
A Tutorial on Quantum Dynamics Simulations on

Quantum Computers. Part I: Closed Systems

Brandon Allen,† Delmar Guido Azevedo Cabral,† Nam P. Vu,†,‡ Cameron

Cianci,¶ Xiaohan Dan,† and Victor S. Batista∗,†,§

†Department of Chemistry, Yale University, New Haven, CT 06520, USA

‡Department of Chemistry, Lafayette College, Easton, PA 18042, USA

¶Department of Physics, University of Connecticut, Storrs, CT 06511, USA

§Yale Quantum Institute, Yale University, New Haven, CT 06511, USA

E-mail:

Contents

1 Introduction 3

2 Chemical Dynamics Simulations 4

3 Simulations on Digital Computers 6

3.1 Split-Operator Fourier Transform Method 7

3.2 QuTiP Methods . 12

4 Qubit-Based Simulations 13

4.1 Setting up a quantum dynamics calculation on the IBM Quantum platform

with Qiskit . 14

4.2 Encoding an arbitrary Hamiltonian in the basis of Pauli matrices 19

1

4.3 Quantum Split-Operator Fourier Transform Method 22

4.4 Simulating an Hamiltonian Expressed in the Basis of Pauli Matrices 26

4.4.1 Implementing Real-Time Dynamics with Trotterization 30

4.4.2 More Compact Trotterization Scheme 31

4.4.3 Initializing a Quantum Circuit with Qiskit 36

4.4.4 Qubit-based Quantum Experiments 38

4.5 Using the Hadamard Test for Calculating Expectation Values 41

4.5.1 Hadamard Test Function . 42

4.5.2 Processing the Hadamard Test Results 43

4.5.3 How to execute the Hadamard test for our operator? 44

4.6 Variational Quantum Real Time Evolution 47

4.7 Variational Quantum Eigensolver . 49

5 Qumode-Based Simulations 51

5.1 Hamiltonian propagation . 55

5.2 Variational Quantum Eigensolver . 60

6 Conclusion 65

Acknowledgement 66

References 66

7 Appendix 68

7.1 Source Code . 68

7.2 Software Requirements . 68

Abstract

Quantum dynamics simulations of molecular model systems are an invaluable tool

to investigate a wide range of processes across multiple fields of research, including en-

ergy and charge transport, electronic and nuclear processes involved in bond-breaking

2

and bond-forming reactions, photochemistry as well as systems of interest in condensed-

phase physics, nanoscience, molecular electronics, quantum optics, spectroscopy and

quantum information processing. This tutorial provides a user friendly introduction

to quantum dynamics simulations on quantum computers, suitable to a diverse audi-

ence. It covers the basics with hands-on examples gradually increasing in complexity.

The tutorial is split in three parts. Part I focuses on closed quantum systems, using

techniques like the Suzuki-Trotter expansion and sum of unitaries to integrate the time-

dependent Schrödinger equation. Part II delves into of open quantum systems, using

popular methods like the Lindblad equation that rely on the Markovian appoximation.

Part III focuses on dynamics simulations of non-Markovian open quantum systems

based on generalized quantum master equations, using numerical approaches based on

the Sz.-Nagy dilation theorem, or parallelization of linear expansions of the non-unitary

propagators. We include Python, qiskit, and Strawberryfields codes examples which

can be used a starting point for development of more advanced implementations.

1 Introduction

Quantum computing is emerging as a new computational paradigm that could enable simu-

lations of quantum processes with favorable scaling. Significant efforts have been focused on

quantum computing for electronic structure calculations including applications to molecular

systems and materials. Here, we focus on how to actually simulate quantum dynamics on

classical and quantum computers, as necessary for the description of chemical reactivity, and

dynamical processes such as energy or charge transfer, and the calculation of time dependent

expectation values, or correlation functions often computed for simulations of spectroscopy.

This tutorial article aims to provide researchers with no experience in quantum dynamics or

quantum computing with computational tools and detailed descriptions of algorithms and

methodologies to make use of quantum computers for a wide range of applications.

Part I of this tutorial is focused on quantum computing simulations of closed quantum

3

systems by numerical integration of the time-dependent Schrodinger equation. Closed quan-

tum systems refer to systems in which the energy remains conserved over time. This aligns

with the well-known principles of quantum mechanics, where a system’s evolution follows a

unitary process. We introduce the methods as applied to the dynamics of simple model sys-

tems that gradually increase in complexity, including the dynamics of a harmonic oscillator

that allows for validation of the codes by direct comparisons to the analytical solution, and

a simple model of chemical reaction described by a double-well potential along the reaction

coordinate.

Part II is focused on simulations of the dynamics of Markovian open quantum systems.

These methods are based on the integration of quantum master equations to account for

dissipation due to the exchange of energy with a surrounding environment. These methods

are crucial for simulations of molecular systems interacting with a surrounding solvent en-

vironment of material environment since accounting for dissipation mechanisms is essential

for accurate descriptions of transport and reaction dynamics.

Part III is focused on simulations of non-Markovian open quantum systems, based on

generalized quantum master equations. These methods are essential for simulations of pho-

toinduced reaction dynamics, and ultrafast reaction dynamics, where the time scale of the

processes of interest is comparable to the decay time of the reservoir correlation functions.

2 Chemical Dynamics Simulations

The field of chemical dynamics is concerned with describing the time-evolution of chemical

systems of physical interest. The dynamics of a closed system is governed by the time-

dependent Schrödinger Equation:

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ |ψ(t)⟩ (1)

4

where Ĥ is the Hamiltonian for the system of interest. If Ĥ is time-independent, Equation

1 becomes a linear ordinary differential equation with the following closed-form solution:

∂|Ψ(t)⟩
∂t

= − i

ℏ
Ĥ|Ψ(t)⟩∫ τ

0

∂|Ψ(t)⟩
|Ψ(t)⟩ =

∫ τ

0

− i

ℏ
Ĥ∂t

ln |Ψ(τ)⟩ − ln |Ψ(0)⟩ = − i

ℏ
Ĥτ

Ψ(τ)⟩ = e−iĤτ/ℏ|Ψ(0)⟩,

where the atomic unit (au) is used and ℏ = 1 is set throughout this series of tutorial.

Quantum dynamics of a closed system is therefore obtained from the solution of Equation

2. This equation can be interpreted as evolving an initial state |ψ0⟩ ≡ |ψ(0)⟩ according to

the time-dependent Schrödinger Equation under the effect of a Hamiltonian Ĥ describing the

system of interest. The initial state is the wavefunction of any quantum particle of interest,

such as a collection of electrons or nuclei that define a molecular system. The Hamiltonian

Ĥ = T̂ + V̂ describes the energetics of the system, where T̂ = p̂2/2m is the kinetic energy

operator and V̂ is the potential energy operator corresponding to potential energy surfaces

(PES).

With the time-evolved state, we can compute quantities of interest, such as the auto-

correlation function describing the overlap between the initial state and the time-evolved

wavefunction:

ξ(t) = ⟨ψ0|ψ(t)⟩ (2)

or an expectation value of some observable Ô:

⟨O⟩ =
〈
ψ(t)

∣∣∣Ô∣∣∣ψ(t)〉 (3)

To illustrate these calculations in a more concrete way, we will first look at some classical

methods for computing quantum dynamics and demonstrate how to compute observables so

5

that we can “benchmark” the calculations run on a quantum computer.

3 Simulations on Digital Computers

In this section we will explore methods for simulating quantum dynamics on a digital com-

puter (such as a laptop). We will illustrate these methods as applied to a benchmark system,

the Harmonic Oscillator, for which an analytical solution is available and can be used to val-

idate the simulation methods. We will then apply these methods to simulate the dynamics

of a prototypical double-well model for chemical reactivity, for which an analytical solution

does not exist, as is the case for all but the simplest chemical problems.

The sections are structured as follows: we initialize the state within a given basis, then

integrate the time-dependent Schrödinger equation to evolve that state in time. With the

propagated states, we calculate expectation values of observables and visualize the evolution

of these values over time.

We introduce two methods for doing this with digital computers: the Split-Operator

Fourier Transform (SOFT) method and a direct matrix-vector multiplication method as

implemented in QuTiP.1,2In reality, both of these methods are performing matrix-vector

multiplication where the propagator is prepared as a matrix and the wavefunction of complex-

valued amplitudes is prepared as a vector. The difference in these methods lies in the basis

used for representing the problem. SOFT represents the Hamiltonian and wavefunction in

the coordinate basis where the methods utilizing QuTiP1,2 represent the Hamiltonian and

wavefunction in the basis of eigenvectors of the quantum harmonic oscillator. The methods

introduced and demonstrated can serve as a starting point for more sophisticated simulation

methods and can also be used to describe other systems by modifying the Hamiltonian.

6

Figure 1: Depiction of two example systems used in Section 3. The Harmonic Oscillator (left)
can be used as a rough approximation of the vibrational motion of a diatomic molecule, such
as HCl. (Right) The asymmetric double well corresponding to a slice of the potential energy
surface of base pairs in DNA representing the base pair between Adenine and Thymine.

3.1 Split-Operator Fourier Transform Method

As an illustrative introduction to simulations on digital computers, we consider a simple ex-

ample of computing dynamics for the Quantum Harmonic Oscillator using the Split-Operator

Fourier Transform (SOFT) method. We must first define a closed range of positions x and

momenta p and discretize over some finite number of points N :

xj = (j −N/2) dx

pj = p0 + (j −N/2) dp

with dx = (xmax−xmin.)/N , initial momentum p0, and dp = 2π/(xmax−xmin.). We compute

the time-evolution of wavepacket defined as a Gaussian in the position basis by initializing

amplitudes at the discrete position values xj:

ψ0(xj) =

(
1

π

)1/4

exp

(
−1

2

[
(xj − x0)

2 + ip0xj
])

(4)

with initial displacement x0 and momentum p0.

7

These steps are shown in Script 3.1.

Script 3.1: Wavepacket Initialization 2 3

1 import numpy as np

2 def psi0(x, p0, x0):

3 #Generate the initial wavefunction (psi0).

4 y = (1/np.pi)**(0.25)*np.exp(-1*(1/2)*((x - x0)**2)+1j*p0*x)

5 return y

6

7 N = 64

8 xmax = 5.0

9 xmin = -5.0

10 x0 = 1.0

11 p0 = 0.0

12 mass = 1.0

13 omega = 1.0

14 hbar = 1.0

15 dx = (xmax - xmin)/N

16 dp = 2*np.pi/(xmax-xmin)

17 pv = np.asarray([p0 + (j - N/2) * dp for j in range(N)])

18 xv = np.asarray([(j - N/2)*dx for j in range(N)])

19 psio = psi0(xv, p0, x0)

Now that we have an initial wavepacket, we focus on propagating it in time. The to-

tal propagation time t is discretized into Nsteps time steps: τ = t/Nsteps. We obtain the

wavepacket at intermediate times tk by sequential application of the propagator:

ψ(x, tk) =

∫
dx′
〈
x
∣∣e−iHτ ∣∣x′〉 ⟨x′|ψ(tk−1)⟩ (5)

If a sufficiently small time step is used we can accurately approximate the time-evolution

operator to second-order with the Trotter expansion:

e−iHτ = e−
i
ℏV (x)τ/2e−

i
ℏ

p2

2m
τe−

i
ℏV (x)τ/2 +O(τ 3) (6)

Note that we have effectively separated the propagator into a product of three operators,

each of which has dependence on only position (x) or momentum (p). We now have to

represent these operators as arrays. The potential energy propagator can be easily calculated

with our array of x-values. The harmonic oscillator potential is defined as:

8

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

V (x) =
1

2
mω2x2 (7)

and the kinetic energy is represented in terms of momentum as:

T (p) =
p2

2m
(8)

Script 3.2: SOFT Operators for Harmonic Oscillator 2 3

1 import numpy as np

2 import scipy.linalg as spLA

3 def harmonic(xgrid, mass, omega):

4 # This function generates a 1D Harmonic Oscillator Potential.

5 pot = 0.5*mass*(omega**2)*(xgrid**2)

6 return pot

7

8 Nsteps = 100 # Number of steps

9 total_time = 20.0 # Total propagation time

10 tau = total_time/Nsteps

11 # Potential Energy

12 V_ho = harmonic(xv)

13 V_prop = spLA.expm(-1.j / hbar * V_ho * tau / 2.)

14 # Kinetic Energy

15 KE_ho = pv**2 / (2. * mass)

16 KE_prop = spLA.expm(-1.j / hbar * KE_ho * tau)

Conveniently, there is a Fourier “partner” relationship between position and momentum

(as they are conjugate variables) that allows us to convert between position space and mo-

mentum space, so that we are in the correct basis when applying the potential energy and

kinetic energy propagators. This allows us to utilize the Fourier Transform (FT) and Inverse

Fourier Transform (IFT) to convert between the position and momentum bases. Propagation

for a single timestep is then:

ψ

(
x,
ti+1

N

)
=

P.E. Prop.︷ ︸︸ ︷
e

−iV (x)τ
2ℏN ·

IFT︷ ︸︸ ︷∫
dp√
2πℏ

e
−ipx

ℏ ·

K.E. Prop.︷ ︸︸ ︷
e

−ip2τ
2mℏN ·

FT︷ ︸︸ ︷∫
dx√
2πℏ

e
ipx
ℏ ·

P.E. Prop.︷ ︸︸ ︷
e

−iV (x)τ
2ℏN · ψ(x, ti)

(9)

9

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

To summarize the formula above, the algorithm will consist of 5 steps per iteration:

1. Apply a half step of the potential energy propagator to the initial state.

2. Fourier transform into the momentum basis.

3. Apply a full step of the kinetic energy propagator on the momentum basis.

4. Inverse Fourier transform back into the coordinate basis.

5. Apply the second half step of the potential energy propagator.

The SOFT routine for a single time step can be implemented with the following code.

