., B̂, indicates an operator quantity; and

calligraphic font, e.g., L, indicates a superoperator.
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Assuming that the overall system is closed, its dynamics can be described by the quantum

Liouville equation1,2

d

dt
ρ̂(t) = − i

ℏ
[Ĥ, ρ̂(t)] = − i

ℏ
Lρ̂(t) . (2)

Here, ρ̂(t) is the density operator that describes the state of the overall system and L(·) =

[Ĥ, ·] is the overall system Liuovillian superoperator with Ĥ as in Eq. (1). The computational

cost of solving the quantum Liouville equation, Eq. (2), scales exponentially with the number

of electronic and nuclear DOFs (Nn+Ne). A more cost-effective alternative approach focuses

on the electronic DOFs (the so-called ”system”), which are the quantity of interest when

it comes to energy and charge transfer, and seeks a minimal and compact description of

the effect of the nuclear DOFs (the so-called ”bath”) on them. In this case, the electronic

DOFs constitute an open quantum system whose dynamics can be rigorously described by

a GQME (see below).

A reasonable choice of overall system initial state is given by

ρ̂(0) = ρ̂n(0)⊗ σ̂(0) . (3)

Here, ρ̂n(0) = Tre{ρ̂(0)} is the reduced density operator that describes the initial state of the

nuclear DOFs, where Tre{·} stands for partially tracing over the electronic Hilbert space.

Similarly, σ̂(0) is the reduced density operator that describes the initial state of the electronic

DOFs, as obtained by partially tracing over the nuclear Hilbert space:

σ̂(0) = Trn{ρ̂(0)} =
Ne∑

j,k=1

σjk(0)|j⟩⟨k| . (4)

Integrating the Eq. (2), the state of the overall system at a later time t is given by:

ρ̂(t) = e−iĤt/ℏρ̂n(0)⊗ σ̂(0)eiĤt/ℏ ≡ e−iLt/ℏρ̂n(0)⊗ σ̂(0) . (5)
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Here, Ĥ is the overall Hamiltonian, Eq. (1), and L(·) = [Ĥ, ·] is the corresponding Liouvillian.

The electronic state at time t is given by the electronic reduced density operator:

σ̂(t) = Trn{ρ̂(t)} =
Ne∑

j,k=1

σjk(t)|j⟩⟨k| . (6)

Importantly, knowledge of σ̂(t) allows for the evaluation of both the electronic populations,

{σjj(t) = ⟨j|σ̂(t)|j⟩}, and coherences, {σjk(t) = ⟨j|σ̂(t)|k⟩|j ̸= k}.

In this tutorial, we focus on the GQME that treats σ̂(t) as the quantity of interest, which

is given by:3

d

dt
σ̂(t) = − i

ℏ
⟨L⟩0nσ̂(t)−

∫ t

0

dτ K(τ)σ̂(t− τ) . (7)

Here, ⟨L⟩0n is the projected Liouvillian averaged over the initial state of the nuclear DOF

(resulting in a superoperator in the electronic Liouville-subspace), given by

⟨L⟩0n (·) ≡ Trn {ρ̂n(0)L} (·) (8)

=

 Ne∑
j=1

⟨Ĥj⟩0n|j⟩⟨j|+
Ne∑

j,k=1
k ̸=j

⟨V̂jk⟩0n|j⟩⟨k|, ·

 ,

and K(τ) is the memory kernel superoperator, given by

K(τ) =
1

ℏ2
Trn

{
Le−iQLτ/ℏQLρ̂n(0)

}
. (9)

Here, P(·) = ρ̂n(0) ⊗ Trn{·} and Q = I − P are complementary projection superoperators

(I is the unity superoperator). The forms and derivations of the above GQME, along with

its ⟨L⟩0n and K(τ), can be found in many previous studies.4–13

Recently, open quantum system dynamics based on the GQME has been simulated on

NISQ computers based on the Sz.-Nagy dilation.3 In this tutorial, we provide a step-by-step

description of the implementation of this methodology on the spin-boson model.
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2 The Spin-Boson Model

The spin-boson model is widely used for simulating electronic energy and charge transfer

dynamics in chemical systems.1,14 Used in this context, the two electronic states within

this model (Ne = 2) correspond to the diabatic donor and acceptor states (|D⟩ and |A⟩,

respectively). The nuclear Hamiltonians that correspond to the donor and acceptor states

are assumed harmonic and identical except for a shift in equilibrium energy and optical

geometry. Those assumptions give rise to a Hamiltonian of the following form:

Ĥ = ϵσ̂z + Γσ̂x +
Nn∑
i=1

[
P̂ 2
i

2
+

1

2
ω2
i R̂

2
i − ciR̂iσ̂z

]
. (10)

Here, σ̂z = |D⟩⟨D| − |A⟩⟨A|, σ̂x = |D⟩⟨A| + |A⟩⟨D|, 2ϵ is the reaction energy and Γ ≡ VDA

is the electronic coupling between the donor and acceptor states.

