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ABSTRACT
Retrosynthesis, the strategy of devising laboratory pathways for small molecules by working back-
wards from the target compound, remains a rate limiting step in multi-step synthesis of complex
molecules, particularly in drug discovery. Enhancing retrosynthetic efficacy requires overcoming the
vast complexity of chemical space, the limited known interconversions between molecules, and the
challenges posed by limited experimental datasets. In this study, we introduce generative machine
learning methods for retrosynthetic planning that generate reaction templates. Our approach features
three key innovations. First, the models generate complete reactions, known as templates, instead of
reactants or synthons. Through this abstraction, novel chemical transforms resembling those in the
training dataset can be generated. Second, the approach optionally allows users to select the specific
bond or bonds to be changed in the proposed reaction, enabling human interaction to influence the
synthetic approach. Third, one of our models, based on the conditional kernel-elastic autoencoder
(CKAE) architecture, employs a latent space to measure the similarity between generated and known
reactions, providing insights into their chemical viability. Together, these features establish a coherent
framework for retrosynthetic planning, as validated by our experimental work. We demonstrate the
application of our machine learning methodology to design a synthetic pathway for a simple yet
challenging small molecule of pharmaceutical interest. The pathway was experimentally proven
viable through a 3-step process, which compares favorably to previous 5-9 step approaches. This
improvement demonstrates the utility and robustness of the generative machine learning approaches
described herein and highlights their potential to address a broad spectrum of challenges in chemical
synthesis.
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1 Introduction

Retrosynthesis is the design of breaking down complex
molecules into simpler building blocks, a concept origi-
nally developed by Corey as a means to educate students to
conduct multi-step synthesis [1]. This intellectual frame-
work laid the foundation for the development of Computer-
Aided Synthesis Planning (CASP), a field that emerged
to assist chemists in navigating various paths of synthesis,
playing a pivotal role in augmenting human capabilities
for refining a synthetic approach [2, 3]. In the earlier
stages, systems based on expert rules provided valuable
insights for chemists [4, 5, 6, 7]. As organic chemistry
advanced, encompassing broader chemical space and syn-

thetic methodologies, recent advancements in CASP have
shifted from rule-based to precedent-based approaches [8].
This shift was facilitated by the large-scale extraction of
reaction rules [9]. The process progressed from manual
creation to automated extraction from extensive chemi-
cal datasets. Several extraordinary software packages had
emerged due to this transition which empowered CASP
tools to tap into vast repositories of historical reaction
data [8, 10, 11]. Grzybowski and others [12, 13] further in-
troduced user-purpose-driven tools for route optimization,
demonstrating remarkable success through experimental
validations [14, 15, 16]. Furthermore, the integration of
machine learning (ML) methods has marked the latest
chapter in the ongoing evolution of CASP [17, 18]. ML
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Figure 1: Common machine learning methods for retrosynthesis and our approach. (a) Reactants and templates can be
selected or generated based on a target compound using different machine learning models. Template generation is
used in this work. (b) A structured latent space is incorporated in one of the models in this work. Sampling in the latent
space can give different reaction templates for given products. (c) Reduction of synthetic steps for a key intermediate
for active pharmaceutical ingredients (API).
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models offer promising alternatives and can be broadly cat-
egorized as selection-based, semi-template, or generation-
based methods [19] (see Fig. 1a).

Selection-based methods, such as reactant selection and
template selection methods, aim to choose appropriate
molecules or reaction rules from the given sets. Reactant
selection methods [20, 21] involve ranking molecules from
a collection of candidates based on the target compounds.
While reactant selection methods have the advantage of
ensuring the chosen molecules are valid, their effectiveness
relies on the availability of reactants in the candidate sets.
Template selection methods [22, 23, 24, 25, 26, 27, 28]
rank the reaction templates in terms of their applicability
to the target molecules. These templates capture subgraph
patterns representing the change in atoms and bonds during
a reaction. Notably, the RDChiral repository by Coley et
al. [29] offers template extraction methods and a collec-
tion of reaction templates in the form of SMARTS strings.
Template selection methods simplify the reaction repre-
sentation to a single template instead of multiple reactants.
Additionally, the same template can be applied to different
target compounds instead of having multiple sets of reac-
tants for the target compounds, thereby providing a higher
coverage of reaction space. However, like reactant selec-
tion methods, template selection methods are dependent
on the coverage and diversity of available templates within
predefined reaction rules.

Semi-template methods [30, 31, 32, 33, 34, 35] involve
the identification of reaction centers, synthons, or leav-
ing groups, followed by the prediction of corresponding
reactants based on these rules. Some semi-template meth-
ods [32, 34, 35] are akin to selection-based methods, where
reactants are obtained by predicting reaction centers and se-
lecting from a collection of leaving groups, or by selecting
necessary edits on molecular graphs. Other semi-template
methods adopt generation components, in which reactants
are generated from products and identified synthons or
rules.

Generation-based methods are not bound by the sets
of available reactants or templates and hold promise to
mapping wider areas of chemical space. These include
template-free methods [36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51] that treat reactant generation as
a translation task, aiming to predict the reactants directly
from the given products without having in-dataset reaction
rules. They therefore bear the potential to explore a wider
range of possible reactions.