Script 3.3: SOFT Propagation for a Single Time Step 2 3

1 # SOFT propagation

2 def soft(psi,pot_prop,kin_prop):

3 out=pot_prop*psi # Apply P.E. propagator

4 out=kin_prop*np.fft.fft(out) # FT and apply K.E. propagator

5 out=pot_prop*np.fft.ifft(out) # IFT and Apply P.E. propagator

6 return out

With snapshots of the time-evolved wavepacket, we can compute the expectation values

of observables as a function of the propagation time. Two natural observables for this system

are the position and momentum operators, for which the expectation values can be calculated

as:

⟨x⟩(t) =
N∑
j

ψ∗(xj, t)xjψ(xj, t) dx

⟨p⟩(t) =
N∑
j

ψ∗(pj, t) pjψ(pj, t) dp

With snapshots of the time-evolved wavepacket, we can compute the expectation values

of observables as a function of the propagation time. Two natural observables for this system

10

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

−1

0

1

〈x〉

0 2 4 6 8 10
Time [a.u.]

−1

0

1

〈p〉

SOFT

Analytical

Figure 2: Time-dependent expectation values as computed with the propagated wavepacket
using SOFT and the analytical values.

are the position and momentum operators, for which the expectation values can be calculated

as:

⟨x⟩(t) =
N∑
j

ψ∗(xj, t)xjψ(xj, t) dx

⟨p⟩(t) =
N∑
j

ψ∗(pj, t) pjψ(pj, t) dp

Figure 2 shows the result of ⟨x⟩(t) and ⟨p⟩(t) for a harmonic oscillator with V (x) =

1
2
mω2x2, where the analytical result is

⟨x⟩ana(t) = x0 cosωt+
p0
mω

sinωt

⟨p⟩ana(t) = −mωx0 sinωt+ p0 cosωt .

11

−1

0

1

〈x〉

0 2 4 6 8 10
Time [a.u.]

−1

0

1

〈p〉

SOFT

Analytical

Figure 3: Time-dependent expectation values as computed with the propagated wavepacket
using SOFT and the analytical values.

3.2 QuTiP Methods

We can now compute the same dynamics in second-quantized form using QuTiP’s1,2 mesolve

function. When we run dynamics, we must do the following:

1. Define the initial state. In this example, the initial state is defined as a coherent

state with complex amplitude α, which can be expressed in the Fock Basis as:

|α⟩ = e−
1
2
|α|2

∞∑
n=0

αn√
n!

|n⟩

2. Define the Hamiltonian. In this example, the Hamiltonian is the familiar quan-

tum harmonic oscillator Hamiltonian, defined in terms of creation and annihilation

operators as:

H = ℏω
(
â†â+

1

2

)

3. Define simulation parameters. Define the propagation time step t and the number

of time steps n.

12

4. Compute the time-evolved wavefunction at each timestep as:

|α(ti+1)⟩ = e−
i
ℏHt |α(ti)⟩

The process for running this simulation is shown in the following code box.

Script 3.4: Harmonic Oscillator Dynamics with QuTiP 2 3

1 import qutip as qt

2 # Define the Number of States in Fock Basis

3 N = 128

4 a = qt.destroy(N) # Define annihilation operator

5 # Define the Initial State:

6 xo = 1.00 # Initial Position

7 po = 0.00 # Initial Momentum

8 # Define a coherent state with amplitude alpha

9 psi0 = qt.coherent(N, alpha=(xo+1.j*po)/np.sqrt(2))

10 # Define the Hamiltonian:

11 mass = 1 # mass = 1.0

12 hbar = 1 # hbar = 1.0

13 omga = 1.0 # Oscillator frequency

14 H_ho = hbar*omga*(a.dag()*a + 1./2.) # Harmonic Oscillator Hamiltonian

15

16 # Define the propagation time array with n_steps from 0 to total_time

17 n_steps = 200 # Number of time steps

18 total_time = 10 # Total Propagation time

19 # Define the list of times for which we calculate dynamics.

20 tlist = np.linspace(0, total_time, 200)

21

22 # Run dynamics!

23 result = qt.mesolve(H_ho, psi0, tlist, [], [], progress_bar=True,

options=qt.solver.Options(nsteps=len(tlist)))↪→

4 Qubit-Based Simulations

This section aims to explain qubit-based quantum computation, the most widely applied

form of quantum computing. A qubit is a 2-level quantum state generally defined with the

following statevector |α⟩:

|α⟩ = α0|0⟩+ α1|1⟩, (10)

13

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

where α0 and α1 are complex-valued expansion coefficients with |α0|2 + |α1|2 = 1. These

coefficients store the information for computation. For a multi-qubit quantum state, the

number of expansion coefficients scale exponentially with the number of qubits, enabling an

exponentially large storage space that forms a foundation for quantum advantage.

In this section, we first demonstrate how a qubit-based quantum simulation is carried

out, with a simulator and with an IBM quantum computer. Utilizing the IBM Quantum

platform and qiskit package, we are going to show the implementation of the dynamics of a

simple Heisenberg spin chain model and compare with classical benchmarking calculations.

Then, we cover more advanced methods for simulations of complex systems. This includes

encoding the arbitrary Hamiltonians into a sum of unitaries, exponentiation of Hamiltonian

with Trotterization, and measuring the expectation values via the Hadamard test.

4.1 Setting up a quantum dynamics calculation on the IBM Quan-

tum platform with Qiskit

Consider the following 2-site Hamiltonian:

Ĥ =
1

2
(h0σ

z
0 + h1σ

z
1) +

J

4
(σx0σ

x
1 + σy0σ

y
1 + σz0σ

z
1), (11)

where h0 = −0.5, h1 = 0.5 are the site energies and J = 1 is the coupling constant.

Script 4.1: Installing and importing necessary packages 2 3

1 !pip install qiskit --quiet

2 !pip install qiskit_ibm_runtime --quite

3 !pip install qiskit-ibmq-provider --quite

4 import numpy as np

5 import matplotlib.pyplot as plt

6 import scipy.linalg as LA

7 from qiskit import *

8 from qiskit.quantum_info.operators import Operator

9 from qiskit_ibm_runtime import QiskitRuntimeService, Options, Sampler

14

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

Script 4.2: 2-site Hisenberg spin chain Hamiltonian and propagator 2 3

1 J = 1

2 h0 = -0.5

3 h1 = 0.5

4 X = np.array([[0,1],[1,0]], dtype = complex)

5 Y = np.array([[0,1j],[1j,0]], dtype = complex)

6 Z = np.array([[1,0],[0,-1]], dtype = complex)

7 I = np.array([[1,0],[0,1]], dtype = complex)

8 H = 0.5 * (h0 * np.kron(Z, I) + h1 * np.kron(I, Z)) + J / 4 * (np.kron(X, X) +

np.kron(Z, Z))↪→

9 U = LA.expm(-1j * H)

In this subsection, we consider the time evolution for total time τ = 1a.u. governed by

this Hamiltonian. To provide a benchmark for the upcoming quantum computations, we first

run classical simulations following Sec. 2. As in the code above, the exponential propagator

for this Hamiltonian, U, is prepared by simply exponentiating −iĤτ .

The initial state is set at |00⟩, which means both sites are in the spin-up state. The

propagation is carried out by acting the expoential propagator on the initial state:

Script 4.3: Classical propagation of 2-site Heisenberg chain 2 3

1 psi_init = np.array([1,0,0,0],dtype = complex)

2 psi_fin = U @ psi_init

The results can be viewed by simply printing out psi fin.

Next we perform the corresponding IBM quantum setup. In the following, we initialize

the qubits, prepare the unitary operator as a quantum circuit, and measuring the probability

density by sampling the outcome of the circuit.

We first setup the initial state. The statevector in this case is a 4-vector, which corre-

sponds to a 2-qubit state. Therefore we create a QuantumRegister with 2 wires. For each

wire, the measured outcome needs to be recorded classically. The initial state is then created

by simply calling the classical initial state. However, note that qiskit would set the vacuum

state |00⟩ as default, which is just the initial state that we want to set. Therefore, there is

no need for explicitly calling the function for initialization.

15

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing
https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

Script 4.4: Quantum circuit for the 2-site Heisenberg chain propagation–

initiation 2 3

1 qreg=QuantumRegister(2) # qreg is filled with two qubits

2 creg=ClassicalRegister(2) # creg is filled with two classical bits

3 entangler=QuantumCircuit(qreg,creg) # we put together our qreg and creg to make our

Quantum Circuit, called entangler here.↪→

4 #entangler.initialize(psi_init) #Not necessary since we start at |00>

Then, the circuit is prepared as a qiskit Operator object and appended to entangler:

Script 4.5: Quantum circuit for the 2-site Heisenberg chain propagation–

gate construction 2 3

1 U_gate = Operator(U)

2 entangler.append(U_gate,[0,1])

Finally, measurement is added to the end of the circuit.

Script 4.6: Quantum circuit for the 2-site Heisenberg chain propagation–

measurement 2 3

1 entangler.measure(0,0) # measure the first qubit and record it in the first classical

bit↪→

2 entangler.measure(1,1)

You can then visualize the circuit with entangler.draw(). Running this circuit requires

the use of the IBM quantum cloud service. To do that, first we need to register a IBM

quantum account. It is convenient to access the account directly through the API token, as

below:

Script 4.7: Accessing IBM account from API token 2 3

1 from qiskit import IBMQ

2 IBMQ.save_account('Your API token')

3 IBMQ.load_account()

First, we run the circuit with the QASM simulator. To do that, the ibmq qasm simulator

backend is selected.

16

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing
https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing
https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing
https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

Script 4.8: Run dynamics with QASM simulator 2 3

1 service = QiskitRuntimeService()

2 options = Options()

3 backend = service.backend("ibmq_qasm_simulator")

4 sampler = Sampler(options=options, backend=backend)

5 job = sampler.run(circuits=entangler, shots=2000)

The sampled results are directly obtained as quasi probability distribution:

Script 4.9: Measure results from QASM simulator 2 3

1 qasm_result = np.zeros((4,))

2 qasm_result[0] = job.result().quasi_dists[0][0]

3 qasm_result[3] = job.result().quasi_dists[0][3]

Then we use the actual IBM machine. This is done by simply selecting another backend

that corresponds to an available IBM machine (in this case, ibm osaka):

Script 4.10: Measure results from QASM simulator 2 3

1 backend = service.backend("ibm_osaka")

2 sampler = Sampler(options=options, backend=backend)

3 job = sampler.run(circuits=entangler, shots=2000)

4 real_result = np.zeros((4,))

5 real_result[0] = job.result().quasi_dists[0][0]

6 real_result[1] = job.result().quasi_dists[0][1]

7 real_result[2] = job.result().quasi_dists[0][2]

8 real_result[3] = job.result().quasi_dists[0][3]

Now, the comparison between classical, QASM and real machine is visualized. You can

see that the QASM results agrees exactly with the classical since no noise is introduced into

the simulator. The real machine generates a moderate amount of noise.

17

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing
https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing
https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

Figure 4: Probability distribution comparison between classical, QASM and full quantum
computers.

18

4.2 Encoding an arbitrary Hamiltonian in the basis of Pauli ma-

trices

In this section, we focus on the preparation of a quantum circuit that effectively implement

the quantum dynamics guided by an arbitrary Hamiltonian. To perform Hamiltonian sim-

ulation on a qubit-based quantum computer, we can encode the Hamiltonian on the basis

of Pauli matrices, which correspond to elementary quantum gates. The encoding allows us

to express a given N ×N matrix M̃ as a sum of length n Pauli strings comprised of tensor

products of Pauli matrices.

Where n is an integer that is rounded up by log2 (N). Expanding the M̃ matrix to

a 2n × 2n matrix M by zero filling, then the decomposition is computed as a sum over all

possible tensor products of unique combinations of n Pauli matrices. This linear combination

can be written as:

M2n×2n =
∑

ξ1,ξ2,...,ξn

aξ1ξ2···ξn

n⊗
i=1

σξi (12)

with each σξi is the Pauli matrix defined by ξi ∈ {I,X,Y,Z}. The 4n coefficients aξ1ξ2···ξn

are computed as the Hilbert-Schmidt Inner Product of the input matrix M and the given

Pauli string ξ1ξ2 · · · ξn:

aξ1ξ2···ξn =
1

2n
Tr

[(
n⊗
i=1

σξi

)
·M
]

(13)

The above equation can be proved by substituting M using Equation (12)

1

2n
Tr

[(
n⊗
i=1

σξi

)
·M
]
=

∑
ξ′1,ξ

′
2,...,ξ

′
n

1

2n
Tr

[(
n⊗
i=1

σξi

)
· aξ′1ξ′2···ξ′n

n⊗
i=1

σξ′i

]

=
∑

ξ′1,ξ
′
2,...,ξ

′
n

1

2n
aξ′1ξ′2···ξ′n

n∏
i=1

Tr
[
σξiσξ′i

]
=

∑
ξ′1,ξ

′
2,...,ξ

′
n

1

2n
aξ′1ξ′2···ξ′n

n∏
i=1

2 δξi,ξ′i

= aξ1ξ2···ξn

(14)

19

While performing the decomposition, we must iterate through all possible tensor product

combinations of n Pauli matrices. These are represented as strings which are translated into

their corresponding arrays via a dictionary. To avoid looping over each element of each Pauli

string we utilize vectorized dictionary querying, which allows us to convert the entire Pauli

string with one query. The resulting tuple containing the Pauli string in matrix form is then

used to evaluate the recursive Kronecker product of all elements of the tuple, resulting in

a N × N matrix. This resulting matrix is used for evaluation of the Hilbert-Schmidt inner

product. These are performed with utility functions, included in Script 4.11.