A spin-boson model Hamiltonian is often given in terms of the so-called spectral density

underlying it, which is given by:

J(ω) =
π

2

Nn∑
k=1

c2k
ωk

δ(ω − ωk). (11)

For the sake of concreteness, we focus in this tutorial on the case of Ohmic spectral density

with exponential cutoff (the methodology can easily accommodate other types of spectral

densities):15–17

J(ω) =
πℏ
2
ξωe−ω/ωc . (12)

Here, ξ is the Kondo parameter which determines the coupling strength between the system

and bath, and ωc is the cutoff frequency. In what follows, we will also assume that the

chemical system starts in the donor state in thermal equilibrium that corresponds to the

nuclear Hamiltonian (ĤD + ĤA)/2, such that (the methodology can easily accommodate
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other types initial states of the form of Eq. (3):

ρ̂(0) = |D⟩⟨D| ⊗ ρ̂n(0) (13)

ρ̂n(0) =

exp

[
− β

Nn∑
i=1

P̂ 2
i

2
+

1

2
ω2
i R̂

2
i

]

Trn

{
exp

[
− β

Nn∑
i=1

P̂ 2
i

2
+

1

2
ω2
i R̂

2
i

]} (14)

Here, β = 1/kBT . where kB is the Boltzmann constant and T is the absolute temperature.

Thus, the electronic energy and charge transfer dynamics can be given in terms of five

spin-boson model parameters: ϵ, Γ, β, ξ, and ωc.
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Script 2.1: Installing and importing dependencies 2 3

1 import os

2 from google.colab import drive

3

4 # Mount Google Drive

5 drive.mount('/content/mydir')

6

7 # Define the path for the folder where you want to clone the repository

8 folder_path = '/content/mydir/MyDrive/GQME_Tutorial'

9

10 # Create the folder if it doesn't already exist

11 if not os.path.exists(folder_path):

12 os.makedirs(folder_path)

13 print(f"Created folder: {folder_path}")

14

15 # Change the current working directory to the folder where you want to clone the

repository↪→

16 os.chdir(folder_path)

17

18 # Clone the GitHub Repository into the specified folder

19 !git clone https://github.com/XiaohanDan97/CCI_PartIII_GQME .

20

21 import numpy as np

22 np.float = float

23 np.complex = complex

24 import time

25

26 #parameters in the simulation

27 from params import *

28 #read and write functions

29 import readwrite as wr

30

31 import matplotlib.pyplot as plt

Script 2.2: Spin-Boson Model parameters 2 3

1 GAMMA_DA = 1 # diabatic coupling

2 EPSILON = 1

3 BETA = 5 # inverse finite temperature beta = 1 / (k_B * T)

4 XI = 0.1

5 OMEGA_C = 2

There are many numerically exact or approximate methods for the simulation of the spin-

boson model,17–25 here as an example, we show the result obtained from the numerically exact

tensor-train thermofield dynamics (TT-TFD) method.17
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Script 2.3: Using TT-TFD to simulate Spin-Boson Model 2 3

1 !pip install git+https://github.com/bcallen95/ttpy.git --quiet

2 import tt_tfd as tfd

3

4 #RDO: reduced density operator, contain the information of population and coherence

5 #initial_state=0: initial at Donor state

6 t, RDO_arr = tfd.tt_tfd(initial_state=0)

7

8 #TT-TFD is time-consuming, after running it once, you can read it from the file without

running it again↪→

9 #output to the file

10 wr.output_operator_array(t, RDO_arr, "TTTFD_Output/TFDSigma_")

11

12 #read and plot

13 t, RDO_arr = wr.read_operator_array("TTTFD_Output/TFDSigma_")

14 plt.figure(figsize=(6,2))

15 plt.plot(t, RDO_arr[:,0].real,'b-', label='TT-TFD')

16 plt.xlabel('$\Gamma t$',fontsize=15)

17 plt.ylabel('$\sigma_{DD}$(t)',fontsize=15)

18 plt.legend()

The result is shown in figure 1.

Figure 1: Population on the donor state |D⟩ for the Spin-Boson model, obtained by TT-TFD
method.

3 GQME for Spin-Boson Model

Since the spin-boson model is a two-state model (Ne = 2), the reduced electronic density

operator is represented by a 2×2 matrix which can be given in terms of four matrix elements:
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σij(t) = ⟨i|σ̂(t)|j⟩ with i, j ∈ {D,A}. Here, the diagonal elements σii(t), which are known

as populations, correspond to the occupancies of the donor and acceptor states, while the

off-diagonal terms, which are known as coherences, contain information about the coherent

nature of the state.1 Focusing on electronic energy and charge transfer, our focus would be

on the dynamics of the populations of the donor and acceptor states, {σDD(t), σAA(t)}.

The electronic reduced density operator is represented in the code in its vectorized form:

σ̂(t) ≡ [σDD(t), σDA(t), σAD(t), σAA(t)]
T . (15)

Thus, according to Eq. (13), the electronic initial state is σ̂(0) = |D⟩⟨D| = [1, 0, 0, 0]T . In

this representation, the super-operators ⟨L⟩0n and K(t) are represented by 4× 4 matrices.