In this study, we introduce template generation which rep-
resents a new distinct category of generation-based meth-
ods for retrosynthetic planning. Template generation mod-
els employ the Sequence-to-Sequence (S2S) architecture
trained to translate product information into reaction tem-
plates, as opposed to generating reactants. The capability
of template generation thus extends beyond the available
templates or predefined reaction rules of template selection-
based approaches, enabling the discovery of novel reaction
templates that expand the scope of retrosynthetic planning.

The combination of generated reaction templates and the
"RunReactants" function from RDKit, offer an efficient
means to swiftly identify templates that yield grammati-
cally coherent reactants from given products. This facil-
itates the exploration of previously uncharted chemical
reactions and pathways.

One of the major benefits of using template generation
is the ease of checking the reaction validity. During the
transformation of a reaction template, the product is guar-
anteed to be converted to the reactant with exact matching
of atoms indices and relevant functional groups from the
description of the template. In comparison to reactant gen-
erative models, this feature greatly reduces the uncertainty
in the produced reactants which might not correspond to
any known reactions or have key atom mismatches due to
problems during decoding.

The second design is a sampling generative model (sam-
pling model) for template generation conditioned by target
compounds. S2S models, such as those employed in the
template-free methods, predict pathways deterministically
and do not have a sampling process or definition of latent
space. In contrast, our sampling model has a latent space,
enabling the generation, interpolation, extrapolation, and
distance measurement of various templates (Fig. 1b). De-
terministic models that take target compounds as inputs
and generate templates are also developed in this work.
Importantly, the encoder of the model can incorporate po-
sitional embedding for reaction centers, enabling users to
specify specific reacting sites during prediction. Results
are benchmarked on the USPTO-FULL dataset.

Our sampling model, based on the conditional kernel-
elastic autoencoder (CKAE) [52], is the first of its kind in
the field of retrosynthesis. This model conditions on corre-
sponding products during training, allowing interpolation
and extrapolation of reaction templates in latent space to
generate new reaction templates during the sampling pro-
cess. The latent space also provides a measure of distances
between reaction templates, allowing us to identify the
closest reaction reference within the dataset, or determine
the similarity between two chemical reactions.

Our template generation method introduces a design where
site-specific templates (SST) are generated along with tar-
get compounds with labeled reaction centers (i.e., center-
labeled products, CLP) that specifies the reaction centers.
This results in the generation of concise and informative
sets of templates that are different from the templates avail-
able in the RDChiral repository [29]. Through benchmark-
ing with a public dataset, the performance of our approach
is demonstrated.

With SSTs and generation methods in place, our approach
is validated through the practical application of synthe-
sis. A library of potent anti-cancer agents was recently
reported by Boehringer Ingelheim [53]. One of the key
intermediates for the synthesis of these anti-cancer com-
pounds is compound 1, a cyclohexanone with a quaternary
chiral center in the α-position containing an alkyne moi-
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ety (Fig. 1c) [54, 55]. Our objective was to develop a
more step-efficient route to synthesize compound 1. The
route proceeds over 3 steps, compared to prior approaches
that required 5-9 steps, including a recent process involv-
ing Grignard-mediated epoxide opening as a key step in
a 5-step route starting from commercial starting mate-
rials [54, 55]. Reducing the number of steps in a syn-
thetic process is enabling to develop scalable and more
sustainable approaches, while also reducing the amount
of time necessary for each batch [56, 57]. Our experimen-
tal validation demonstrates the practicality and reliability
of the retrosynthetic predictions, suggesting their under-
lying promise to address a wide spectrum of synthetic
challenges.

2 Results and Discussion

2.1 Site-Specific Templates and Center-Labeled
Products

Reaction templates that only apply to reaction centers
within the target compounds are referred to as site-specific
templates (SST). These are different from RDChiral tem-
plates which involve a broader structural context [29] since
SSTs do not differentiate neighboring atoms or special
functional groups when matching substructures within the
target compounds. The presence of center-labeled prod-
ucts (CLP) is a pre-requisite for the effective use of SSTs.
Such labeling is essential to avoid ambiguity when a SST
can be applied to multiple sites within a target compound.
Examples of SST and CLP are shown in Fig. 2a where
the "*" symbol represents the reaction centers. To prepare
SSTs, the radius parameter in RDChiral is set to 0 (while
RDChiral normally sets radius to 1 which captures 1 bond
away from the reaction centers) and special functional
groups are removed. Therefore, neighboring atoms and
distal functional groups are not included in SSTs. Also,
explicit degrees and explicit numbers of hydrogens are not
included in the SSTs. To prepare CLPs, RDChiral also
has implementations to capture the changed atoms, so the
centers can be labeled for target compounds. Further ex-
planations and examples are provided in the SI (Sec. 5.1
and Sec. 5.2).

2.2 Deterministic Model Performance

Figure 2 shows a schematic representation of the deter-
ministic models, Model A and Model B. Model A takes a
target compound as an input and translates it into SSTs and
CLPs. CLPs specify how the SSTs should be applied to the
target compound. Model B takes the target and the specific
reaction centers and generates templates corresponding to
those specific sites (see SI Sec. 5.3 for more information
and Fig. 8 for a comparison of the models).