Script 4.11: Pauli Matrix Decomposition - Utility Functions 2 3

1 def vec_query(arr, my_dict):

2 '''

3 This function vectorizes dictionary querying.

4 It allows us to query `my_dict` with a np.array `arr` of keys.

5 This avoids a loop through the list of keys.

6 '''

7 import numpy as np

8 return np.vectorize(my_dict.__getitem__, otypes=[tuple])(arr)

9

10 def nested_kronecker_product(a):

11 '''

12 Handles Kronecker Products for list (i.e., a = [Z, Z, Z] will evaluate $Z \otimes Z

\otimes Z$).↪→

13 Given list `a` this recursively evaluates the kronecker product of all elements.

14 This allows us to avoid having to call `np.kron` n-1 times for a list of length n.

15 '''

16 import numpy as np

17 if len(a) == 2:

18 return np.kron(a[0],a[1])

19 else:

20 return np.kron(a[0], nested_kronecker_product(a[1:]))

21

22 def Hilbert_Schmidt(mat1, mat2):

23 '''

24 Return the Hilbert-Schmidt Inner Product of two matrices.

25 This gives the coefficients for each term in the sum of tensor products of Paulis.

26 '''

27 import numpy as np

28 return np.trace(mat1.conj().T * mat2)

20

https://colab.research.google.com/drive/1kPOZyfqw5l3m2-LtM1OpdsFakJydHmUA?usp=sharing

With these utility functions, we can then use the following to perform the Pauli Matrix

decomposition:

Script 4.12: Pauli Matrix Decomposition 2 3

1 def decompose(Ham_arr, tol=10):

2 '''

3 Function that decomposes `Ham_arr` into a sum of Pauli strings.

4 '''

5 import numpy as np

6 import itertools

7 # Define a dictionary with the four Pauli matrices:

8 pms = {'I': np.array([[1, 0], [0, 1]], dtype=complex),

9 'X': np.array([[0, 1], [1, 0]], dtype=complex),

10 'Y': np.array([[0, -1j], [1j, 0]], dtype=complex),

11 'Z': np.array([[1, 0], [0, -1]], dtype=complex)}

12 pauli_keys = list(pms.keys()) # Keys of the dictionary

13 nqb = int(np.log2(Ham_arr.shape[0])) # Determine the # of qubits needed

14 output_string = '' # Initialize an empty string to which we can add our terms

15 # Make all possible combinations of nqb Pauli matrices

16 sigma_combinations = list(itertools.product(pauli_keys, repeat=nqb))

17 # Loop through each unique combination of Pauli Matrices

18 for ii in range(len(sigma_combinations)):

19 # Take the full Pauli string

20 pauli_str = ''.join(sigma_combinations[ii])

21 # Compute the coefficient for each Pauli string. This is done as follows:

22 # 1) Evaluate the tensor product of Pauli String to get a 2^n by 2^n matrix:

23 # Turn each element of Pauli String ('ZIXI') into its corresponding

24 # 2 by 2 Pauli Matrix, then evaluate the Kronecker product.

25 # 2) Compute the Hilbert-Schmidt Inner Product.

26 # 3) Normalize by (1/(2^n)).

27 norm_factor = (1/(2**nqb))

28 # Convert the Pauli string to list of arrays

29 tmp_mat_list = vec_query(np.array(sigma_combinations[ii]), pms)

30 # Evaluate the Kronecker product of the matrix array

31 tmp_p_matrix = nested_kronecker_product(tmp_mat_list)

32 hs_innerprod = Hilbert_Schmidt(tmp_p_matrix, Ham_arr)

33 a_coeff = norm_factor * hs_innerprod

34 # If the coefficient is non-zero, we want to use it!

35 if a_coeff != 0.0:

36 # Assert that coefficients less than 10**-tol are 0.

37 min_val = 10**(-tol)

38 if abs(a_coeff) < min_val:

39 pass

40 # If non-zero:

41 else:

42 output_string += str(np.round(a_coeff.real, tol))+"*"+alt_name

43 output_string += '+' # Add a plus sign for the next term!

44 return output_string[:-1] # To ignore that extra plus sign

21

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

4.3 Quantum Split-Operator Fourier Transform Method

As shown in Section 3, the SOFT method propagates a quantum state by acting split propa-

gators that correspond to the potential and kinetic components, as well as Fourier transforms

between the position and momentum representations to the initial state. Both split prop-

agators and the forward/inverse Fourier transform operations are represented as unitary

matrices and are directly implementable as quantum gates. Therefore, the SOFT method

can be directly adapted for quantum computers to run dynamics on a quantum device. Fig-

ure 5 gives the circuit for the so-called quantum SOFT method. After a quantum state |ψ⟩

is initialized, it passes the quantum gates that correspond to the potential/kinetic energy

propagators as well as quantum Fourier transform (QFT) and its inverse, analogous to the

process in Eq. (9).

|0⟩

|ψ⟩
Potential
Energy

Propagator
QFT

Kinetic
Energy

Propagator
QFT†

Potential
Energy

Propagator

|0⟩
...

|0⟩

Figure 5: Representative quantum circuit for implementing the SOFT method.

Below we provide a detailed implementation of the quantum SOFT method, illustrated

with a double-well potential parameterized for describing the hydrogen bonding within DNA

adenine-thymine base pairs. Consider the following potential energy function:3,4

V (x) = α(0.429x− 1.126x2 − 0.143x3 + 0.563x4), (15)

where α = 0.1 is the energy scaling parameter. Here, the position coordinate x describes

the proton motion in an individual adenine-thymine (A-T) pair as it tautomerizes from the

energetically favored amino−keto A-T form to the isomeric imino-enol A∗-T∗ form.

22

Script 4.13: 1D PES for A-T tautomerization 2 3

1 d=6 # number of qubits

2 mass=1

3 xMin=-5

4 xMax=-xMin

5 x = np.linspace(xMin,xMax, num=2**d)

6 VV = (0.429*x-1.126*x**2-0.143*x**3+0.563*x**4) * 0.1

The initial state is described as a Gaussian wavepacket, as follows:

Script 4.14: Gaussian initial wavepacket 2 3

1 # Gaussian wavepacket on a grid

2 mu= 1

3 alpha = 1

4 psi = (alpha/np.pi)**(0.25) * np.exp(-alpha * (x-mu)**2 * 0.5)

5 psi/= np.sqrt(np.sum(np.abs(psi)**2))

The position and momentum operators, as well as their corresponding exponential prop-

agators, are defined as in classical SOFT:

Script 4.15: Preparation of potential and kinetic split propagators 2 3

1 dx=(xMax-xMin)/(2**d-1)

2 # KE operator

3 dp=2*np.pi/(xMax-xMin)

4 N=2**d

5 p=np.zeros(N,dtype=float)

6 for i in range(N):

7 p[i]=dp*(i-N/2)

8 p=np.fft.fftshift(p)

9 time_step = 0.01

10 VVd_prop=np.diag(np.exp(-1j*VV*time_step)) #potential propagator

11 KEd_prop=np.diag(np.exp(-1j*p**2/2/mass*time_step)) #kinetic propagator

Next, real time propagation for t = 60a.u. is carried out with the quantum circuit that

corresponds to Fig. 5. Note in particular that the QFT operator in qiskit executes what

would be defined as the inverse Fourier transform in numpy.

23

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing
https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing
https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

Script 4.16: Quantum SOFT circuit preparation 2 3

1 from qiskit.circuit.library import QFT

2 # Initialize an Empty Circuit

3 nqubits=d

4 q_reg=QuantumRegister(nqubits)

5 c_reg=ClassicalRegister(nqubits)

6 qc = QuantumCircuit(q_reg)

7

8 qc.initialize(psi,q_reg[:])

9 for k in trange(600):

10 bound_op = Operator(VVd_prop)

11 qc.append(bound_op, q_reg)

12 qc.append(QFT(d,do_swaps=True,inverse=True),q_reg)

13 bound_op = Operator(KEd_prop)

14 qc.append(bound_op, q_reg)

15 qc.append(QFT(d,do_swaps=True,inverse=False),q_reg)

Executing this circuit leads to the final, propagated state, psi c:

Script 4.17: Quantum SOFT circuit execution 2 3

1 psin = execute(qc, backend=BasicAer.get_backend('statevector_simulator')).result()

2 psin = psin.get_statevector()

This result is then benchmarked by the classical SOFT result:

Script 4.18: Clssical SOFT Benchmark 2 3

1 #Classical SOFT routine

2 def soft(fxy,emat,Pxy):

3 # soft propagation

4 out=emat*fxy

5 fp=np.fft.fft(out)*Pxy

6 out=np.fft.ifft(fp)

7 return out

8 psi_c_init = psi

9 psi_c = psi_c_init

10 iterations = 600

11 for i in range(iterations):

12 psi_c = soft(psi_c,np.diag(VVd_prop),np.diag(KEd_prop))

And the comparison between classical and quantum SOFT are plotted below. One can

see that the two results match closely and describe the expected tautomerization through

24

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing
https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing
https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

the double well.

Script 4.19: Plotting initial and final wavefunctions 2 3

1 # Visualization

2 plt.rcParams["figure.figsize"] = [12.50, 6.50]

3 #plt.plot(x,np.real(psin), label='real')

4 #plt.plot(x,np.imag(psin), label='imag')

5 plt.plot(x,np.abs(psin), label='abs, quantum SOFT')

6 plt.plot(x,np.abs(psi_c),'--', label='abs, classical SOFT')

7 plt.plot(x,VV,linewidth=3)

8 plt.plot(x,abs(psi),'x', label='initial')

9 leg = plt.legend(loc='upper right')

10 plt.ylim(-0.1,0.35)

11 plt.show()

Figure 6: Probability densities of the initial and final quantum states for the DNA tautomer-
ization model, as propagated by classical and quantum SOFT methods. Shown in green is
the double-well PES.

25

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

4.4 Simulating an Hamiltonian Expressed in the Basis of Pauli

Matrices

For this section we demonstrate how to encode and simulate the dynamics of a Hamiltonian

expressed in the basis of Pauli matrices. We demonstrate this implementation using the

Hamiltonian for the Heisenberg model, defined as follows:

H =
N−1∑
n=0

Ωnσ
z
n −

1

2

N−2∑
n=0

(
Jxn,n+1σ̂

x
nσ̂

x
n+1 + Jyn,n+1σ̂

y
nσ̂

y
n+1 + Jzn,n+1σ̂

z
nσ̂

z
n+1

)
(16)

where the coupling elements are described in terms of the σx, σy, σz (Pauli X, Y and Z)

matrices with a coupling associated with each type of interaction term for each site, Ωn, or

pair of sites, Jpn,n+1, for p ∈ {x, y, z}.

This Hamiltonian can be used to describe the chemical process of electron transfer across

a chromophore chain such as the functionalized graphene nanoribbon studied by Wang and

coworkers.5 This system has alternating polymer sites containing radical character and the

stability of the radical character at each site can be described by the on-site parameter,

Ωn, and the coupling between sites, Jn,n+1, governed by the properties of the linker regions

containing the diketone groups. These parameters can be tuned by synthetic design of each

component part of the nanoribbon.

As an example of the simulation of the spin-chain dynamics we consider the parameters

used in the work by Fiori et al ,6 summarized in Table 1, for a reduced system size of 3 spin

sites.

Table 1: Hamiltonian parameters used in the spin chain simulation6

Parameter n = 0 n ̸= 0
Ωn 0.65 1.0

Jxn,n+1 0.75 1.0
Jyn,n+1 0.75 1.0
Jzn,n+1 0.0 0.0

We use the same form of initial state as in the work by Fiori and coworkers,6 with a

26

Figure 7: The static versus dynamical picture of the Heisenberg spin-chain. Left: The static
onsite parameters of the Hamiltonian, Ωn, encode the energy required to flip the spin state at
a particular polymer site while the offsite couplings, Jn,n+1 encode the entanglement between
the spins at each site. Right: The spin configuration of the system changes as function of
time, but the total spin of the system is conserved under a closed dynamics formalism.

starting configuration of spin up, | ↑⟩ = [1 0]T , on the first site and spin down, | ↓⟩ = [0 1]T ,

on all others,

|ψ0⟩ = | ↑↓↓⟩ = | ↑⟩ ⊗ | ↓⟩ ⊗ | ↓⟩. (17)

Although the dynamics of this Hamiltonian can be simulated in a classical computer, we

could also use a quantum computer to simulate this same problem. One way to do so is

by harnessing Qiskit, a python library containing functions that ease the simulation of the

problem in quantum device framework.

If we seek to implement this Hamiltonian term-by-term within the qiskit framework, the

goal is to implement each term, such as the YnYn+1.

σ̂ynσ̂
y
n+1 = I ⊗ I · · · ⊗ Yn ⊗ Yn+1 ⊗ · · · ⊗ I

We can leverage their SparsePauliOp built-in representation, by supplying a string encoding

the term and multiply it by an appropriate coefficient to implement each of the terms.