3.1 The projected Liouvillian

We start with determining ⟨L⟩0n in Eq. (8). This electronic superoperator is defined by the

way it acts on an arbitrary electronic operator Â:

⟨L⟩0n Â = Trn

{[
Ĥ, ρ̂n(0)⊗ Â

]}
=

[
ϵσ̂z + Γσ̂x, Â

]
. (16)

To get the second equality we used the property

[
P̂ 2
i

2
+

1

2
ω2
i R̂

2
i , ρ̂n(0)⊗ Â

]
=

[
P̂ 2
i

2
+

1

2
ω2
i R̂

2
i , ρ̂n(0)

]
⊗ Â = 0 ,

and

Trn

{
ciR̂iρ̂n(0)

}
= 0 ,

since the expectation value of the position operator in an unsifted harmonic oscillator at

thermal equilibrium vanishes.
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Using the vectorized form of the system subspace operator in Eq. (15), ⟨L⟩0n in Eq. (16)

can be written as

⟨L⟩0n =



0 −Γ Γ 0

−Γ 2ϵ 0 Γ

Γ 0 −2ϵ −Γ

0 Γ −Γ 0


. (17)

Script 3.1: projected Liouvillian 2 3

1 LN0 = np.zeros((DOF_E_SQ, DOF_E_SQ))

2 LN0[0][1] = LN0[1][0] = LN0[2][3] = LN0[3][2] = -GAMMA_DA

3 LN0[0][2] = LN0[2][0] = LN0[1][3] = LN0[3][1] = GAMMA_DA

4 LN0[1][1] = 2. * EPSILON

5 LN0[2][2] = -2. * EPSILON

The projected Liouvillian ⟨L⟩0n describes the time evolution that would be observed if the

system was uncoupled from the bath [i.e. the memory kernel K(t) in Eq. (9) is zero since

P = I and Q = 0], integrating Eq. (7) with K(t) = 0 gives

σ̂(t) = e−
i
ℏ ⟨L⟩

0
ntσ̂(0) . (18)
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Script 3.2: The dynamics with projected Liouvillian only 2 3

1 from scipy.linalg import expm

2 sigma_liou = np.zeros((TIME_STEPS, DOF_E_SQ), dtype=np.complex_)

3 time_arr = np.linspace(0,(TIME_STEPS-1)*DT,TIME_STEPS)

4 sigma_liou[0] = np.array([1.0,0,0,0],dtype=np.complex_)

5 for i in range(1,TIME_STEPS):

6 sigma_liou[i] = expm(-1j*LN0*i*DT)@sigma_liou[0]

7

8 #read TT-TFD result and plot to compare

9 timeVec, sigma_tt_tfd = wr.read_operator_array("TTTFD_Output/TFDSigma_")

10 plt.figure(figsize=(6,2))

11 plt.plot(time_arr, sigma_liou[:,0].real,'b-', label='Liouvillian only')

12 plt.plot(timeVec, sigma_tt_tfd[:,0].real,'ko', markersize=4,markevery=60,

label='TT-TFD')↪→

13 plt.xlabel('$\Gamma t$',fontsize=15)

14 plt.ylabel('$\sigma_{DD}$(t)',fontsize=15)

15 plt.legend(loc = 'upper right')

The result shown in Fig. 2. The system oscillates between the donor state |D⟩ and the

acceptor state |A⟩, which corresponds to the time evolution of the pure system without the

nuclear bath (i.e. dynamics of the two-level closed system1). Compared to the TT-TFD

results, coupling to the bath brings in the dissipation effect, which makes the oscillation

decay.

Figure 2: The population dynamics on the donor state |D⟩. Here the dynamics correspond
to the projected Liouvillian only. The numerically exact TT-TFD result is also shown for
comparison.
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4 The memory kernel

The memory kernel, Eq. (9), can be calculated by solving the following Volterra equation of

the second kind:20,26–29

K(t) = iḞ(t)− 1

ℏ
F(t) ⟨L⟩0n + i

∫ t

0

dτ F(t− τ)K(τ) . (19)

Here, F(t) and Ḟ(t), which are known as the projection-free inputs (PFIs), are given by:

F(t) =
1

ℏ
Trn[Le−iLt/ℏρ̂n(0)] (20)

Ḟ(t) = − i

ℏ2
Trn[Le−iLt/ℏLρ̂n(0)] . (21)

Below we outline the procedures used for calculating the PFIs and then using them to obtain

the memory kernel by solving Eq. (19).

4.1 Calculation of the Projection-Free Inputs

The PFIs can be obtained in multiple ways.8,11,17,25 For the sake of concreteness, in this

tutorial, we focus on obtaining them via TT-TFD. To this end, we note that F(t) = iU̇(t),

where U(t) is the non-unitary time evolution superoperator, or propagator, of the system,

which is defined by:

σ̂(t) = U(t)σ̂(0) = Trn
[
e−iLt/ℏρ̂n(0)

]
σ̂(0) , (22)

Thus, F(t) and Ḟ(t) can be obtained through taking time-derivatives of U(t). The propa-

gator U(t), is a super-operator with the matrix element Ujk,lm(t) with j, k, l,m ∈ {D,A},

which can be defined by starting from initial state |l⟩⟨m| ⊗ ρ̂n(0), and measuring |j⟩⟨k| at

time t. The following code below shows obtaining {Ujk,lm(t)} via the TT-TFD method.17
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Script 4.1: The propagator 2 3

1 def cal_U_tt_tfd():