Figure 3 shows the comparative analysis of the perfor-
mance for Models A and B (highlighted in red), in terms
of Top-K accuracy, as compared to state-of-the-art meth-
ods. Top-K accuracy measures the percentage of top K
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Figure 2: Schematic retrosynthetic workflow for Models A
and B. (a) Workflow of Model A. (b) Workflow of Model B.
Model B has reaction center embeddings and does not have
center-labeled products in the output. Detailed descriptions
of the models are provided in the SI (Sec. 5.3 and Sec. 5.4)
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Figure 3: USPTO-Full Top-K accuracy of retrosynthe-
sis models. GLN [26], LocalRetro [27], and Neural-
sym [22] in black are template-based selection meth-
ods. GraphRetro [32], RetroPrime [33], and RetroEx-
plainer [34] in yellow are semi-template methods.
GTA [43], Tied-Transformer [48], MEGAN [45], Trans-
former [42], and R-SMILES [50] in green are template-
free generation methods. This work (in red) uses a
template-generation method. Reactant-based selection
methods are not included due to out-of-memory for the
USPTO-FULL dataset [19]. 1 indicates that if the correct
reactants contain one of the 50 most commonly seen spec-
tators in the USPTO-Full dataset, the reaction is removed
from the test set. 2 indicates that reaction centers are pro-
vided. 3 indicates that the maximum number of reaction
centers is two.

predictions containing reactants that precisely match the
ground truth reactants in the testing set. Figure 3 includes
results for the original USPTO-Full testing dataset as well
as for a cleaned testing set to address errors related to atom-
mappings such as solvent and reagent atoms erroneously
considered as part of the reactions. The cleaned testing
set is prepared by removing reactions containing reactants
that are the 50 most frequently observed spectators in the
USPTO-FULL dataset. The size of the cleaned testing set
is 90.7% of the original set of 95k reactions. Top-K results
are obtained by using the beam search method.

Model A, which does not use reaction centers, performs
comparably well to other methods. The cleaned set allows
for higher accuracy although it may inadvertently exclude
some reactions where the common spectators actually par-
ticipate as reactants. Model B leverages reaction center
information. On the cleaned set, Model B reaches a per-
formance milestone, achieving an accuracy rate as high as
80% for Top-10 predictions (see SI Sec. 5.7 for details).

RetroExplainer [34], with semi-template components,
demonstrates remarkable prediction accuracy owing to
its data modeling approach and the utilization of a set of
leaving groups. However, this approach may experience

variations in performance when handling uncommon sce-
narios or leaving groups not explicitly represented in the
dataset. R-SMILES [50], a template-free generation-based
method, introduced the root-aligned SMILES representa-
tion to ensure minimal edit distances between product and
reactant SMILES. Through this customized string repre-
sentation and data augmentation, they achieved the highest
accuracy among template-free methods. Nonetheless, data
augmentation is not utilized in this work, leaving room for
potential improvements in accuracy for future endeavors.

Additionally, an analysis of the Top-K accuracy consid-
ering different numbers of reaction centers for Model B
is shown. Over half of the test reactions possess one or
two reaction centers, following the same distribution of
reaction center counts of the training set. Consequently,
for test reactions with a maximum of two reaction centers,
Model B achieved the highest Top-K accuracy compared
to other center counts, with the Top-10 accuracy reached
90% (see last row of Fig. 3 and SI Sec. 5.7), showcasing
exceptional predictive capabilities in scenarios character-
ized by a limited number of reaction centers. The high
Top-K accuracy achieved by Model B for reactions with
few reaction centers is particularly significant, as it cor-
responds to real-world applications where a majority of
reactions feature a low number of reaction centers. For
instance, 90% of the dataset comprises reactions with no
more than four reaction centers (see SI Sec. 5.7).

2.3 Sampling Model with Latent Space

A sampling generative model, which exploits a sampling
process with a latent space, is different from the determinis-
tic approach. To the best of our knowledge, the application
of a sampling model for retrosynthetic planning has not
been explored. Model C is built upon the architecture of
Conditional Kernel-Elastic Autoencoder (CKAE) [52]. In
Model C, both the input and output consist of combinations
of SSTs and CLPs. The goal of Model C, akin to a varia-
tional autoencoder, is to reconstruct the input with latent
space compression. Comparing to previous CKAE molecu-
lar generation models where conditions are represented by
specific values or molecular properties, the CKAE model
as applied to Model C utilizes the SMILES representation
of target molecules as conditions. During the sampling
process, a target compound is provided as the condition
and latent vectors are sampled, different SSTs and CLPs,
which correspond to the same target compound condition,
can then be generated for different latent vectors.

In addition to generative sampling, the encoder of Model
C offers a valuable referencing feature. It maps the input
into a latent space with a distance regularized by a mod-
ified maximum mean discrepancy loss (m-MMD) [52].
This distance furnishes a quantifiable metric for assess-
ing the similarity between reactions, aiding in evaluating
and understanding the differences between chemical trans-
formations. Such capability enables the identification of
similar reactions within the dataset.