27

Script 4.20: Heisenberg Hamiltonian for site n 2 3

1 from qiskit.quantum_info import SparsePauliOp

2 def get_hamiltonian_n_site_terms(n, coeff, n_qubits):

3 XX_coeff = coeff[0]

4 YY_coeff = coeff[1]

5 ZZ_coeff = coeff[2]

6 Z_coeff = coeff[3]

7

8 XX_term = SparsePauliOp(("I" * n + "XX" + "I" * (n_qubits - 2 - n)))

9 XX_term *= XX_coeff

10 YY_term = SparsePauliOp(("I" * n + "YY" + "I" * (n_qubits - 2 - n)))

11 YY_term *= YY_coeff

12 ZZ_term = SparsePauliOp(("I" * n + "ZZ" + "I" * (n_qubits - 2 - n)))

13 ZZ_term *= ZZ_coeff

14 Z_term = SparsePauliOp(("I" * n + "Z" + "I" * (n_qubits - 1 - n)))

15 Z_term *= Z_coeff

16

17 return (XX_term + YY_term + ZZ_term + Z_term)

Furthermore, we can generate all such terms for a N-spin chain model by calling the prior

function for each of the sites.

28

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=djPHPmdRXuVR&line=4&uniqifier=1

Script 4.21: Heisenberg Hamiltonian for N Sites 2 3

1 def get_heisenberg_hamiltonian(n_qubits, coeff=None):

2

3 # Three qubits because for 2 we get H_O = 0

4 assert n_qubits >= 3

5

6 if coeff == None:

7 'Setting default values for the coefficients'

8 coeff = [[1.0, 1.0, 1.0, 1.0] for i in range(n_qubits)]

9

10 # Even terms of the Hamiltonian

11 # (summing over individual pair-wise elements)

12 H_E = sum((get_hamiltonian_n_site_terms(i, coeff[i], n_qubits)

13 for i in range(0, n_qubits-1, 2)))

14

15 # Odd terms of the Hamiltonian

16 # (summing over individual pair-wise elements)

17 H_O = sum((get_hamiltonian_n_site_terms(i, coeff[i], n_qubits)

18 for i in range(1, n_qubits-1, 2)))

19

20 # adding final Z term at the Nth site

21 final_term = SparsePauliOp("I" * (n_qubits - 1) + "Z")

22 final_term *= coeff[n_qubits-1][3]

23 if (n_qubits % 2) == 0:

24 H_E += final_term

25 else:

26 H_O += final_term

27

28 # Returns the list of the two sets of terms

29 return [H_E, H_O]

We can check the representation and correctness of the Hamiltonian at this

point by making a call to the function and printing the operator representation:

29

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=zrQdmDbCXxmp&line=8&uniqifier=1

Script 4.22: Heisenberg Hamiltonian 3 Sites 2 3

1 num_q = 3

2 # XX YY ZZ, Z

3 ham_coeffs = ([[0.75/2, 0.75/2, 0.0, 0.65]]

4 + [[0.5, 0.5, 0.0, 1.0]

5 for i in range(num_q-1)])

6

7 spin_chain_hamiltonian = get_heisenberg_hamiltonian(num_q,

8 ham_coeffs)

9 print('Hamiltonian separated into even and odd components:')

10 print(spin_chain_hamiltonian)

11 print('Hamiltonian combining even and odd components:')

12 print(sum(spin_chain_hamiltonian))

4.4.1 Implementing Real-Time Dynamics with Trotterization

One of the major difficulties for solving the time-dependent Schrodinger equation with ex-

ponential propagator,

|Ψ(t)⟩ = e−iĤt/ℏ|Ψ(0)⟩, (18)

lies in the fact that the exponential of Hamiltonian is hard to evaluate efficiently. In many

cases, splitting the Hamiltonian into several components and evaluating their exponentials

separately greatly facilitate the computation, as was shown in the SOFT scheme.

However, the components of the Hamiltonian do not necessarily commute and thus the

Suzuki-Trotter decomposition is employed:

eδ(Â+B̂) = eδÂ · eδB̂ +O
(
δ2
)

(19)

For small values of δ, this approximation is suitable. The code below implements the time

evolution operator for the Heisenberg Hamiltonian, but it should be generalizable to any

Hamiltonian written in the basis of Pauli matrices.

30

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=0V_Ga1t1PjJS&line=6&uniqifier=1

Script 4.23: Trotterized Time Evolution Operator 2 3

1 from qiskit.circuit.library import PauliEvolutionGate

2 def get_time_evolution_operator(num_qubits, tau, trotter_steps, coeff=None):

3 heisenberg_hamiltonian = get_heisenberg_hamiltonian(num_qubits, coeff)

4

5 evo_op = PauliEvolutionGate(heisenberg_hamiltonian, tau,

6 synthesis=SuzukiTrotter(order=2, reps=trotter_steps))

7 return evo_op.definition

8

9 num_q = 3

10 evolution_timestep = 0.1

11 n_trotter_steps = 1

12 ham_coeffs = ([[0.75/2, 0.75/2, 0.0, 0.65]]

13 + [[0.5, 0.5, 0.0, 1.0] for i in range(num_q-1)])

14 time_evo_op = get_time_evolution_operator(

15 num_qubits=num_q, tau=evolution_timestep,

16 trotter_steps=n_trotter_steps, coeff=ham_coeffs)

17 print(time_evo_op)

4.4.2 More Compact Trotterization Scheme

While this propagator is encoded in a black-box fashion, we can manually encode the Trotter

decomposition for Hamiltonians containing 1 and 2-qubit Pauli operators. The general idea

is to encode the 1-qubit terms as rotation gates (A) and the 2-qubit terms as the optimal

representation (B,C). The 2-qubit terms can be grouped by layers targetting even and odd

indices separately. The end goal is to generate circuits of the form, corresponding to a single

Trotter step:

Figure 8: Representative quantum circuit for implementing the basic and symmetric Trotter
decomposition for Hamiltonians expressed in terms of two-qubit Pauli operators.

31

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=UnQWmgRfX01P&line=14&uniqifier=1

First we can sort the Hamiltonian terms into 1-qubit, 2-qubit even and 2-qubit odd terms

using the following function that takes a qiskit SparsePauliOp Hamiltonian:

Script 4.24: Sorting Terms by Interaction order 2 3

1 def find_string_pattern(pattern, string):

2 match_list = []

3 for m in re.finditer(pattern, string):

4 match_list.append(m.start())

5 return match_list

6

7 def sort_Pauli_by_symmetry(ham):

8

9 one_qubit_terms = []

10 two_qubit_terms = []

11 # separating the one-qubit from two-qubit terms

12 for term in ham:

13 matches = find_string_pattern('X|Y|Z', str(term.paulis[0]))

14 pauli_string = term.paulis[0]

15 coeff = np.real(term.coeffs[0])

16 str_tag = pauli_string.to_label().replace('I', '')

17 if len(matches) == 2:

18 two_qubit_terms.append((pauli_string, coeff, matches, str_tag))

19 elif len(matches) == 1:

20 one_qubit_terms.append((pauli_string, coeff, matches, str_tag))

21

22 # sorting the two-qubit terms according to index on which they act

23 two_qubit_terms = sorted(two_qubit_terms, key=lambda x: x[2])

24 # separating the even from the odd two-qubit terms

25 even_two_qubit_terms = list(filter(lambda x: not x[2][0]%2, two_qubit_terms))

26 odd_two_qubit_terms = list(filter(lambda x: x[2][0]%2, two_qubit_terms))

27

28 even_two_qubit_terms = [list(v) for i, v in groupby(even_two_qubit_terms,

29 lambda x: x[2][0])]

30 odd_two_qubit_terms = [list(v) for i, v in groupby(odd_two_qubit_terms,

31 lambda x: x[2][0])]

32

33 return one_qubit_terms, even_two_qubit_terms, odd_two_qubit_terms

Then we can encode each of the type of operators with a given circuit pattern. For the

1-qubit terms, we need to express the rotation angles as a function of the exponential

argument. Since the RX(θ), RY (θ) and RZ(θ) rotation gates are given as follows,

32

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=s3OaGTaNYC6r&line=26&uniqifier=1

e−i
θ
2
X =

 cos θ/2 −i sin θ/2

−i sin θ/2 cos θ/2

 , e−i θ2Y =

cos θ/2 − sin θ/2

sin θ/2 cos θ/2

 , e−i θ2Z =

e−iθ/2 0

0 eiθ/2

we note that the angle θ/2 = hiτ =⇒ θ = 2hiτ .

Script 4.25: Circuit for Exponential of 1-Qubit Pauli Term 2 3

1 def generate_circ_pattern_1qubit(circ, term, delta_t):

2 coeff = 2 * term[1] * delta_t

3 if term[3] == 'X':

4 circ.rx(coeff, term[2])

5 elif term[3] == 'Y':

6 circ.ry(coeff, term[2])

7 elif term[3] == 'Z':

8 circ.rz(coeff, term[2])

9

10 return circ

For the 2-qubit terms we can use the following based on the optimal decomposition of

U(4):

U = (A1 ⊗ A2)N(α, β, γ)(A3 ⊗ A4) (20)

Where, N(α, β, γ) = exp{i(ασx⊗ σx+ βσy ⊗ σy + γσz ⊗ σz)} Since the N(α, β, γ) is exactly

the term we seek to implement, we examine its circuit:

where,

θ = π/2− 2γ, ϕ = 2α− π/2, λ = π/2− 2β (21)

Note that α = Jxn,n+1τ, β = Jyn,n+1τ, γ = Jzn,n+1τ due to the connection to the exponential

argument. We note that this circuit can support disconnected 2-qubit operators, as long as

the first index corresponds to the first wire and the second index to the second wire. The

following function implements the most general approach.

33

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=XPtT0RkzYGsb&line=4&uniqifier=1

Script 4.26: Circuit for Exponential of 2-Qubit Pauli Term 2 3

1 def generate_circ_pattern_2qubit(circ, term, delta_t):

2

3 # wires to which to apply the operation

4 wires = term[0][2]

5

6 # angles to parameterize the circuit,

7 # based on exponential argument

8 if any('XX' in sublist for sublist in term):

9 g_phi = (2 * (-1) * term[0][1] * delta_t - np.pi / 2)

10 else:

11 g_phi = - np.pi / 2

12 if any('YY' in sublist for sublist in term):

13 g_lambda = (np.pi/2 - 2 * (-1) * term[1][1] * delta_t)

14 else:

15 g_lambda = np.pi/2

16 if any('ZZ' in sublist for sublist in term):

17 g_theta = (np.pi/2 - 2 * (-1) * term[2][1] * delta_t)

18 else:

19 g_theta = np.pi/2

20

21 # circuit

22 circ.rz(-np.pi/2, wires[1])

23 circ.cx(wires[1], wires[0])

24 circ.rz(g_theta, wires[0])

25 circ.ry(g_phi, wires[1])

26 circ.cx(wires[0], wires[1])

27 circ.ry(g_lambda, wires[1])

28 circ.cx(wires[1], wires[0])

29 circ.rz(np.pi/2, wires[0])

30 return circ

Finally we can make a function that assembles the manual Trotterization of exponential

of Hamiltonians containing one and two-qubit Pauli operators, with the structures supported

basic (BCA) and symmetric structures (ACBCA) indicated above. Furthermore, selecting

more than 1 Trotter step will scale the exponential argument by dividing by the number of

Trotter steps and include that number of repetitions of the Trotter circuit structure.

34

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=bMc_tIcJYHPu&line=9&uniqifier=1

Script 4.27: Manual Trotterization of Propagator 2 3

1 def get_manual_Trotter(num_q, pauli_ops, timestep, n_trotter=1,

2 trotter_type='basic', reverse_bits=True):

3 # sorts the Pauli strings according to qubit number they affect and symmetry

4 one_q, even_two_q, odd_two_q = sort_Pauli_by_symmetry(pauli_ops)

5 # scales the timestep according to the number of trotter steps

6 timestep_even_two_q = timestep / n_trotter

7 timestep_odd_two_q = timestep / n_trotter

8 timestep_one_q = timestep / n_trotter

9 # symmetric places 1/2 of one_q and odd_two_q before and after even_two_q

10 if trotter_type == 'symmetric':

11 timestep_odd_two_q /= 2

12 timestep_one_q /= 2

13 # constructs circuits for each segment of the operators

14 qc_odd_two_q, qc_even_two_q, qc_one_q = QuantumCircuit(num_q),

QuantumCircuit(num_q), QuantumCircuit(num_q)↪→

15 for i in even_two_q:

16 qc_even_two_q = generate_circ_pattern_2qubit(qc_even_two_q, i,

timestep_even_two_q)↪→

17 for i in odd_two_q:

18 qc_odd_two_q = generate_circ_pattern_2qubit(qc_odd_two_q, i,

timestep_odd_two_q)↪→

19 for i in one_q:

20 qc_one_q = generate_circ_pattern_1qubit(qc_one_q, i, timestep_one_q)

21 # assembles the circuit for Trotter decomposition of exponential

22 qr = QuantumRegister(num_q)

23 qc = QuantumCircuit(qr)

24 if trotter_type == 'basic':

25 qc = qc.compose(qc_even_two_q)

26 qc = qc.compose(qc_odd_two_q)

27 qc = qc.compose(qc_one_q)

28 elif trotter_type == 'symmetric':

29 qc = qc.compose(qc_one_q)

30 qc = qc.compose(qc_odd_two_q)

31 qc = qc.compose(qc_even_two_q)

32 qc = qc.compose(qc_odd_two_q)

33 qc = qc.compose(qc_one_q)

34 # repeats the single_trotter circuit several times to match n_trotter

35 for i in range(n_trotter-1):

36 qc = qc.compose(qc)

37 if reverse_bits:

38 return qc.reverse_bits()

39 else:

40 return qc

The overall depth per layer of the manual Trotterization scheme is 15 gates for the basic

decomposition and 23 gates for the symmetric decomposition. This function can be used in

35

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=v0iv0k3XYPmE&line=11&uniqifier=1

place of the qiskit built-in Trotterization approach and codes included in this section.