2

3 U = np.zeros((TIME_STEPS, DOF_E_SQ, DOF_E_SQ), dtype=np.complex_)

4

5 # tt-tfd with initial state 0,1,2,3

6 # initial state |0> means donor state |D>, |3> means acceptor state |A>

7 # |1> is (|D> + |A>)/sqrt(2), |2> is (|D> + i|A>)/sqrt(2)

8 t,U[:,:,0] = tfd.tt_tfd(0)

9 t,U[:,:,1] = tfd.tt_tfd(1)

10 t,U[:,:,2] = tfd.tt_tfd(2)

11 t,U[:,:,3] = tfd.tt_tfd(3)

12

13 U_final = U.copy()

14

15 # the coherence elements that start at initial state |D><A| and |A><D|

16 # is the linear combination of above U results

17 # |D><A| = |1><1| + i * |2><2| - 1/2 * (1 + i) * (|0><0| + |3><3|)

18 U_final[:,:,1] = U[:,:,1] + 1.j * U[:,:,2] - 0.5 * (1. + 1.j) * (U[:,:,0] +

U[:,:,3])↪→

19

20 # |A><D| = |1><1| - i * |2><2| - 1/2 * (1 - i) * (|0><0| + |3><3|)

21 U_final[:,:,2] = U[:,:,1] - 1.j * U[:,:,2] - 0.5 * (1. - 1.j) * (U[:,:,0] +

U[:,:,3])↪→

22

23 #output U

24 wr.output_superoper_array(t,U_final,"U_Output/U_")

25

26 return 0

27 #The line below calculates all U elements with TT-TFD. The expected waiting time is 40

minutes on Google Colab. To save time, the results are already pre-computed and

saved, and this line is therefore commented out. The following code would still

run normally. Please uncomment if one wishes to perform these calculations.

↪→

↪→

↪→

28 #cal_U_tt_tfd()

Once {Ujk,lm(t)} are obtained via TT-TFD, the PFIs F(t) and Ḟ(t) can be obtained

from it by taking time derivatives.
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Script 4.2: Projection-Free Inputs F(τ) and Ḟ(τ) 2 3

1 #the proj-free input from U data

2 def cal_F():

3 #read the propagator data from files

4 timeVec,U = wr.read_superoper_array("U_Output/U_")

5

6 F = np.zeros((TIME_STEPS, DOF_E_SQ, DOF_E_SQ), dtype=np.complex_)

7 Fdot = np.zeros((TIME_STEPS, DOF_E_SQ, DOF_E_SQ), dtype=np.complex_)

8

9 for j in range(DOF_E_SQ):

10 for k in range(DOF_E_SQ):

11 # extracts real and imag parts of U element

12 Ureal = U[:,j,k].copy().real

13 Uimag = U[:,j,k].copy().imag

14

15 # F = i * d/dt U so Re[F] = -1 * d/dt Im[U] and Im[F] = d/dt Re[U]

16 Freal = -1. * np.gradient(Uimag.flatten(), DT, edge_order = 2)

17 Fimag = np.gradient(Ureal.flatten(), DT, edge_order = 2)

18

19 # Fdot = d/dt F so Re[Fdot] = d/dt Re[F] and Im[Fdot] = d/dt Im[F]

20 Fdotreal = np.gradient(Freal, DT)

21 Fdotimag = np.gradient(Fimag, DT)

22

23 F[:,j,k] = Freal[:] + 1.j * Fimag[:]

24 Fdot[:,j,k] = Fdotreal[:] + 1.j * Fdotimag[:]

25

26 #write the result to the file

27 wr.output_superoper_array(timeVec,F,"ProjFree_Output/F_")

28 wr.output_superoper_array(timeVec,Fdot,"ProjFree_Output/Fdot_")

29

30 return timeVec,F,Fdot

31 timeVec,F,Fdot = cal_F()

4.2 Calculation of the Memory Kernel

The memory kernel is obtained by solving Eq. (19). This is done by using the iterative

algorithm outlined below. To this end, we put Eq. (19) in the following form

K(t) = g(t) +

∫ t

0

f(t− τ)K(τ)dτ (23)

where g(t) = iḞ(t)− 1
ℏF(t) ⟨L⟩0n and f(t− τ) = F(t− τ).
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Script 4.3: linear term g(t) 2 3

1 linearTerm = 1.j * Fdot.copy() # first term of the linear part

2 for l in range(TIME_STEPS):

3 # subtracts second term of linear part

4 linearTerm[l,:,:] -= 1./HBAR * F[l,:,:] @ LN0

Eq. (23) is solved via the iterative algorithm outlined next. To calculate K(n∆t) [where

n = 0, 1, 2, ..., N and N∆t = t], we start with an initial guess of K0(n∆t) = g(n∆t) and

iterate until convergence is accomplished:

K0(n∆t) = g(n∆t)

K1(n∆t) = g(n∆t) +

∫ n∆t

0

dτf(n∆t− τ)K0(τ)

K2(n∆t) = g(n∆t) +

∫ n∆t

0

dτf(n∆t− τ)K1(τ)

...