5

https://doi.org/10.26434/chemrxiv-2024-zscw8 ORCID: https://orcid.org/0000-0002-3728-0021 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-zscw8
https://orcid.org/0000-0002-3728-0021
https://creativecommons.org/licenses/by-nc-nd/4.0/


O
Me

O

O
Me

Br

Br

O
Me

Br

C:1 C:2C:1Br C:2

O
Me

OH

C:1 C:2C:1O C:2

C:1 C:2C:1O C:2

C:1 C:2C:1
Br C:2

C:1 C:2C:1
O C:2

Br

O
O

Me

OH

O

Decode
Apply

Templates

Latent Space

a

O
Me

O

Me

O

Me

O
Me

TMSO

MeI

OH
Me

O

CHO
Me

O
Me

CHO

Me

H2O2
CHO

Me

O O

B(OH)2
Me

Me

O3
O

Me

O

OEt

O

Me
Br

Br

O

Me

TMS

O

Me

Me

Me
OH

O

Me
CHO

O

Me

O

Me

O

Me

Br
Br

O

Me

TMS
Me

OO

O

MeO

Br

O

Me

O

I

O

MeX
Y

X = H or LG
Y = LG or H

Model A

α-substitution

Model C

O

Br

Me

β-substitution

Br

Model A

Model C

γ-substitution

Model A

Model C
Me

b

O
Me

Product 
Condition

Figure 4: Interpolation of templates in the latent space
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2-, 3-, 4-substituted cyclohexanone derivatives as target
compounds.

The distance between various chemical transformations
in latent space can be used to interpolate between chem-
ical reactions. This can be useful when searching for a
reaction that could be an intermediate between two known
chemical reactions. In Fig. 4a, an interpolation process is
visualized. Initially, two reaction templates are selected,
represented by the top and bottom templates and the latent
vectors in the latent space. These templates serve as the
starting points to explore the intermediates. This interpola-
tion allowed the discovery of the templates corresponding
to each of the latent vectors along the path between the two
originals. It can be observed that the middle templates and
reactants form a blending of the starting templates and re-
actants. This observation provides evidence that the latent
space captures chemical information, showing the distance
measure between various chemical transformations.

c

Me

OO
O

NO

O O

Me

HO

Me

O
OO N

O

O
O

Me

O

Me
OH

starting material

O
Me

intermediate

C:2C:1OC:1 + C:2

Model B Generated Model C Latent Reference from Training Dataset
b

O
Me

O

CHO
Me

O
Me

Me

O
O

Me

O
Me

OH

O
Me

O

O

O
Me

CN

O

Br
Me

Li
O3

O

Cl
Me

MgBr

O

Me
OH

O

OAc
Me

Br

O
Me

O
Me

Cl

O

target

intermediate

intermediate

starting material

level 2level 1 level 3

O

a

O

Me

O
Me

49%, 95:5 er

O3
then PPh3

O

CHO

Me

86%

NfF, BTTP

O
Me

78%

Pupo et al.

Figure 5: Retrosynthesis tree for compound 1 and its syn-
thesis. (a) A synthetic route is selected from the retrosyn-
thesis tree generated by Model B. (b) Reference found with
Model C for the allylation step. (c) Experimental proce-
dure for the selected route: i) 2-methylcyclohexanone (1
equiv.), allyl methyl carbonate (3 equiv.), Pd2(dba)3 (5 mol
% Pd), t-BuXPhos (11 mol %), R-TRIP (10 mol %), 3Å
MS, CyH, 45 ºC, 5 days, 49%; ii) O3, CH2Cl2, - 78 ºC,
then PPh3 (2 equiv.), -78 ºC → rt, 16 h, 86%; iii) NfF (1.05
equiv.), BTTP (6 equiv.), DMF, - 30 ºC → rt, 19 h, 78%.

To illustrate the differences between Model A (determin-
istic) and Model C (generative sampling), both without
reaction center information, the single-step predictions
of 2-, 3- and 4-substituted cyclohexanone derivatives are
examined. Based on the acquired results, representative
precursors are selected for all three target molecules. As
shown in Fig. 4b, Model A suggestions are primarily based
on functional group interconversions and protection reac-
tions. While Model C also proposes these transformations,
diverse precursors and reactions are also proposed. These
examples complement the intuitive bias of many synthetic
chemists and point to areas of opportunity for creative
development of novel chemical transforms.

2.4 Experimental Validation

Developing inexpensive, rapid and robust methods for the
synthesis of bioactive molecules is one of the key goals in
the pharmaceutical chemistry [58]. Herein, we utilized our
Model B, chosen because of its high accuracy and reaction
center embedding, for establishing the shortest route for
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the synthesis of a target compound. Fig. 5a highlights
how Model B can be used to navigate multiple options
for retrosynthesis. Each level corresponds to a new pre-
diction by the single-step model to reach an intermediate.
Importantly this tool highlights the interactive nature of
this model with a human expert who selects intermediates
for further analysis.

Fig. 5b serves as a reference point derived from Model
C. The left-hand side illustrates the allylation step that we
employed in our synthesis. On the right-hand side, the
reference is obtained by encoding the allylation template
and the product labeled with the reaction center into Model
C’s latent space. This process allows us to identify the
closest latent vectors from the training dataset, and that
closest reference corresponds to the reaction shown on the
right-hand side of Fig. 5b. Interestingly, the exact chemical
transformation that was suggested had previously been
conducted, but is not in the USPTO-FULL dataset. This
highlights how our approach compliments other synthetic
planning tools, such as Reaxys and SciFinder.