Script 4.28: Manual Trotter Circuits 2 3

1 spin_chain_hamiltonian = get_heisenberg_hamiltonian(num_q,

2 ham_coeffs)

3

4 spin_chain_hamiltonian = sum(spin_chain_hamiltonian)

5 print(get_manual_Trotter(num_q, spin_chain_hamiltonian,

6 0.1).draw())

7 print(get_manual_Trotter(num_q, spin_chain_hamiltonian, 0.1,

8 n_trotter=2).draw())

9 print(get_manual_Trotter(num_q, spin_chain_hamiltonian, 0.1,

10 trotter_type='symmetric').draw())

11 print(get_manual_Trotter(num_q, spin_chain_hamiltonian, 0.1,

12 n_trotter=2,

13 trotter_type='symmetric').draw())

4.4.3 Initializing a Quantum Circuit with Qiskit

Depending on the number of quantum bits needed for simulation and the number of classical

bits for recording measurement outcomes, we require a quantum circuit object containing the

required form. However, the initial state for this circuit is the vacuum state, |0⟩⊗ |0⟩⊗ |0⟩ =

|000⟩:

Script 4.29: Quantum Circuit Initialization 2 3

1 from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit

2 # specifying a quantum register with specific number of qubits

3 qr = QuantumRegister(num_q)

4 # classical register used for measurement of qubits

5 cr = ClassicalRegister(num_q)

6 # quantum circuit combining quantum and classical registers

7 qc = QuantumCircuit(qr, cr) # instantiated here

8 qc.draw(style='iqp')

9 print(qc)

We can initialize it by bit flipping to obtain the initial state I|0⟩ ⊗X|0⟩ ⊗X|0⟩ = |011⟩

36

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=5GOtyZmjQPUM&line=11&uniqifier=1
https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=F-qZQSfcQrzB&line=7&uniqifier=1

Script 4.30: Quantum Circuit for Vacuum State Initialization 2 3

1 from qiskit import execute

2 from qiskit import BasicAer

3

4 # specifying initial state by flipping qubit states

5 for qubit_idx in range(num_q):

6 if qubit_idx == 0:

7 # generate only one spin-up at first qubit

8 qc.id(qubit_idx)

9 else:

10 # make all other spins have the spin-down state

11 qc.x(qubit_idx)

12 qc.barrier()

13 qc.draw(style='iqp')

14 print(qc)

15

16 # checking the initial state

17 device = BasicAer.get_backend('statevector_simulator')

18 qc_init_state = execute(qc, backend=device).result()

19 qc_init_state = qc_init_state.get_statevector()

20 print(qc_init_state)

or by amplitude encoding (|000⟩ → |011⟩:

Script 4.31: State Initialization: Amplitude Encoding 2 3

1 qr_init = QuantumRegister(num_qubits)

2 qc_init = QuantumCircuit(qr_init)

3 qc_init.initialize('011', qr_init[:])

4 qc.append(qc_init)

Finally, we append the time evolution operator and check the overall quantum circuit

structure and depth:

37

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=VFKLLFiaYl4K&line=3&uniqifier=1
https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=CusMiFReYnof&line=4&uniqifier=1

Script 4.32: Applying Time Evolution Operator to Circuit 2 3

1 # generating the time evolution operator for a specific set of

2 # hamiltonian parameters and timestep

3 time_evo_op = get_time_evolution_operator(num_qubits=num_q,

4 tau=evolution_timestep,

5 trotter_steps=n_trotter_steps,

6 coeff=hamiltonian_coefficients)

7

8 # appending the Hamiltonian evolution to the circuit

9 qc.append(time_evo_op, list(range(num_q)))

10 qc.barrier()

11 qc.draw(style='iqp')

12 print(qc)

13

14 # Depth check

15 print('Depth of the circuit is', qc.depth())

16 # transpiled circuit to statevector simulator

17 qct = transpile(qc, device, optimization_level=2)

18 qct.decompose().decompose()

19 qct.draw(style='iqp')

20 print(qct)

21

22 print('Depth of the circuit after transpilation is '

23 f'{qct.depth()}')

4.4.4 Qubit-based Quantum Experiments

To perform the quantum experiment we can use either a classical simulator, such as Stat-

evector, which uses linear algebra to solve the for the final circuit state based on the circuit

operations, or an IBMQ device which would run on an experimental platform. Be mindful

that quantum circuits should be relatively shallow in depth (≤ 100 linear operations). Fur-

thermore, execution on an experimental setup requires transpilation to use the supported

operations of the actual platform.

We start by implementing a function to implement the iterative statevector simulation

by reading out the exact final state after propagation for a small time step:

38

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=F-qZQSfcQrzB&line=44&uniqifier=1

Script 4.33: Execution of Quantum Experiment 2 3

1 import numpy as np

2 from qiskit import BasicAer, execute

3 from qiskit import QuantumCircuit, QuantumRegister

4

5 # Quantum circuit for propagation

6 def qsolve_statevector(psin, qc):

7 # Determining number of qubits from the length of the state vector

8 d = int(np.log2(n))

9 # Circuit preparation

10 qre = QuantumRegister(d)

11 circ = QuantumCircuit(qre)

12 circ.initialize(psin,qre)

13 circ.barrier()

14 circ.append(qc, qre)

15 circ.barrier()

16 # Circuit execution

17 device = BasicAer.get_backend('statevector_simulator')

18 psin = execute(circ, backend=device).result()

19 return psin.get_statevector()

And execute the function by using the previously mentioned parameters and initial state

to obtain the absolute value of the survival amplitude observable:

|⟨ψ0|ψt⟩| =
∣∣∣⟨ψ0|e−iĤt/ℏ|ψ0⟩

∣∣∣ (22)

Figure 9: Absolute value of the survival amplitude calculated using the statector approach,
in agreement with the classical benchmark.

39

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=aAU6QX6BvTKg&line=39&uniqifier=1

Script 4.34: Statevector Experiment 2 3

1 # Qubit basis states

2 zero_state = np.array([[1],[0]])

3 one_state = np.array([[0],[1]])

4

5 # For a 011 initial state prepare as follows

6 psin = zero_state # for the first spin

7 # iterates over the remaining spins, by performing Kronecker Product

8 for i in range(num_q-1):

9 psin = np.kron(psin, one_state)

10 psin0 = psin.flatten()

11 print(psin0)

12

13 nsteps = 250

14 psin_list = []

15 psin_list.append(psin0)

16 correlation_list = []

17 # performs dynamical propagation by statevector re-initialization

18 for k in range(nsteps):

19 print(f'Running dynamics step {k}')

20 if k > 0:

21 psin = qsolve_statevector(psin_list[-1], time_evo_op)

22 # removes the last initial state to save memory

23 psin_list.pop()

24 # stores the new initial state

25 psin_list.append(psin)

26 correlation_list.append(np.vdot(psin_list[-1],psin0))

27

28 t = np.arange(0, evolution_timestep*(nsteps),

29 evolution_timestep)

30 np.save(f'{num_q}_spin_chain_time', t)

31 sa_observable = np.abs(correlation_list)

32 np.save(f'{num_q}_spin_chain_SA_obs', sa_observable)

33 # plotting

34 plt.plot(t, sa_observable, '-o')

35 plt.ylabel('Survival Amplitude')

36 plt.yscale('log')

37 plt.show()

40

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=CusMiFReYnof&line=37&uniqifier=1

4.5 Using the Hadamard Test for Calculating Expectation Values

The real and imaginary parts of the expectation value ⟨ψ|U |ψ⟩ of a unitary operator U can

be obtained by measuring an ancilla qubit in a circuit of a Hadamard test, as shown in

Fig. 10. To understand these circuits, let’s follow the evolution of the state as it evolves

(a)

Ancilla: |0⟩ H H Re [⟨ψ|U |ψ⟩]

Initial State: |ψ⟩ U

1√
2
(|0⟩+ |1⟩)

(b)

Ancilla: |0⟩ H,P−π/2 H Im [⟨ψ|U |ψ⟩]

Initial State: |ψ⟩ U

1√
2

(
|0⟩+ e−iπ/2 |1⟩

)

Figure 10: Circuits for computations of the real (a) and imaginary (b) parts of ⟨ψ|U |ψ⟩
according to the Hadamard test.

through the circuit shown in Fig. 10 panel (a). Note that after application of the Hadamard

gate to the first qubit, we obtain the following state:

H|0⟩ ⊗ |Ψ⟩ = 1√
2
(|0⟩ ⊗ |Ψ⟩+ |1⟩ ⊗ |Ψ⟩) (23)

Applying the controlled unitary, applies U to |ψ⟩ when the ancilla is |1⟩, as follows:

CU(H|0⟩ ⊗ |Ψ⟩) = 1√
2
(|0⟩ ⊗ |Ψ⟩+ |1⟩ ⊗ U |Ψ⟩) , (24)

41

and applying the second Hadamard gate, we obtain |Φ⟩ = HCU(H|0⟩ ⊗ |Ψ⟩), where

|Φ⟩ = 1√
2
(H|0⟩ ⊗ |Ψ⟩+H|1⟩ ⊗ U |Ψ⟩) (25)

=
1

2
((|0⟩+ |1⟩)⊗ |Ψ⟩+ (|0⟩ − |1⟩)⊗ U |Ψ⟩) (26)

=
1

2
(|0⟩ ⊗ (I+ U)|Ψ⟩+ |1⟩ ⊗ (I− U)|Ψ⟩) (27)

It should now be clear that a measurement of the ancilla with σz gives the Re[⟨Ψ|U |Ψ⟩],

as follows:

⟨Φ|σz ⊗ I|Φ⟩ = 1

4

(
⟨Ψ|(I+ U †)⊗ ⟨0|+ ⟨Ψ|(I− U †)⊗ ⟨1|

)
σz ⊗ (|0⟩ ⊗ (I+ U)|Ψ⟩+ |1⟩ ⊗ (I− U)|Ψ⟩)

=
1

4

(
⟨Ψ|(I+ U †)⊗ ⟨0|σz|0⟩ ⊗ (I+ U)|Ψ⟩+ ⟨Ψ|(I+ U †)⊗ ⟨0|σz|1⟩ ⊗ (I− U)|Ψ⟩

+ ⟨Ψ|(I− U †)⊗ ⟨1|σz|0⟩ ⊗ (I+ U)|Ψ⟩+ ⟨Ψ|(I− U †)⊗ ⟨1|σz|1⟩ ⊗ (I− U)|Ψ⟩
)

=
1

4

(
⟨Ψ|(I+ U †)(I+ U)|Ψ⟩+ ⟨Ψ|(I− U †)(I− U)|Ψ⟩

)
=

1

4

(
⟨Ψ|Ψ⟩+ ⟨Ψ|U |Ψ⟩+ ⟨Ψ|U †|Ψ⟩+ ⟨Ψ|U †U |Ψ⟩

− ⟨Ψ|Ψ⟩+ ⟨Ψ|U |Ψ⟩+ ⟨Ψ|U †|Ψ⟩ − ⟨Ψ|U †U |Ψ⟩
)

=
1

2

(
⟨Ψ|U |Ψ⟩+ ⟨Ψ|U †|Ψ⟩

)
=

1

2

(
⟨Ψ|U |Ψ⟩+ ⟨Ψ|U |Ψ⟩†

)
= Re[⟨Ψ|U |Ψ⟩]

Analogously, we can show that a measurement of the ancilla with σz for the circuit of

panel (b) gives the Im[⟨Ψ|U |Ψ⟩]. Note that the only difference between the two circuits is

that in panel (b) the first Hadamard is followed by the phase shift P−π/2 =

1 0

0 e−iπ/2

.
4.5.1 Hadamard Test Function

The Hadamard test circuit can be constructed by setting up the ancilla preparation, wave-

function initialization and including the controlled unitaries corresponding to the expectation

42

values to be calculated. Measurement of the ancilla is included to obtain the counts and

calculate the real and imaginary components of the expectation value.

Script 4.35: Hadamard Test Function 2 3

1 def get_hadamard_test(num_q, initial_state, control_operation,

2 control_repeats=0, imag_expectation=False):

3 # Circuit object framework

4 qr_hadamard = QuantumRegister(num_q+1)

5 cr_hadamard = ClassicalRegister(1)

6 qc_hadamard = QuantumCircuit(qr_hadamard, cr_hadamard) # instantiated here

7 # Initialization of calculation qubits

8 qc_hadamard.append(initial_state, qr_hadamard[1:]) # initial psi

9 qc_hadamard.barrier()

10 # Hadamard test structure

11 qc_hadamard.h(0)

12 if imag_expectation:

13 qc_hadamard.p(-np.pi/2, 0) # qc_hadamard.s(0).inverse() may be equivalent

14 # iterates over the number of times the control operation should be added

15 for i in range(control_repeats):

16 qc_hadamard.append(control_operation, qr_hadamard[:])

17 qc_hadamard.h(0)

18 qc_hadamard.barrier()

19 # Measuring the ancilla

20 qc_hadamard.measure(0,0)

21 return qc_hadamard

4.5.2 Processing the Hadamard Test Results

The result of a quantum experiment is typically performed in the σz basis, yielding either

the state |0⟩ or |1⟩ for each qubit. Each of these eigenstates have the following eigenvalues.