Ki(n∆t) = g(n∆t) +

∫ n∆t

0

dτf(n∆t− τ)Ki−1(τ) where |Ki(n∆t)−Ki−1(n∆t)| ≤ 10−10

Within the code, the time integrals are calculated using the trapezoidal rule. Convergence

is determined via the following criterion |Ksub, i
jk,lm (n∆t)−Ksub, i−1

jk,lm (n∆t)| ≤ 10−10 for all matrix

elements j, k, l,m and time steps n.
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Script 4.4: Memory Kernel - Volterra Algorithm 2 3

1 START_TIME = time.time() # starts timing

2 # sets initial guess to the linear part

3 prevKernel = linearTerm.copy()

4 kernel = linearTerm.copy()

5

6 # loop for iterations

7 for numIter in range(1, MAX_ITERS + 1):

8

9 iterStartTime = time.time() # starts timing of iteration

10 print("Iteration:", numIter)

11

12 # calculates kernel using prevKernel and trapezoidal rule

13 kernel = CalculateIntegral(DOF_E_SQ, F, linearTerm, prevKernel, kernel)

14

15 numConv = 0 # parameter used to check convergence of entire kernel

16 for i in range(DOF_E_SQ):

17 for j in range(DOF_E_SQ):

18 for n in range(TIME_STEPS):

19 # if matrix element and time step of kernel is converged, adds 1

20 if abs(kernel[n][i][j] - prevKernel[n][i][j]) <= CONVERGENCE_PARAM:

21 numConv += 1

22

23 # if at max iters, prints which elements and time steps did not

24 # converge and prevKernel and kernel values

25 elif numIter == MAX_ITERS:

26 print("\tK time step and matrix element that didn't converge: %s,

%s%s"%(n,i,j))↪→

27

28 print("\tIteration time:", time.time() - iterStartTime)

29

30 # enters if all times steps and matrix elements of kernel converged

31 if numConv == TIME_STEPS * DOF_E_SQ * DOF_E_SQ:

32 # prints number of iterations and time necessary for convergence

33 print("Number of Iterations:", numIter, "\tVolterra time:", time.time() -

START_TIME)↪→

34

35 # prints memory kernel to files

36 wr.output_superoper_array(timeVec,kernel,"K_Output/K_")

37

38 break # exits the iteration loop

39

40 # if not converged, stores kernel as prevKernel, zeros the kernel, and then

41 # sets kernel at t = 0 to linear part

42 prevKernel = kernel.copy()

43 kernel = linearTerm.copy()

44

45 # if max iters reached, prints lack of convergence

46 if numIter == MAX_ITERS:

47 print("\tERROR: Did not converge for %s iterations"%MAX_ITERS)

48 print("\tVolterra time:", print(time.time() - START_TIME))
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The function CalculateIntegral calculates the integral part of the Volterra equation

through the trapezoidal rule which approximates an integral on a uniform grid with N

slices as:

∫ b

a

f(t)dt ≈ h

[
1

2
f(a) +

1

2
f(b) +

N−1∑
k=1

f(a+ k ∗ h)
]
, (24)

where h = (a− b) /N .

Script 4.5: Function to Calculate Integral via Trapezoidal Rule 2 3

1 def CalculateIntegral(DOF_E_SQ, F, linearTerm, prevKernel, kernel):

2

3 # time step loop starts at 1 because K is equal to linear part at t = 0

4 for n in range(1, TIME_STEPS):

5 kernel[n,:,:] = 0.

6

7 # f(a) and f(b) terms

8 kernel[n,:,:] += 0.5 * DT * F[n,:,:] @ kernel[0,:,:]

9 kernel[n,:,:] += 0.5 * DT * F[0,:,:] @ prevKernel[n,:,:]

10

11 # sum of f(a + kh) term

12 for c in range(1, n):

13 # since a new (supposed-to-be-better) guess for the

14 # kernel has been calculated for previous time steps,

15 # can use it rather than prevKernel

16 kernel[n,:,:] += DT * F[n - c,:,:] @ kernel[c,:,:]

17

18 # multiplies by i and adds the linear part

19 kernel[n,:,:] = 1.j * kernel[n,:,:] + linearTerm[n,:,:]

20

21 return kernel

As an illustration, Fig. 3 depicts two matrix elements KDD,DD(t) and KDA,DD(t), of

the memory kernel. The memory kernel describes the influence of the bath on the system

dynamics. The small amplitude of KDD,DD(t) implies that the environmental effect does not

directly impact the dynamics of σDD itself. KDA,DD(t) exhibits a larger amplitude, indicating

that the bath induces the population σDD at an earlier time to influence the coherence

dynamics of σDA at the current time, which is the feature of non-Markovian dynamics.

KDA,DD(t) initiates from 0, increases, and then decays over time due to the relaxation of the

18

https://colab.research.google.com/drive/18H-F9IXLEQl4PZCrAVAfctJRFei20nVR


bath. If at time τB KDA,DD(t) decays to zero, the bath loses its memory at the timescale of

τB, signifying that σDD before t− τB no longer influences the dynamics of σDA at time t.

Script 4.6: Plot the memory kernel 2 3

1 #plot the kernel without the last two boundary points that have numerical errors

2 plt.figure(figsize=(6,2))

3 plt.plot(timeVec[:-2], kernel[:-2,1,0].real,'b-', label='Re $\mathcal{K}_{DA,DD}$')

4 plt.plot(timeVec[:-2], kernel[:-2,0,0].real,'k-', label='Re $\mathcal{K}_{DD,DD}$')

5 plt.xlabel('$\Gamma t$',fontsize=15)

6 plt.ylabel('$\mathcal{K}$(t)',fontsize=15)

7 plt.legend(loc = 'upper right')

Figure 3: Memory kernel for the Spin-Boson model, here only KDD,DD(t) and KDA,DD(t)
elements are shown.