In order to synthesize the enantiomerically enriched target
molecule, we applied the enantioselective Pd-catalyzed
Tsuji-Trost allylation of a ketone and applied conditions
recently reported by Pupo et al. [59]. The prior literature
protocol for this substrate reported an enantiomeric ratio
of 95.5:4.5. The allylated intermediate was treated with
ozone in order to obtain the ketoaldehyde derivative in
good yield (Fig. 5c). For the final step, a modified pro-
cedure by Boltukhina et al. [60] was applied to form the
alkyne in 78% yield. The overall yield of our 3-step route
is 33%, despite our route not having undergone process
optimization. It should be stated that further process op-
timization is expected to improve the efficiency of this
approach, although this proof-of-concept demonstrates the
ability to develop step-efficient routes. This experimental
procedure serves as evidence that the newly developed ML
models can facilitate the development of synthetic routes
for pharmaceutically significant molecules and enhance
existing routes.

An alternative to the route presented in Fig 5c, an even
shorter route to compound 1, could be one entailing di-
rect α-alkynylation of 2-methylcyclohexanone. Methods
for direct introduction of an alkyne moiety next to a ke-
tone are scarce and rely on substitution with electrophilic
alkyne species (selected examples: [61, 62, 63, 64, 65, 66]).
Most commonly used in modern organic chemistry are
hypervalent iodine reagents such as Waser’s or Ochiai’s
reagent [67]. While this method would furnish the tar-
get molecule in fewer synthetic steps, it would have to
be followed by separation of two enantiomers since enan-
tioselective α-alkynylation of ketones has not yet been
reported.

3 Conclusions

In this work, a string-based approach for retrosynthesis
planning is introduced, utilizing generative models to ad-

dress the challenges posed by the vast chemical space and
synthesis complexity. Specifically, this work introduces
template generation as a new category in machine learn-
ing methods for computer-aided synthesis planning. Two
types of generative models are developed, including deter-
ministic generative models (Model A and Model B) and a
sampling generative model that utilizes CKAE (Model C).

Model A and Model B are benchmarked on the USPTO-
FULL dataset. Particularly, Model B can incorporate re-
action center information, enabling the generation of tem-
plates that apply to the specified reacting sites. On the
other hand, Model C represents a pioneering application of
sampling method from latent space, capable of generating
diverse reactions. The design of Model C defines distances
between reactions, which allows Model C to identify the
closest reference from the dataset for newly generated
templates, making it a suitable tool for generating and
validating a wide range of potential reactions.

This work presents two approaches for single-step syn-
thetic planning, high-accuracy deterministic models and
high-diversity sampling models. The capability of spec-
ifying reacting sites, the availability of relevant reaction
references, and the successful results of experimental vali-
dations on an important pharmaceutically-relevant interme-
diate make the models valuable tools in guiding retrosyn-
thetic analysis.

4 Methods

4.1 Training Details

10% dropout was applied to all attention matrices and
embedding vectors. ADAM optimizer [68] was used with
a learning rate of 5× 10−5. Gradient normalization [69]
was set to 1.0. During training, each token in the input
to the encoders has a 15% chance of being replaced by a
mask token for Model A and Model B.

4.2 Model Architecture

Models A, B, and C each has 6 layers of transformer en-
coders and decoders as implemented in [70]. For Models A
and B, 8 attention heads and an embedding size of 256 are
used. For Model C, 16 attention heads and an embedding
size of 512 are used.

The reaction center embeddings for Model B are achieved
by adding the embedding of the reaction center token "*"
at the specific position of the atoms similar to the concept
of positional embeddings.

Model C is constructed based on the conditional kernel-
elastic autoencoder model [52], with a 5120-dimensional
latent space. The conditions are embeddings of target com-
pounds and are also achieved by 6 layers of transformer
encoders and 16 heads with an embedding size of 512 [70].
These embeddings are then compressed into 10 embedding
vectors by a linear layer and concatenated with the input
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embedding and the latent space. See SI Sec. 5.4 and Fig. 10
for more details and visualization of the architecture.

4.3 Beam Search

To derive multiple possible predictions, beam search [42] is
used across all models. During decoding, the transformer
decoder attends to the encoder output and the sequence
that had been generated. The decoder outputs probabilities
of all possible tokens for the next position in the sequence.
Beam search maintains a fixed-size set of candidate se-
quences, the number that the method keeps is called the
beam size B. The top B most probable sequences at each
decoding step are selected to proceed to the next step of
decoding until the stopping criteria of maximum allowed
length is reached or an End Of Sequence (<EOS>) token
is output.

For the Top-K accuracy test, beam search with a beam
size of 50 is used during all decoding processes. At each
decoding step, the model outputs the 50 most probable can-
didate tokens and continues the sequence until the stopping
criteria is met.

The diversity of deterministic models is solely derived
from the beam search process, as this type of model lacks
a latent space for sampling. Consequently, generating
novel reactions using a deterministic model through beam
search can be challenging. In contrast, the sampling model,
equipped with a latent space, can generate diverse and
novel reactions more effectively.

Acknowledgments

VSB acknowledges a generous allocation of high-
performance computing time from NERSC. The devel-
opment of the methodology was supported by the NSF
CCI grant (VSB, Award Number 2124511). The appli-
cations and experiments were supported by Boehringer
Ingelheim.

Data Availability

The 50 most commonly seen spectators are obtained from
the USPTO-Full reaction file on RDChiral GitHub Repos-
itory [29]. While the train-validation-test split of the
USPTO-Full dataset is obtained from the GitHub reposi-
tory of [42].