⟨0|σz|0⟩ = 1

⟨1|σz|1⟩ = −1

43

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=HGCLRH3hY0CD&line=4&uniqifier=1

Thus we account for the number of measurements of the ancilla qubit in the |0⟩ and |1⟩

states and obtain the average values associated with the measurement:

⟨ψ|U |ψ⟩ → ⟨0|σz|0⟩N|0⟩ + ⟨1|σz|1⟩N|1⟩

N|0⟩ +N|1⟩

=
N|0⟩ −N|1⟩

N|0⟩ +N|1⟩

This yields the corresponding expectation value of the unitary operator U .

Script 4.36: Hadamard Test Post-Processing 2 3

1 def get_spin_correlation(counts):

2 qubit_to_spin_map = {

3 '0': 1,

4 '1': -1,

5 }

6 total_counts = 0

7 values_list = []

8 for k,v in counts.items():

9 values_list.append(qubit_to_spin_map[k] * v)

10 total_counts += v

11 average_spin = (sum(values_list)) / total_counts

12 return average_spin

4.5.3 How to execute the Hadamard test for our operator?

Using the time evo op for a small time-step, we generate the controlled unitary,

Script 4.37: Creation of Controled Time-Evolution Operator 2 3

1 controlled_time_evo_op = time_evo_op.control()

We then execute Hadamard test for all times by propagating from the initial state at

time zero using the controlled unitary, and computing the real and imaginary components

of the expectation value using the code in the subsequent code cell.

44

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=lBeCvQYHY3Pu&line=5&uniqifier=1
https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

Script 4.38: Hadamard Test Execution 2 3

1 # IMPORTANT: Use qasm_simulator to obtain meaningful statistics

2 # statevector is not appropriate for this method

3 simulator = BasicAer.get_backend('qasm_simulator')

4 real_amp_list = []

5 imag_amp_list = []

6 for idx,time in enumerate(time_range):

7 print(f'Running dynamics step {idx}')

8 # Real component ------------------------------

9 qc_had_real = get_hadamard_test(num_q, init_circ,

10 controlled_time_evo_op,

11 control_repeats=idx,

12 imag_expectation=False)

13 had_real_counts = get_circuit_execution_counts(

14 qc_had_real, simulator, n_shots=num_shots)

15 real_amplitude = get_spin_correlation(had_real_counts)

16 real_amp_list.append(real_amplitude)

17

18 # Imag component ------------------------------

19 qc_had_imag = get_hadamard_test(num_q, init_circ,

20 controlled_time_evo_op,

21 control_repeats=idx,

22 imag_expectation=True)

23 had_imag_counts = get_circuit_execution_counts(

24 qc_had_imag, simulator, n_shots=num_shots)

25 imag_amplitude = get_spin_correlation(had_imag_counts)

26 imag_amp_list.append(imag_amplitude)

27 print(f'Finished step {idx}, where '

28 f'Re = {real_amplitude:.3f} '

29 f'Im = {imag_amplitude:.3f}')

30

31 real_amp_array = np.array(real_amp_list)

32 imag_amp_array = np.array(imag_amp_list)

33

34 # plotting the data

35 plt.plot(time_range, np_abs_correlation_with_hadamard_test,

36 '.', label='Hadamard Test')

37 plt.xlabel('Time')

38 plt.ylabel('Absolute Value of Survival Amplitude')

39 plt.legend()

40 plt.show()

We verify that the Hadamard test data with the given number of shots agrees with both

the classical benchmark and the statevector results (figure 11). We note that increasing the

number of shots would further refine the agreement at the expense of additional execution

time.

45

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?authuser=1#scrollTo=8OiALRb1ZEVp&line=32&uniqifier=1

0 5 10 15 20 25
Time

10 1

100

Ab
so

lu
te

Va
lu

e o
f S

ur
vi

va
l A

m
pl

itu
de

, |
|

|

TT-Taylor
TT-Chebyshev
TT-KSL
Statevector
Hadamard Test, + i

Figure 11: Results of simulating dynamics with the Hadamard test (stars) on a quantum
simulator as compared to the statevector simulation (dashed line) and classical benchmarks
(continuous lines).

46

4.6 Variational Quantum Real Time Evolution

Simulating Trotterization for long time scales requires deep quantum circuits which are likely

to be noisy when run on near term quantum computers. Therefore, noise resilient hybrid

alternatives are proposed. One such alternative algorithm is the Variation Quantum Real

Time Evolution (VarQRTE) algorithm.

VarQRTE approximates the time evolution of a system by restricting it to a subspace of

the total Hilbert space. The accessible subspace is determined by the ansatz U(θ), indicating

that a proper ansatz for a system must be chosen carefully. The evolution of the input

state is approximated through calculating θ̇(t), and this value is used to determine the

parameters at the next timestep θ(t+dt) = θ(t)+ θ̇(t)dt. The change in parameters for each

timestep θ̇(t) are calculated through measuring the Pauli strings of the Hamiltonian and the

generators of the anstaz as derived below. Once the parameters are determined for a given

timestep, the state can be obtained through application of the ansatz to the starting state,

U(θ(t)) |ψ(0)⟩ ≈ |ψ(t)⟩.

The change of the parameters θ̇(t), is determined by applying McLachlan’s variational

principle to the Schrödinger equation.

∂||(∂
∂t

+ iH) |ψ(θ(t))⟩ || = 0 (28)

When varying over an ansatz U(θ(t)) |ψ(0)⟩ = ψ(θ(t)), this reduces to a system of linear

equations,

∑
j

Aij θ̇j = Ci (29)

With the matrix Aij and vector Ci defined as such,7

Aij = Re(
∂ ⟨ψ(θ(t))|

∂θi

∂ |ψ(θ(t))⟩
∂θj

) (30)

47

Ci = −Im(
∂ ⟨ψ(θ(t))|

∂θi
H |ψ(θ(t))⟩) (31)

Taking derivatives with respect to the parameters of the ansatz returns the generators

G of the ansatz, ∂|ψ(θ(t))⟩
∂θi

= −iG |ψ(θ(t))⟩. For an example, for a single qubit Z-rotation,

∂
∂θ
e−iθσZ |ψ⟩ = −iσZe−iθσZ |ψ⟩. Therefore, evaluating these terms in Aij and Ci is reduced to

performing a Hadamard test on the generators of the ansatz.

Script 4.39: Variation Quantum Real Time Evolution 2 3

1 import numpy as np

2 from qiskit_algorithms import VarQRTE, TimeEvolutionProblem

3 from qiskit.circuit.library import ExcitationPreserving

4 from qiskit_algorithms.time_evolvers.variational import RealMcLachlanPrinciple

5 from qiskit import QuantumCircuit

6 from qiskit.primitives import Estimator

7 from qiskit.quantum_info import SparsePauliOp

8

9 var_principle = RealMcLachlanPrinciple()

10 estimator = Estimator(options={"shots": 1024})

11 total_time = 5.0

12 evolution_timestep = 0.2

13

14 hamiltonian = SparsePauliOp.from_list([("ZI", 0.5), ("IZ", 0.5), ("XX", 0.2)])

15

16 def init_circ():

17 qc = QuantumCircuit(2,0)

18 qc.x(0) # initial state is |10>

19 return qc

20

21 # Anstaz at t=0 must be equal to the Identity

22 params = [np.array([0.0 for i in range(5)])]

23 anstaz = ExcitationPreserving(num_qubits=2, entanglement='linear', reps=1)

24 anstaz = init_circ().compose(anstaz)

25

26 # Define and Run the Time Evolution Problem

27 evolution_problem = TimeEvolutionProblem(hamiltonian, total_time)

28 qrte = VarQRTE(anstaz, params[0][:], variational_principle=var_principle,

estimator=estimator, num_timesteps=int(total_time/evolution_timestep))↪→

29 params = qrte.evolve(evolution_problem).parameter_values

30

31 # Assemble the circuit which creates the evolved state

32 evolved_circ = anstaz.assign_parameters(params[-1])

33 print(evolved_circ)

48

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

4.7 Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) algorithm is a near term quantum algorithm,

used to determine the ground state energy of a given system.8,9 VQE is a hybrid algorithm,

meaning that the quantum algorithm is able to utilize a classical computer for part of the

calculation. This helps to make VQE noise resilient, as it can offload some computation to

noiseless classical computers, while still utilizing the exponentially scaling Hilbert space of

a quantum computer.

The VQE algorithm is based on the variational principle, which states that the expec-

tation value of the Hamiltonian H for any state |ψ⟩ must be greater than the ground state

energy.

E0 ≤
⟨ψ|H |ψ⟩
⟨ψ|ψ⟩ (32)

VQE leverages this fact by parameterizing an input wavefunction |ψ(θ)⟩. The algorithm

then measures the expectation value of the Pauli strings of the Hamiltonian for this state,

and sends this result to a classical computer. The classical computer then uses these mea-

surements to determine the energy of the state, and finally the classical computer uses an

optimizer such as Constrained Optimization by Linear Approximation (COBYLA) or Simul-

taneous Perturbation Stochastic Approximation (SPSA) algorithms to tune the parameters

θ, in order to minimize the energy.

Once the optimizers converge on the final parameters θf , an estimate of the ground

state energy
⟨ψ(θf)|H|ψ(θf)⟩
⟨ψ(θf)|ψ(θf)⟩ ≈ E0 and the the ground state wavefunction |ψ(θf)⟩ ≈ |ψ0⟩ are

obtained.

The parameterization of the wavefunction |ψ(θ)⟩ is done using an circuit which is called

the ansatz. The decision of which ansatz to use is important, and can greatly affects the

results obtained by this algorithm. For an example, by identifying symmetries of the Hamil-

tonian and using an ansatz which also obeys these symmetries, the search space of VQE can

49

Pauli String
Measurement

State
Preparation

Ψ(θ)

Compute
Energy

E0

Classical Optimizer
(SPSA,

COBYLA…)

Quantum Computer Classical Computer

Figure 12: A box diagram of the Variational Quantum Eigensolver Algorithm.

be greatly reduced. This reduction in the search space allows for the classical optimizers to

more efficiently find the ground state energy.

Below is an example of the Variational Quantum Eigensolver algorithm applied to the

Hamiltonian, H = .5σZ1 + .5σZ2 + .2σX1σX2 . This Hamiltonian is defined using SparsePa-

uliOp from QISKIT, the ansatz used is the EfficientSU2 ansatz, and the energy is calculated

through using the Estimator primitive. Lastly, the ground state energy is found by using

the COBYLA algorithm to minimize the energy.

50

Script 4.40: Variational Quantum Eigensolver 2 3

1 import numpy as np

2 from qiskit.circuit.library import EfficientSU2

3 from qiskit.quantum_info import SparsePauliOp

4 from qiskit.primitives import Estimator

5 from scipy.optimize import minimize

6

7 hamiltonian = SparsePauliOp.from_list([("ZI", 0.5), ("IZ", 0.5), ("XX", 0.2)])

8

9 estimator = Estimator(options={"shots": 1024})

10

11 #Estimate the energy using a quantum computer

12 def energy(params, ansatz, hamiltonian, estimator):

13 current_energy = estimator.run(ansatz, hamiltonian, params).result().values[0]

14 print("Energy: "+str(current_energy))

15 return current_energy

16

17 # Define the ansatz which will be used to prepare the ground state

18 ansatz = EfficientSU2(hamiltonian.num_qubits)

19

20 initial_params = np.random.random(ansatz.num_parameters)

21

22 # Now run the minimization algorithm to minimize the energy

23 res = minimize(energy, initial_params,

24 args=(ansatz, hamiltonian, estimator), method="cobyla")

25

26 # Lastly, output the energy estimate obtained

27 final_params = res.x

28 print("Final Energy Estimate: "+str(energy(final_params, ansatz, hamiltonian,

estimator)))↪→

5 Qumode-Based Simulations

Qumode-based quantum computers, which store information in continuous quantum modes

like light, offer a unique approach to quantum computation, complementing the traditional

qubit-based method. We remind ourselves that any quantum state with qubits as the basic

unit of quantum information is uniquely characterized by a superposition of the |0⟩ and |1⟩

state. Extending this concept to a d-dimensional complex Hilbert space yields a qudit, where

51

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

any quantum state |ϕ⟩ admits the representation

|ϕ⟩ =
d−1∑
i=0

ϕi|i⟩ (33)

where the set {|0⟩, |1⟩, · · · , |d−1⟩} constitutes an orthonormal basis for that d−dimensional

Hilbert space and {ϕi} are the corresponding expansion coefficients. However, many physical

systems such as light are intrinsically continuous, and thus a continuum orthonormal basis

residing in an infinite-dimensional Hilbert space offers the continuous-variable model that

fits the simulation of, for instance, bosonic systems. Naturally, we extend Equation 33 to

the representation of a qumode as

|ψ⟩ =
∫
dx ψ(x)|x⟩ (34)

where the states |x⟩ span over the real line.

Interestingly, qumodes and qudits are related since qudits can be thought of as energy

levels of a harmonic oscillator

|i⟩ =
∫
dx |x⟩ ⟨x|i⟩ =

∫
dx ψi(x) |x⟩ , (35)

where ψi(x) are the Hermite polynomials.

Continuous-variable systems such as the bosonic harmonic oscillator are defined by the

canonical mode creation and annihilation operators â†, â satisfying
[
â, â†

]
= I. Alternatively,

one may work with quadrature operators

x̂ =

√
ℏ
2

(
â+ â†

)
p̂ = −i

√
ℏ
2

(
â− â†

) (36)

satisfying [x̂, p̂] = iℏ. We note that the basis states |x⟩ in Equation 34 are also eigenstates

52

of the x̂ quadrature.

Starting from the vacuum state |0⟩, we can perform propagation by evolving the vacuum

state as

|ψ⟩ = exp (−itH) |0⟩ (37)

where H is the Hamiltonian operator written in bosonic operators and t is the evolution time.