5 Solution of the GQME

Given ⟨L⟩0n and K(τ), as outlined in the preceding subsections, the GQME, Eq. (7) is solved

using the 4th-order Runge-Kutta (RK4) method. More specifically, given the initial value

problem

dy

dt
= f(t, y) with an initial value y(t0) = y0 , (25)
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and substituting σ̂(t) for y, the RK4 method propagates y from time tn to time tn+1 (n =

0, 1, 2, ...) as follows:

yn+1 = yn +
h

6

(
k1 + 2k2 + 2k3 + k4

)
, (26)

where yn = y(tn), yn+1 = y(tn+1), h is the time step, and

k1 = f
(
tn, yn

)
k2 = f

(
tn +

h

2
, yn +

h

2
k1

)
k3 = f

(
tn +

h

2
, yn +

h

2
k2

)
k4 = f

(
tn + h, yn + hk3

)
.

Script 5.1: GQME - Propagation via RK4 Method 2 3

1 def PropagateRK4(currentTime, memTime, kernel,

2 sigma_hold, sigma):

3

4 f_0 = Calculatef(currentTime, memTime,

5 kernel, sigma, sigma_hold)

6

7 k_1 = sigma_hold + DT * f_0 / 2.

8 f_1 = Calculatef(currentTime + DT / 2., memTime,

9 kernel, sigma, k_1)

10

11 k_2 = sigma_hold + DT * f_1 /2.

12 f_2 = Calculatef(currentTime + DT / 2., memTime,

13 kernel, sigma, k_2)

14

15 k_3 = sigma_hold + DT * f_2

16 f_3 = Calculatef(currentTime + DT, memTime,

17 kernel, sigma, k_3)

18

19 sigma_hold += DT / 6. * (f_0 + 2. * f_1 + 2. * f_2 + f_3)

20

21 return sigma_hold
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Compare to GQME in Eq. (7), the time-derivate function f(t, y) in Eq. (25) is

f
(
t, σ̂

)
= − i

ℏ
∑
lm

⟨Ljk,lm⟩0nσ̂lm(t)−
∑
lm

∫ t

0

dτKjk,lm(τ)σ̂lm(t− τ) , (27)

which is calculated using the extended trapezoidal rule using the function Calculatef

Script 5.2: Calculating the function f 2 3

1 def Calculatef(currentTime, memTime, kernel, sigma_array, kVec):

2 global LN0, HBAR

3

4 memTimeSteps = int(memTime / DT)

5 currentTimeStep = int(currentTime / DT)

6

7 f_t = np.zeros(kVec.shape, dtype=np.complex_)

8

9 f_t -= 1.j / HBAR * LN0 @ kVec

10

11 limit = memTimeSteps

12 if currentTimeStep < (memTimeSteps - 1):

13 limit = currentTimeStep

14 for l in range(limit):

15 f_t -= DT * kernel[l,:,:] @ sigma_array[currentTimeStep - l]

16

17 return f_t

With the functions PropagateRK4 and Calculatef defined, the GQME is solved to

obtain σ̂(t).
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Script 5.3: GQME - Propagation of the Density Matrix 2 3

1 #read the memory kernel

2 timeVec,kernel = wr.read_superoper_array("K_Output/K_")

3

4 # array for reduced density matrix elements

5 sigma = np.zeros((TIME_STEPS, DOF_E_SQ), dtype=np.complex_)

6 # array to hold copy of sigma

7 sigma_hold = np.zeros(DOF_E_SQ, dtype = np.complex_)

8

9 # sets the initial state at Donor State

10 sigma[0,0] = 1.

11 sigma_hold[0] = 1.

12

13 # loop to propagate sigma

14 print(">>> Starting GQME propagation, memory time =", MEM_TIME)

15 for l in range(TIME_STEPS - 1): # it propagates to the final time step

16 if l%100==0: print(l)

17 currentTime = l * DT

18

19 sigma_hold = PropagateRK4(currentTime, MEM_TIME, kernel, sigma_hold, sigma)

20

21 sigma[l + 1] = sigma_hold.copy()

22

23 # prints sigma to files

24 wr.output_operator_array(timeVec, sigma, "GQME_Output/Sigma")

25

26 # Read the reference data and plot

27 timeVec, sigma_tt_tfd = wr.read_operator_array("TTTFD_Output/TFDSigma_")

28 timeVec, sigma = wr.read_operator_array("GQME_Output/Sigma_")

29 plt.figure(figsize=(6,2))

30 plt.plot(timeVec, sigma[:,0],'b-', label='GQME')

31 plt.plot(timeVec, sigma_tt_tfd[:,0] ,'ko', markersize=4, markevery=60,

label='benchmark_TT-TFD')↪→

32 plt.xlabel('$\Gamma t$',fontsize=15)

33 plt.ylabel('$\sigma_{DD}$(t)',fontsize=15)

34 plt.legend()

The result shows that the dynamics calculated from GQME are the same as the Exact

TT-TFD result. Which demonstrates the correctness of our memory kernel and GQME

approach.
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Figure 4: GQME result of the population on the donor state |D⟩ for the Spin-Boson model,
compared with numerically exact TT-TFD result.