Author Contributions

The machine learning methods are developed by YS and
HL, with equal contributions, under the guidance from
VSB. The experimental validations are conducted by AMN
and PZ, with equal contribution, under the guidance from
TRN. The experimental design and execution were advised
and supervised by SS, FB, JJS, and TRN. The initial draft

of the manuscript was primarily written by YS, with contri-
butions from all authors during the final draft preparation.

References

[1] E. J. Corey and W. Todd Wipke. Computer-Assisted
Design of Complex Organic Syntheses: Pathways for
molecular synthesis can be devised with a computer
and equipment for graphical communication. Science,
166(3902):178–192, 1969.

[2] Ajit J. Thakkar. The coming of the computer age to
organic chemistry: Recent approaches to systematic
synthesis analysis. 39/1:3–18, 1973.

[3] Alan R. Katritzky, Minati Kuanar, Svetoslav Slavov,
C. Dennis Hall, Mati Karelson, Iiris Kahn, and Dimi-
tar A. Dobchev. Quantitative Correlation of Physical
and Chemical Properties with Chemical Structure:
Utility for Prediction. Chem. Rev., 110(10):5714–
5789, 2010.

[4] W. Todd Wipke and W. Jeffrey Howe, editors.
Computer-Assisted Organic Synthesis, volume 61.
AMERICAN CHEMICAL SOCIETY, 1977.

[5] H. L. Gelernter, A. F. Sanders, D. L. Larsen, K. K.
Agarwal, R. H. Boivie, G. A. Spritzer, and J. E. Sear-
leman. Empirical Explorations of SYNCHEM: The
methods of artificial intelligence are applied to the
problem of organic synthesis route discovery. Sci-
ence, 197(4308):1041–1049, 1977.

[6] Johannes Bauer, Eric Fontain, Dietmar Forstmeyer,
and Ivar Ugi. Interactive generation of organic reac-
tions by IGOR 2 and the PC-assisted discovery of a
new reaction. Tetrahedron Computer Methodology,
1(2):129–132, 1988.

[7] S. Hanessian, Jonathan Franco, and Benoit Larouche.
The psychobiological basis of heuristic synthesis
planning - man, machine and the chiron approach.
Pure and Applied Chemistry, 62(10):1887–1910,
1990.

[8] Orr Ravitz. Data-driven computer aided synthe-
sis design. Drug Discovery Today: Technologies,
10(3):e443–e449, 2013.

[9] Anthony Cook, A. Peter Johnson, James Law,
Mahdi Mirzazadeh, Orr Ravitz, and Aniko Simon.
Computer-aided synthesis design: 40 years on.
WIREs Comput Mol Sci, 2(1):79–107, 2012.

[10] Anders Bøgevig, Hans-Jürgen Federsel, Fernando
Huerta, Michael G. Hutchings, Hans Kraut, Thomas
Langer, Peter Löw, Christoph Oppawsky, Tobias
Rein, and Heinz Saller. Route Design in the 21st
Century: The IC SYNTH Software Tool as an Idea
Generator for Synthesis Prediction. Org. Process Res.
Dev., 19(2):357–368, 2015.

[11] Ian W. Davies. The digitization of organic synthesis.
Nature, 570(7760):175–181, 2019.

8

https://doi.org/10.26434/chemrxiv-2024-zscw8 ORCID: https://orcid.org/0000-0002-3728-0021 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-zscw8
https://orcid.org/0000-0002-3728-0021
https://creativecommons.org/licenses/by-nc-nd/4.0/


[12] Chris M. Gothard, Siowling Soh, Nosheen A.
Gothard, Bartlomiej Kowalczyk, Yanhu Wei, Bilge
Baytekin, and Bartosz A. Grzybowski. Rewiring
Chemistry: Algorithmic Discovery and Experimen-
tal Validation of One-Pot Reactions in the Net-
work of Organic Chemistry. Angew Chem Int Ed,
51(32):7922–7927, 2012.

[13] Mikołaj Kowalik, Chris M. Gothard, Aaron M.
Drews, Nosheen A. Gothard, Alex Weckiewicz,
Patrick E. Fuller, Bartosz A. Grzybowski, and Kyle
J. M. Bishop. Parallel Optimization of Synthetic
Pathways within the Network of Organic Chemistry.
Angew Chem Int Ed, 51(32):7928–7932, 2012.

[14] Tomasz Klucznik, Barbara Mikulak-Klucznik,
Michael P. McCormack, Heather Lima, Sara
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5 Supplementary Information

5.1 Reaction Template: RDChiral Template vs Site-Specific Template

(a) A Reaction Example. (b) RDChiral Template.

(c) Site-Specific Template. (d) Center-Labeled Product.

Figure 6: Reaction template visualization. (a) Reaction SMARTS string:
CCS(=O)(=O)Cl.OCCBr>>CCS(=O)(=O)OCCBr. the target compound is CCS(=O)(=O)OCCBr (b) RDChiral
template: [C:5]-[O;H0;D2;+0:6]-[S;H0;D4;+0:1](-[C:2])(=[O;D1;H0:3])=[O;D1;H0:4]>>Cl-[S;H0;D4;+0:1](-
[C:2])(=[O;D1;H0:3])=[O;D1;H0:4].[C:5]-[OH;D1;+0:6] (c)Site-specific template: [O:2]-[S:1]>>Cl-[S:1].[OH:2] (d)
Target compound with reaction centers labeled: CC*(=O)(=O)*CCBr.