States whose Hamiltonians are at most quadratic in the quadratures x̂, p̂ are called Gaussian,

parametrized by a complex displacement operator α and a complex squeezing parameter z

that corresponds to a Gaussian distribution. Complementary to these continuous Gaussian

states are the Fock states, |n⟩ for n ∈ N, which are eigenstates of the number operator

n̂ = â†â. In general, any n-mode Hamiltonian H generates a unitary operation

U = exp
(
−itĤ

)
(38)

that is implementable via a sequence of gates from a universal gate set (each of which acting

on one or two qumodes), which we now discuss.

A continuous variable quantum computer is universal if it can propagate any Hamiltonian

with arbitrarily small error.10 Any universal gate set contains Gaussian gates (gates that are

at most quadratic in the mode operators) and non-Gaussian gates (gates with third degree or

higher), similar to the Clifford group and non-Clifford group of gates from the qubit model.

Fundamental continuous-variable gates are described in Table 2, according to the conven-

tion adopted by Strawberry Fields, an open-source framework for photonic quantum com-

puting.11,12 All the described gates are Gaussian except for the cubic phase and kerr gates.

LLyod et al.13 provides the necessary and sufficient conditions for a universal gate set over

continuous variables, and it has been shown that the sets {Di(α), Ri(ϕ), Si(z), BSij(θ, ϕ)}10

or {F , Zi(p), Pi(s)}14 covers all Gaussian operations. Adding the cubic phase gate Vi(γ) to

either set sufficiently allows non-Gaussian operations.

Continuous variable measurements are also categorized into Gaussian (homodyne and

53

Table 2: Selected continuous-variable gates

Gate Unitary operation

Displacement Di(α) = exp
(
αâ†i − α∗âi

)
Rotataion Ri(ϕ) = exp (iϕn̂i)

Squeezing Si(z) = exp
(

1
2

(
z∗â2i − zâ†2i

))
Beamsplitter BSij (θ, ϕ) = exp

(
θ
(
exp{iϕ}â†i âj − exp{−iϕ}âiâ†j

))
Two-mode Squeezing S2ij (z) = exp

(
zâ†1â

†
2 − z∗â1â2

)
Position Displacement Xi(x) = Di(

x
2
) = exp

(
−ix

2
p̂
)
with x ∈ R

Momentum Displacement Zi(p) = Di

(
ip
2

)
= exp

(
ip
2
x̂
)

Fourier Fi = Ri

(
π
2

)
= exp

(
iπ
2
n̂
)

Quadratic Phase Pi(s) = exp (isx̂2)
Cubic Phase Vi(γ) = exp

(
iγ
6
x̂3i
)

Kerr Ki(κ) = exp (iκn̂2)

heterodyne) and non-Gaussian (photon counting). A homodyne detection projects the quan-

tum state onto the eigenstates of the Hermitian operator

x̂ϕ = (cosϕ)x̂+ (sinϕ)x̂ (39)

A heterodyne measurement projects the state onto the operator

1

π
|α⟩⟨α| (40)

where each coherent state is defined by the displaced vacuum state, |α⟩ = D(α)|0⟩, which

is the eigenstate of the annihilation operator (α̂|α⟩ = α|α⟩) and admits the Fock basis

decomposition

|α⟩ = e−|α|2/2
∞∑
n=0

αn√
n!
|n⟩ (41)

Both homodyne and heterodyne measurements of one qumode preserves the Gaussian char-

acteristic of the remaining ones. Complementary to these continuous (or wave-like) mea-

surements is the particle-like photon counting, in which the quantum state is projected onto

the number eigenstates |n⟩, returning non-negative integer values.

54

5.1 Hamiltonian propagation

Quantum computers are suited to simulate dynamics of not only quantum systems but also

atoms, molecules and biochemical systems. Examples include determining the ground state

energy of large systems, dynamics of an ensemble of molecules, and protein folding pathways,

all of which are computationally taxing with classical computations.15,16 Generally speaking,

given an arbitrary Hamiltonian operator for a physical system, we first map it into an

n-mode bosonic second quantization form (possibly via bosonization or Jordan-Schwinger

transformation)

H = f
(
â1, â

†
1, â2, â

†
2, . . . , ân, â

†
n

)
(42)

which is then decomposed into

H =
N∑
j=1

Hj (43)

where each of the corresponding term in the time-evolution operator exp (−iHjt) can be writ-

ten as a continuous-variable gate. Such a decomposition is guaranteed, so long as a universal

gate set is used. Interested readers are invited to read more on a systematic decomposition

method.14,17 While an exact decomposition is possible and may at times significantly lower

the gate count needed (given a precision cutoff), we focused on approximate decompositions

which are based on the Lie-Trotter product formula

e−iHt =

(
N∏
j=1

e−i
Hj
k
t

)k

+O

N2t2

(
max
1≤j≤N

|Hj|
)2

k

 (44)

with k Trotter steps, and the error term scales quadratically with the evolution time t.

For the rest of this subsection, we demonstrate how to simulate the two-mode Bose-

Hubbard Hamiltonian using Strawberry Fields. Written down in the early 1960’s, the

Bose-Hubbard model was initially applied to understanding the behavior of transition metal

monoxides (FeO, NiO, CoO), which are antiferromagnetic insulators instead of metallic as

55

predicted previously.18 It offers one simple way to gain insights into how electronic interac-

tions may result in insulating, magnetic, and even novel superconducting effects in a solid.

For this example, we consider a lattice with two adjacent nodes with adjacency matrix

A = [0 1
1 0], then the Bose-Hubbard Hamiltonian with on-site interactions is given by

H = J
(
â†1â2 + â†2â1

)
+

1

2
U
(
n̂2
1 − n̂1 + n̂2

2 − n̂2

)
(45)

with J being the transfer integral (hopping term) of the boson between nodes and U the

on-site interaction potential. We can now write

e−iHt =
[
e(−i

Jt
k
(â†1â2+â

†
2â1))e(−i

Ut
2k
n̂2
1)e(−i

Ut
2k
n̂2
2)e(i

Ut
2k
n̂1)e(i

Ut
2k
n̂2)
]k

+O

(
t2

k

)
= [BS1,2(θ, ϕ) (K1(r)R1(−r)⊗K2(r)R2(−r))]k +O

(
t2

k

) (46)

with θ = −Jt
k
, ϕ = π

2
, r = −Ut

2k
. Schematically, we obtain Figure 13, where two layers of

Trotter stops are shown.

Figure 13: Two layers of Bose-Hubbard Hamiltonian evolution

To start off on Python, we import the relevant package and set up the global parameters

that apply to the rest of this subsection in Script 5.1

56

Script 5.1: Bose Hubbard Hamiltonian Global Parameters 2 3

1 import numpy as np

2 cutoff = 10 # Number of levels per bosonic mode (Fock dimension truncation)

3 J = 1 # Hopping term

4 U = 1.5 # On-site interaction potential

5 k = 20 # Number of Trotter layers

6 t = 1.086 # Evolution time

7 theta = -J*t/k

8 r = -U*t/(2*k)

9 # Prepare the initial statevector

10 ket = np.zeros([10]*2, dtype=np.complex64)

11 ket[2,0] = 1.0 + 0.0j

To prepare a known photonic quantum architecture in Strawberry Fields, the following

steps are carried out in Script 5.1:

• Declare a Strawberry Fields program with the required number of qumodes.

• Define the quantum circuit with operations in the class sf.ops.

• Specify an engine backend. For this example, we use the Fock basis backend (since the

Kerr gate is non-Gaussian, we can not use the gaussian or bosonic backend here).

• Run engine, and extract the resulting quantum state from results.state.

57

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

Script 5.2: Evolving Bose-Hubbard Hamiltonian 2 3

1 import strawberryfields as sf

2 # Declare Program

3 prog = sf.Program(2)

4 # Define quantum circuit

5 with prog.context as q:

6 # Prepare initial quantum state

7 sf.ops.Ket(ket) | q

8 # For-loop to define each of the k Trotter layers

9 for i in range(k):

10 sf.ops.BSgate(theta, np.pi/2) | (q[0],q[1]) # Parametrized beamsplitter gate

applied on the first and second qumode↪→

11 sf.ops.Kgate(r) | q[0] # Parametrized kerr gate applied on the first qumode

12 sf.ops.Rgate(-r) | q[0] # Parametrized rotation gate applied on the first qumode

13 sf.ops.Kgate(r) | q[1]

14 sf.ops.Rgate(-r) | q[1]

15 # end circuit

16

17 # Define the engine backend and execute the circuit

18 eng = sf.Engine('fock', backend_options={"cutoff_dim":cutoff})

19 state = eng.run(prog).state

20

21 # Print the output state probabilities

22 print(state.fock_prob([0,2]))

23 print(state.fock_prob([1,1]))

24 print(state.fock_prob([2,0]))

The resulting quantum state yield the following output Fock probabilities

P(|0, 2⟩) = 0.5224012457200212

P(|1, 1⟩) = 0.23565287685672495

P(|2, 0⟩) = 0.24194587742326018

which add up to 1, indicating the particle-preserving nature of this Hamiltonian simulation.

Knowing the output statevector |ψ, we can compute the energy

E =
⟨ψ|H|ψ⟩
⟨ψ|ψ⟩ (47)

by looking at the expectation value of the Hamiltonian H = Ĵ + 1
2
Û where Ĵ =

58

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

J
(
â†1 + â2 + â†2â1

)
and Û = U (n̂2

1 − n̂1 + n̂2
2 − n̂2). Now, using the notation |ψ⟩ =∑10

i=1

∑10
j=1 ci,j|i, j⟩, we analytically obtain

⟨ψ|â†1â2|ψ⟩ =
(

10∑
i=1

10∑
j=1

c∗i,j⟨i, j|
)(

10∑
i′=1

10∑
j′=1

ci′,j′
√
j′(i′ + 1)|i′ + 1, j′ − 1⟩

)

=
10∑
i=1

10∑
j=1

c∗i,j
√
i(j + 1)ci−1,j+1 (48)

Applying the same process for the operator â†2â1 and combining with Equation 48 yields

⟨ψ|Ĵ |ψ⟩ = J
10∑
i=1

10∑
j=1

c∗i,j

(√
i(j + 1)ci−1,j+1 +

√
j(i+ 1)ci+1,j−1

)
(49)

On the other hand,

⟨ψ|n̂1|ψ⟩ =
(

10∑
i=1

10∑
j=1

c∗i,j⟨i, j|
)(

10∑
i′=1

10∑
j′=1

ci′,j′i|i′, j′⟩
)

=
10∑
i=1

10∑
j=1

i|ci,j|2 (50)

and similarly,

⟨ψ|n̂2
1|ψ⟩ =

10∑
i=1

10∑
j=1

i2|ci,j|2 (51)

Again, applying the same process for the operators n̂2
2 and n̂2 implies

⟨ψ|1
2
Û |ψ⟩ = U

2

10∑
i=1

10∑
j=1

|ci,j|2
(
i2 + j2 − i− j

)
(52)

Without further simplification, we naively define the respective functions hopping term and

on site in script 5.1 to calculate the energy of the resulting quantum state, which turns out

to be 2.135642775045301.

59

Script 5.3: Calculating Energy of evolved state 2 3

1 import numpy as np

2 cutoff = 10 # Fock dimension truncation

3

4 def hopping_term(statevec):

5 svc = np.conj(statevec)

6 hop = 0

7 for i in range(cutoff):

8 if i == 0:

9 for j in range(1,cutoff):

10 hop += (svc[i,j]*np.sqrt((i+1)*j)*statevec[i+1,j-1])

11 else:

12 for j in range(cutoff-1):

13 hop += (svc[i,j]*np.sqrt(i*(j+1))*statevec[i-1,j+1])

14 if i < cutoff-1:

15 for x in range(1,cutoff):

16 hop += (svc[i,x]*np.sqrt((i+1)*x)*statevec[i+1,x-1])

17 return np.abs(hop*J)

18

19 def on_site(statevec):

20 on_site = 0

21 for i in range(cutoff):

22 for j in range(cutoff):

23 on_site += np.abs(statevec[i,j])*(i**2+j**2-i-j)

24 return np.abs(on_site*U/2)

25

26 sket = state.ket() # Extract resulting statevector

27 inner_prod = np.abs(np.vdot(sket,sket)) # Calculate statevector's norm

28 energy = (hopping_term(sket)+on_site(sket))/inner_prod # Calculate total energy

29 print(energy)

5.2 Variational Quantum Eigensolver

First introduced in 2014,19 the variational quantum eigensolver (VQE) is a hybrid algorithm

that utilizes both quantum and classical computers to find the lowest energy eigenstate (or

ground state) and some excited states of a physical system, such as a molecule. Provided a

guessed quantum circuit, or ansatz, the quantum processor computes the expectation value of

the system with respect to an observable, such as the Hamiltonian, which is fed to a classical

optimizer to improve the guess. This algorithm is justified by the variational principle of

60

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

quantum mechanics which states that, for any normalizable quantum state |ψ⟩ then

⟨ψ|H|ψ⟩
⟨ψ|ψ⟩ ≥ E0 (53)

where E0 is the ground state of the Hamiltonian H, and equality is attained if and only if

|ψ⟩ is indeed the system’s lowest energy eigenstate. The Python library Strawberry Fields,

used in this tutorial, supports the Tensorflow backend which allows better optimization

algorithms, other machine learning tools, and possible GPU utilization. With the essential

steps for running a quantum circuit in Strawberry Fields is explained in Section 5.1, we only

focus on setting up VQE in this subsection. Script 5.2 shows the necessary packages, dictates

the global variables, and defines the functions needed for later visualization.