6 Quantum Algorithms of GQME based on Dilation

6.1 Solving the GQME to get the propagator

In this section, we introduce the quantum simulation of the GQME. To start with, the open

quantum system’s non-unitary time evolution propagator G(t) is given by:

σ̂(t) = G(t)σ̂(0) . (28)

This non-unitarity arises due to the interaction of the system with its surrounding environ-

ment, leading to irreversible processes and the often intricate behavior of the system over

time. Substituting Eq. (28) into Eq. (7) and noting that the GQME should be satisfied for

an arbitrary choice of σ̂(0), it is straightforward to show that G(t) satisfies the same GQME

as σ̂(t):

d

dt
G(t) = − i

ℏ
⟨L⟩0nG(t)−

∫ t

0

dτ K(τ)G(t− τ) . (29)
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Therefore, start from identity superoperator G(0) = I, we can calculate G(t) by solving the

GQME with the same ⟨L⟩0n and K(τ) given in previous sections.

Script 6.1: Calculating G(t) by solving the GQME 2 3

1 #read the memory kernel

2 timeVec,kernel = wr.read_superoper_array("K_Output/K_")

3

4 # array for Propagator superoperator elements

5 G_prop = np.zeros((TIME_STEPS, DOF_E_SQ, DOF_E_SQ), dtype=np.complex_)

6

7 #time 0 propagator: identity superoperator

8 G_prop[0] = np.eye(DOF_E_SQ)

9 #array to hold copy of G propagator

10 G_prop_hold = np.eye((DOF_E_SQ), dtype=np.complex_)

11

12 # loop to propagate G_prop using GQME

13 print(">>> Starting GQME propagation, memory time =", MEM_TIME)

14 for l in range(TIME_STEPS - 1): # it propagates to the final time step

15 if l%100==0: print(l)

16 currentTime = l * DT

17

18 G_prop_hold = PropagateRK4(currentTime, MEM_TIME, kernel, G_prop_hold, G_prop)

19

20 G_prop[l + 1] = G_prop_hold.copy()

6.2 Dilation of the non-unitary propagator

Next, we delve into the crucial step in our workflow, wherein we harness the power of the Sz.-

Nagy unitary dilation procedure30–33 to perform simulations on a quantum computer. This

technique enables us to transform the non-unitary propagator G(t), into a unitary propagator

that inhabits an extended Hilbert space.3

We initiate the process by computing the operator norm of G(t) to assess whether it qual-

ifies as a “contraction”. For G(t) to meet the criteria for being a contraction, its operator

norm must satisfy the condition ||G(t)||O = sup ||G(t)v||
||v|| ≤ 1. In scenarios where the original

G(t) does not satisfy the contraction requirement, we introduce a normalization factor de-

noted as nc, which can be chosen as a number greater than ||G(t)||O. This factor is utilized

to redefine G(t) into a contraction form, specifically G ′(t) = G(t)/nc.
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With G ′(t) as a “contraction”, the unitary operator denoted as UG′(t) is defined as:

UG′(t) =

 G ′(t) DG′†(t)

DG′(t) −G ′†(t)

 , (30)

Here, DG′(t) =
√
I − G ′†(t)G ′(t) and DG′† =

√
I − G ′(t)G ′†(t), with DG′(t) representing

the so-called defect superoperator of G ′(t). The resulting UG′(t) is a unitary superoperator,

and resides in an extended Hilbert space that have the double size of the original system’s

Hilbert space. Importantly, UG′(t) replicates the effect of G ′(t) in the original Hilbert space.

G ′(t)σ̂(0)
unitary dilation−−−−−−−−→ UG′(t)

(
σ̂(0)T , 0, · · · , 0

)T
. (31)

By zero-padding the input vector to match the dimensionality of the expanded Hilbert

space, the result vector obtained from the action of UG′(t) on the extended input vector,

when projecting onto the original Hilbert space, is equivalent to the vector of G ′(t) acting

on the original input vector.

The following function dilate defined the dilation procedure, it gives UG′(t) and normal-

ization factor nc with G(t) as input.
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Script 6.2: Dilation of the non-unitary propagator 2 3

1 from numpy import linalg as la

2 import scipy.linalg as sp

3

4 def dilate(array):

5

6 # Normalization factor of 1.5 to ensure contraction

7 norm = la.norm(array,2)*1.5

8 array_new = array/norm

9

10 ident = np.eye(array.shape[0])

11

12 # Calculate the conjugate transpose of the G propagator

13 fcon = (array_new.conjugate()).T

14

15 # Calculate the defect matrix for dilation

16 fdef = sp.sqrtm(ident - np.dot(fcon, array_new))

17

18 # Calculate the defect matrix for the conjugate of the G propagator

19 fcondef = sp.sqrtm(ident - np.dot(array_new, fcon))

20

21 # Dilate the G propagator to create a unitary operator

22 array_dilated = np.block([[array_new, fcondef], [fdef, -fcon]])