A reaction template is a concise representation of a chemical reaction, capturing the essential information about the
substructure changes occurring during the reaction. In the context of retrosynthesis, reaction templates provide a
valuable tool for generating potential pathways to synthesize target molecules. The format of reaction templates is
typically represented as PRODUCT>>REACTANT in the retro-direction, indicating the transformation from the
product back to the reactant. However, for the purpose of visualization in this work, we adopt the forward-direction
format since it is more intuitive for understanding the reaction process. Fig. 6 illustrates an example reaction template
visualization for the reaction SMARTS string in Fig. 6a.

Previous template-based methods have commonly utilized template extraction codes from the RDChiral repository to
extract reaction templates. These templates include not only the reaction centers but also neighboring atoms and special
functional groups, providing a comprehensive representation of the chemical transformations as demonstrated in Fig.6b.
However, in our work, we have modified the template extraction process to focus exclusively on the reaction centers
as depicted in Fig. 6c. We refer to these modified templates as site-specific templates since they specifically apply to
the reacting sites (reaction centers) of the target compounds. To incorporate this specificity, we introduce additional
input in the form of reaction center labels by replacing the atoms by "*" symbol. These labels indicate the specific
sites within the target compound where the template should be applied. Fig. 6d showcases an example of a reaction
center-labeled target molecule.

5.2 Specificity from Reaction Center-Labeled Products

An important aspect of our site-specific template approach is that the specificity is given by reaction center-labeled
products. While the site-specific templates focus exclusively on the reaction centers, they lack the necessary information
to determine the precise locations/atoms within the target compound where the template should be applied. Fig. 7
provides an illustrative example of how the reaction center-labeled target compound plays a crucial role in achieving
specificity.

In Fig. 7a, we present a specific chemical reaction involving a carbon-carbon double bond reduction. The RDChiral
template (Fig. 7b) offers a comprehensive representation of the transformation, including the reaction centers, neigh-
boring atoms, and special functional groups. It is evident from the RDChiral template that the carbon-carbon double
bond reduction occurs at a specific location within the molecule. However, when we consider the site-specific template
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(a) A Reaction Example. (b) RDChiral Template.

(c) Site-Specific Template. (d) Center-Labeled Product.

Figure 7: An example when site-specific template requires target com-
pound with reaction centers labeled to get the reaction SMARTS string:
CCCCC[C@H](O)C=CC1C=CC(=O)C1CC=CCCCC(=O)O>>CCCCC[C@H](O)C=CC1CCC(=O)C1CC=CCCCC(=O).

(Fig. 7c), which solely captures the reaction centers, we observe a lack of specificity. Multiple carbon pairs in the
product can potentially undergo the same transformation, resulting in ambiguity.

To resolve this ambiguity and introduce specificity, we utilize the reaction center-labeled target compound (Fig. 7d).
By labeling the specific reaction centers within the product molecule, we indicate the precise locations where the
site-specific template should be applied. In this example, the labeled reaction centers specify the carbon-carbon double
bond that needs to be reduced. By combining the site-specific template and the labeled product molecule, we can obtain
the accurate reaction SMARTS string that represents the desired chemical transformation. Note that the "RunReactants"
function in RDKit still has to take in a site-specific template and a target compound without the "*". The center labels
are used provide the atom numbers within a target compound SMILES that have to be changed. This ensures that
correct reactants are selected from the output of the "RunReactants" function.

5.3 Template Generation Deterministic Model Architecture

Fig. 8a illustrates the model architecture of our deterministic approach (Model A). The model employs a transformer
encoder to capture the relevant features and representations of the target molecule. Subsequently, these encoded features
are fed into a transformer decoder, which generates the site-specific template and the product with reaction centers
labeled. Models A and B both have 6 layers of Transformer encoders and decoders and 8 heads as implemented in [70]
with an embedding size of 256.

In our example, referring back to Fig. 6, we consider the example reaction in Fig. 6a, the site-specific template in
Fig. 6c, and the product with reaction centers labeled in Fig. 6d. The input of the deterministic model consists of
the target compound of the reaction, CCS(=O)(=O)OCCBr in our example. The output of the deterministic model
is structured in the following format: [O:2]-[S:1]>>Cl-[S:1].[OH:2]_CC*(=O)(=O)*CCBr where the underscore
symbol "_" is a separator (also in the output). Here, the site-specific template is represented by [O:2]-[S:1]>>Cl-[S:1],
indicating the breaking of the S-Cl bond and the formation of an S-O bond. The product with reaction centers labeled,
CC*(=O)(=O)*CCBr, highlights the third and sixth atoms as the reaction centers using asterisks. With the generated
site-specific template and the labeled product, we can reconstruct the original reaction depicted in Fig. 6a.

In addition, our deterministic generative model offers the flexibility to control the exact atoms participating in reactions
by incorporating the relevant information within the encoder. This variation, denoted as Model B in Fig. 8b, introduces
an embedding for the "*" token, representing the positions of the reacting atoms. Such positional information and
the product SMILES input are passed in as model input. The output of Model B consists solely of site-specific
templates, as the reaction centers are explicitly provided. This variant model allows researchers to customize the
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Figure 8: Model architectures of the generative models for retrosynthesis planning. (a) Model A is a deterministic
generative model that takes in target products and output site-specific templates and labeled products. (b) Model B, a
variant of Model A, incorporating positional embeddings for conditioning on specific reacting sites. (c) Model C is a
sampling generative model based on the conditional kernel-elastic autoencoder (CKAE) approach.

reaction centers by specifying the atoms involved. Such unique feature allows for precise control over retrosynthetic
disconnections/transformations.