Script 5.4: Setting up for performing VQE 2 3

1 import numpy as np

2 import strawberryfields as sf

3 import tensorflow as tf

4 from matplotlib import pyplot as plt # for visualization

5

6 lr = 0.1 # Learning rate for TensorFlow optimizers

7 active_std = 0.001 # Standard deviations for normal distributions

8 passive_std = 0.1

9 tf.random.set_seed(42) # Global seed to ensure reproducibility over runs

We now first demonstrate how to optimize the parameters of a displacement gate so that

a desired coherent state is attained. To remind ourselves, the coherent state |α⟩ is defined

as the eigenstate associated with eigenvalue α of the annihilation operator. Now, for a given

target statevector |ψt⟩ (in this case, |ψt⟩ = |α⟩) in the Fock basis, its Uhlmann’s fidelity, over

overlap, with the pure output state |ψ⟩ is given by

F =
∣∣⟨ψ|ψt⟩∣∣2 (54)

, which is always non-negative and not exceeding 1 by the Cauchy-Schwarz inequality. Here,

61

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

we run an optimization for *hyperparameter* Θ containing all parameters involved in each

operation/gate in each layer of the circuit so as to maximize the fidelity F near 1 as possible.

We now let α = 1√
2
+ 1√

2
i = ei

π
4 , and knowing the effect of the displacement gate acting on

the vacuum state

D(z)|0⟩ = |z⟩ (55)

with z = reiϕ, it is expected that r will be optimized to around 1 and ϕ to around π
4
. Script

5.2 shows how to perform this optimization of the displacement gate parameters.

62

Script 5.5: Optimizing to coherent state via displacement gate 2 3

1 # Initialize engine, program objects, and parameters

2 eng = sf.Engine(backend="tf", backend_options={"cutoff_dim": 6})

3 circuit = sf.Program(1)

4 tf_r = tf.Variable(tf.random.normal(shape=[], stddev=0.001))

5 tf_phi = tf.Variable(tf.random.normal(shape=[], stddev=0.001))

6 r, phi = circuit.params("r", "phi")

7 # Define circuit

8 with circuit.context as q:

9 sf.ops.Dgate(r, phi) | q[0]

10

11 opt = tf.keras.optimizers.Adam(learning_rate=0.1) # Define optimizer

12 steps = 100

13 best_fid = 0

14 # Target coherent state in Fock basis

15 alpha = 0.70710678118+0.70710678118j

16 coh = lambda a, dim: np.array([np.exp(-0.5 * np.abs(a) ** 2) * (a) ** n /

np.sqrt(np.math.factorial(n)) for n in range(dim)])↪→

17 target_statevec = coh(alpha,cutoff)

18 # Optimization starts here

19 for step in range(steps):

20

21 # Reset the engine if it has already been executed

22 if eng.run_progs:

23 eng.reset()

24

25 with tf.GradientTape() as tape:

26 # Execute the engine

27 results = eng.run(circuit, args={"r": tf_r, "phi": tf_phi})

28 # Get the probability of fock state |1>

29 fid = results.state.fidelity_coherent([alpha])

30 # Save ket/statevector

31 ket = results.state.ket()

32 # Negative sign to maximize prob

33 loss = 1-tf.sqrt(fid)

34

35 gradients = tape.gradient(loss, [tf_r, tf_phi])

36 opt.apply_gradients(zip(gradients, [tf_r, tf_phi]))

37 print("Fidelity at step {}: {}".format(step, fid))

38 if fid > best_fid:

39 best_fid = fid

40 best_r = tf_r

41 best_phi = tf_phi

42 learnt_state = ket.numpy()

43

44 if step == 0:

45 first_step_state = ket.numpy()

46

47 print(best_fid.numpy(),best_r.numpy(),best_phi.numpy())

63

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

In fact, one can plot the Wigner phase-space representation of the target, initial and

learnt states, shown respectively in Figure 14. As the optimized parameters r ≈ 1.0003 and

ϕ ≈ 0.78734136 are close to expected, the high fidelity of 0.9988 can be visualized by the

high similarity of the Wigner representations of the target and learnt states.

Figure 14: Wigner representations of the target, initial and learnt states

We now move on to numerically demonstrate the Hong-Ou-Mandel effect,20 which states

that when two identical photons enter a 50-50 beamsplitter (i.e., at θ = π
4
), they will always

exit together in the same output mode. In the Fock basis, an input state of |11⟩ will be

transformed to either |02⟩ or |20⟩, regardless of the phase angle ϕ. Script 5.2 shows how the

transmittivity angle θ and phase angle ϕ will be optimized so that the total probability of

obtaining |02⟩ and |20⟩ is maximized near 1 as possible. As expected, θ is optimized to ±π
4

(the sign of θ is not important, since the expression describing the beamsplitter effect, given

in Table 2, only involves cos θ). On the other hand, ϕ is optimized to around 0, since we

started with a normal distribution for ϕ centered around 0, and the Hong-Ou-Mandel effect

holds regardless of the value of ϕ.

64

Script 5.6: Demonstrating the Hong-Ou-Mandel effect 2 3

1 # Initialize engine and program objects

2 eng = sf.Engine(backend="tf", backend_options={"cutoff_dim":

7,"prepare_fock_state":[1,0],"prepare_fock_state":[1,1]})↪→

3 circuit = sf.Program(2)

4 tf_theta = tf.Variable(tf.random.normal(shape=[], stddev=0.001))

5 tf_phi = tf.Variable(tf.random.normal(shape=[], stddev=0.001))

6 theta, phi = circuit.params("theta", "phi")

7 # Define circuit

8 with circuit.context as q:

9 sf.ops.Fock(1) | q[0]

10 sf.ops.Fock(1) | q[1]

11 sf.ops.BSgate(theta, phi) | (q[0],q[1])

12 # Define parameters for optimization

13 opt = tf.keras.optimizers.Adam(learning_rate=0.1)

14 steps = 50

15 best_prob = 0

16 # Start optimization

17 for step in range(steps):

18 if eng.run_progs:

19 eng.reset()

20 with tf.GradientTape() as tape:

21 # execute the engine

22 results = eng.run(circuit, args={"theta": tf_theta, "phi": tf_phi})

23 # get the probability of fock state |02> + |20>

24 prob = results.state.fock_prob([0,2])+results.state.fock_prob([2,0])

25 # negative sign to maximize prob

26 loss = 1-tf.sqrt(prob)

27 gradients = tape.gradient(loss, [tf_theta, tf_phi])

28 opt.apply_gradients(zip(gradients, [tf_theta, tf_phi]))

29 print("Prob at step {}: {}".format(step, prob))

30 if prob > best_prob:

31 best_prob = prob

32 best_theta = tf_theta

33 best_phi = tf_phi

34 best_state = results.state

35 print(best_prob.numpy(),best_theta.numpy(),best_phi.numpy())

6 Conclusion

In Part I of our tutorial, we explained the process of simulating quantum dynamics ac-

cording to the Time-Dependent Schrodinger Equation with classical computers, qubit-based

quantum computers and qumode-based quantum computers. We have also covered a series

65

https://colab.research.google.com/drive/1iJpNpjbbV2rn8lRlz8UMv1VVCXgfDpob?usp=sharing

of advanced quantum algorithms that facilitate the implementation of complicated chemical

dynamics on quantum computers, including Sum of Unitaries decomposition for Hamiltonian

simulation, propagation with Trotterization, and Variational Quantum Eigensolver for both

time evolution and optimization. We expect that Part I of our tutorial serves as a starting

point for carrying out molecular quantum dynamics simulations on quantum computers, and

for quantum simulations of Markovian and Non-Markovian open quantum systems that we

are going to cover in Part II and III.

Acknowledgement

We acknowledge the financial support of the National Science Foundation under award num-

ber 2124511, CCI Phase I: NSF Center for Quantum Dynamics on Modular Quantum Devices

(CQD-MQD).

References

(1) Johansson, J.; Nation, P.; Nori, F. QuTiP: An open-source Python framework for the

dynamics of open quantum systems. Computer Physics Communications 2012, 183,

1760–1772.

(2) Johansson, J.; Nation, P.; Nori, F. QuTiP 2: A Python framework for the dynamics of

open quantum systems. Comput. Phys. Commun. 2013, 184, 1234–1240.

(3) Godbeer, A. D.; Al-Khalili, J. S.; Stevenson, P. D. Modelling proton tunnelling in the

adenine–thymine base pair. Physical Chemistry Chemical Physics 2015, 17, 13034–

13044.

(4) Soley, M. B.; Bergold, P.; Gorodetsky, A. A.; Batista, V. S. Functional Tensor-Train

Chebyshev Method for Multidimensional Quantum Dynamics Simulations. Journal of

Chemical Theory and Computation 2021, 18, 25–36.

66

(5) Wang, T.; Sanz, S.; Castro-Esteban, J.; Lawrence, J.; Berdonces-Layunta, A.;

Mohammed, M. S. G.; Vilas-Varela, M.; Corso, M.; Peña, D.; Frederiksen, T.;

de Oteyza, D. G. Magnetic Interactions Between Radical Pairs in Chiral Graphene

Nanoribbons. Nano Letters 2022, 22, 164–171, PMID: 34936370.

(6) Fiori, E. R.; Pastawski, H. Non-Markovian decay beyond the Fermi Golden Rule: Sur-

vival collapse of the polarization in spin chains. Chem. Phys. Lett. 2006, 420, 35–41.

(7) Yuan, X.; Endo, S.; Zhao, Q.; Li, Y.; Benjamin, S. C. Theory of variational quantum

simulation. Quantum 2019, 3, 191.

(8) Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.-H.; Zhou, X.-Q.; Love, P. J.; Aspuru-

Guzik, A.; O’Brien, J. L. A variational eigenvalue solver on a photonic quantum pro-

cessor. Nature Communications 2014, 5 .

(9) Tilly, J.; Chen, H.; Cao, S.; Picozzi, D.; Setia, K.; Li, Y.; Grant, E.; Wossnig, L.;

Rungger, I.; Booth, G. H.; Tennyson, J. The Variational Quantum Eigensolver: A

review of methods and best practices. Physics Reports 2022, 986, 1–128.

(10) Weedbrook, C.; Pirandola, S.; Garćıa-Patrón, R.; Cerf, N. J.; Ralph, T. C.;

Shapiro, J. H.; Lloyd, S. Gaussian quantum information. Rev. Mod. Phys. 2012, 84,

621–669.

(11) Killoran, N.; Izaac, J.; Quesada, N.; Bergholm, V.; Amy, M.; Weedbrook, C. Strawberry

Fields: A Software Platform for Photonic Quantum Computing. Quantum 2019, 3, 129.

(12) Bromley, T. R.; Arrazola, J. M.; Jahangiri, S.; Izaac, J.; Quesada, N.; Gran, A. D.;

Schuld, M.; Swinarton, J.; Zabaneh, Z.; Killoran, N. Applications of near-term photonic

quantum computers: software and algorithms. Quantum Science and Technology 2020,

5, 034010.

67

(13) Lloyd, S.; Braunstein, S. L. Quantum Computation over Continuous Variables. Phys.

Rev. Lett. 1999, 82, 1784–1787.

(14) Sefi, S.; van Loock, P. How to Decompose Arbitrary Continuous-Variable Quantum

Operations. Phys. Rev. Lett. 2011, 107, 170501.

(15) Aspuru-Guzik, A.; Dutoi, A. D.; Love, P. J.; Head-Gordon, M. Simulated Quantum

Computation of Molecular Energies. Science 2005, 309, 1704–1707.

(16) James D. Whitfield, J. B.; Aspuru-Guzik, A. Simulation of electronic structure Hamil-

tonians using quantum computers. Molecular Physics 2011, 109, 735–750.

(17) Kalajdzievski, T.; Quesada, N. Exact and approximate continuous-variable gate de-

compositions. Quantum 2021, 5, 394.

(18) Scalettar, R.

(19) Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.-H.; Zhou, X.-Q.; Love, P. J.; Aspuru-

Guzik, A.; O’Brien, J. L. A variational eigenvalue solver on a photonic quantum pro-

cessor. Nature Communications 2014, 5, 4213.

(20) Hong, C. K.; Ou, Z. Y.; Mandel, L. Measurement of subpicosecond time intervals

between two photons by interference. Physical Review Letters 1987, 59, 2044–2046.

7 Appendix

7.1 Source Code

7.2 Software Requirements

68

	Introduction
	Chemical Dynamics Simulations
	Simulations on Digital Computers
	Split-Operator Fourier Transform Method
	QuTiP Methods

	Qubit-Based Simulations
	Setting up a quantum dynamics calculation on the IBM Quantum platform with Qiskit
	Encoding an arbitrary Hamiltonian in the basis of Pauli matrices
	Quantum Split-Operator Fourier Transform Method
	Simulating an Hamiltonian Expressed in the Basis of Pauli Matrices
	Implementing Real-Time Dynamics with Trotterization
	More Compact Trotterization Scheme
	Initializing a Quantum Circuit with Qiskit
	Qubit-based Quantum Experiments

	Using the Hadamard Test for Calculating Expectation Values
	Hadamard Test Function
	Processing the Hadamard Test Results
	How to execute the Hadamard test for our operator?

	Variational Quantum Real Time Evolution
	Variational Quantum Eigensolver

	Qumode-Based Simulations
	Hamiltonian propagation
	Variational Quantum Eigensolver

	Conclusion
	Acknowledgement
	References
	Appendix
	Source Code
	Software Requirements