23

24 return array_dilated, norm

6.3 Quantum Simulation of GQME with QASM Simulator

In this section, we will delve into the simulation of GQME using Qiskit’s QASM simulator,

focusing on the spin-boson model.3 The quantum algorithm starts from initializing the quan-

tum circuit with the initial state
(
σ̂(0)T , 0, · · · , 0

)T
. For the spin-boson model, this requires

3 qubits with 2 from the four components of σ̂(0) as in Eq. (15) and 1 from the dilation pro-

cedure that doubles the space. After initialization, the dilated propagator UG′(t) is converted

into a quantum gate and applied to the quantum circuit. Then, measuring two qubits at 00

or 11 [the first or fourth component in Eq. (15)] with the dilated qubit at 0, the electronic

populations can be retrieved by taking the square root of the measuring probability and

multiplying by the normalization factor nc is the dilation process: σ̂DD(t) = nc ∗
√
P000 and

σ̂AA(t) = nc ∗
√
P011. The quantum circuit is shown in figure 5.
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σ̂(0)

ÛG′(t)

|0⟩

Figure 5: Circuit for implementing the GQME with a one-qubit dilation.

For each specific time t, we generate the quantum circuit and perform the simulations.

We implement the quantum circuit using Qiskit’s QASM simulator, which is shown below.

Script 6.3: Installing and importing Qiskit dependencies 2 3

1 !pip install qiskit==0.45

2 !pip install qiskit-aer

3

4 from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer

5 from qiskit.visualization import plot_histogram

6 from qiskit.quantum_info import Operator

7 from qiskit.compiler import transpile
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Script 6.4: QASM simulation for GQME 2 3

1 # Create a dictionary to store the measurement results

2 result = {'000': 0, '001': 0, '010': 0, '011': 0, '100': 0, '101': 0, '110': 0, '111':

0}↪→

3

4 # Create lists to store the population for the acceptor and donor states

5 pop_accept = []

6 pop_donor = []

7

8 # initial state in the dilated space

9 rho0_dilated = np.concatenate((np.array([1 + 0j, 0, 0, 0]),np.zeros(DOF_E_SQ)))

10

11 for i in range(TIME_STEPS):

12

13 qr = QuantumRegister(3) # Create a quantum register with 3 qubits

14 cr = ClassicalRegister(3) # Create a classical register to store measurement

results↪→

15 qc = QuantumCircuit(qr, cr) # Combine the quantum and classical registers to

create the quantum circuit↪→

16

17 # Initialize the quantum circuit with the initial state

18 qc.initialize(rho0_dilated, qr)

19

20 # Dilated propagator

21 U_G, norm = dilate(G_prop[i])

22

23 # Create a custom unitary operator with the dilated propagator

24 U_G_op = Operator(U_G)

25

26 # Apply the unitary operator to the quantum circuit's qubits

27 qc.unitary(U_G_op, qr)

28 # Measure the qubits and store the results in the classical register

29 qc.measure(qr, cr)

30

31 #Run the Simulation and Plot the Results

32 shots = 2000 # Number of shots

33 counts = execute(qc, Aer.get_backend('qasm_simulator'),

shots=shots).result().get_counts()↪→

34

35 # Update the result dictionary

36 for x in counts:

37 result[x] = counts[x]

38

39 # Calculate the populations of donor and acceptor states from measurement

probabilities↪→

40 pd = np.sqrt(result['000'] / 2000) * norm # Multiply by the normalization factor

41 pa = np.sqrt(result['011'] / 2000) * norm # Multiply by the normalization factor

42

43 pop_donor.append(pd) # Stacking the population for the donor state

44 pop_accept.append(pa) # Stacking the population for the acceptor state
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With the QAMS simulations complete, we can compare the resulting electronic state

population dynamics to the Exact TT-TFD result.

Script 6.5: Visualizing the Results 2 3

1 # Read the exact TT-TFD results

2 timeVec, sigma_tt_tfd = wr.read_operator_array("TTTFD_Output/TFDSigma_")

3 # Plot the population of the donor and acceptor states

4 plt.figure(figsize=(6,2))

5 plt.plot(timeVec, pop_donor, 'r-', label="quantum simulation")

6 plt.plot(timeVec, sigma_tt_tfd[:,0].real ,'ko', markersize=4, markevery=60,

label='benchmark_TT-TFD')↪→

7 plt.xlabel('$\Gamma t$',fontsize=15)

8 plt.ylabel('$\sigma_{DD}$(t)',fontsize=15)

9 plt.legend(loc = 'upper right')

This is shown in figure 6.

Figure 6: Electronic donor state population dynamics of the spin-boson model, simulated
by the GQME-based quantum algorithm as implemented on the IBM QASM quantum sim-
ulator. The result is compared to the numerically exact TT-TFD result.

7 Conclusion

In part III of the whole series, we have covered the basics of generalized quantum master

equations, illustrating their simulation on quantum computers through the spin-boson model
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example. We first introduce the basis of GQME and provide the classical simulation with

Python. Then we introduce the quantum algorithm based on Sz.-Nagi dilation that can

simulate GQME on a quantum computer. We hope this part serves as a starting point

for the simulations of exact non-Markovian open quantum systems dynamics with quantum

computers.
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