Model A and Model B have 6 layers of Transformer encoders and decoders and 8 heads as implemented in [70] with an
embedding size of 256. Fig. 9 has more detailed architectures with the dimension transformation at each layer. Note
that the batch size dimension is ignored in the figure, but batch training and testing are used. The target compounds are
first passed into the encoder where the embedding for the "*" token is added to specific positions of reaction centers for
Model B. This is similar to the concept of positional embedding. Linear and Softmax layers after the decoder can then
be used for predicting output probabilities as in [70].

5.4 Template Generation Sampling Model Architecture

Fig. 8c illustrates the model architecture of our sampling approach (Model C). Using the example in Fig. 6 again,
by incorporating the product CCS(=O)(=O)OCCBr as the condition, the transformer encoder processes the site-
specific template and the labeled product ([O:2]-[S:1]>>Cl-[S:1].[OH:2]_CC*(=O)(=O)*CCBr) at the same time and
passes it through the latent space. The decoder is then tasked with reproducing the same input ([O:2]-[S:1]>>Cl-
[S:1].[OH:2]_CC*(=O)(=O)*CCBr) as the output. This comprehensive encoding and decoding process where site-
specific templates and center-labeled products are processed at the same time enables our attention model to capture
essential information for single-step prediction, including the influence of functional groups on reactivity and regiose-
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Figure 9: Model A and Model B detailed architectures and dimension transformations. (a) Model A detailed architecture.
(b) Model B detailed architecture. The numbers in the brackets on the top and bottom of each box represent the input
and output dimensions of the tensors for the boxed layers/components. S is the sequence length of outputs (site-specific
templates and/or center-labeled products), S’ is the sequence length of inputs (target compounds), and D is the size of
the token dictionary. The ⌢ symbol represents the concatenation of two tensors. The batch size dimension is ignored
in this figure. The implementation of the transformer encoder and decoder layers are from [70] with an embedding
dimension of 256. The reaction center embedding is a token embedding of the reaction character "*" which is added to
the input embeddings at the specified positions.
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lectivity. During the sampling phase (filled arrows in Fig. 8c), given target products as conditions and random latent
vectors, the model can generate a variety of templates and center-labeled products, leveraging the flexibility of the latent
space and the conditioning on target molecules.

Model C has 6 layers of Transformer encoders and decoders as implemented in [70] and 16 heads with an embedding
size of 512. The latent space and regularization loss is implemented in the CKAE paper [52]. Fig. 10 is a more detailed
architecture with the dimension transformation at each layer. Note that the batch size dimension is ignored in the figure,
but batch training and sampling are used. The target compounds are first passed into the condition encoder, which also
has 6 layers of Transformer encoders and 16 heads with an embedding size of 512 (same as the input encoder). These
embeddings of the conditions are then compressed into 10 embedding vectors by a linear layer. This compressed tensor
is concatenated with the input embedding and the latent space (see the ⌢ symbol in Fig. 10). In order to represent
inputs in the latent space, another linear compression layer is used and the tensors are flattened to be 5120-dimensional
latent vectors. The mixing layer takes in latent vectors concatenated with compressed conditions and transforms the
dimensions back to 10 embedding vectors using a feed-forward layer. These tensors are then used for the cross-attention
for the decoder. Linear and Softmax layers after the decoder can then be used for predicting output probabilities as
in [70].

CKAE incorporates a specially designed loss function known as modified Maximum Mean Discrepancy (m-MMD),
which enhances the generative power of the model. CKAE also utilizes a weighted cross-entropy loss, with the weights
controlled by the δ and λ parameters, to improve the reconstruction capability. Additionally, CKAE presents exceptional
correlations between outputs and given conditions. Further details on these loss functions and correlation results can be
found in the CKAE paper [52].

While both deterministic and sampling models aim to accurately predict templates and center-labeled products, the
sampling model offers additional capabilities. By incorporating a latent space and conditioning on target molecules,
the sampling model has the ability to generate diverse and novel reactions. Leveraging the latent space, the model can
sample reactions beyond the provided templates, resulting in a broader range of potential transformations. In contrast,
deterministic models lack a latent space, limiting its ability to extrapolate and generate innovative reactions. The CKAE
paper [52] showcases the superior interpolation and extrapolation capabilities of the sampling model, highlighting its
capacity to sample a wider range of diverse reactions.

5.5 Other References for the Allylation Step

Fig. 11 presents a compilation of the top 5 references for the allylation step depicted in Fig. 5b. The site-specific
templates are the same for these 5 references. Therefore, the products of these reactions are the primary determinant for
the ranking (latent distance) in this particular case.

5.6 Encoder-Decoder Attention for Site-Specific Templates and Center-Labeled Product

In this section, we present a demonstration of our model’s attention mechanism in Fig. 12, highlighting its ability to
capture essential chemical information like functional groups and regioselectivity during the generation of reaction
templates. We illustrate this through an example using our deterministic model, without the inclusion of reaction center
information from positional embedding (Model A). The input of the model is the product in Fig. 12a (without the labels
of reaction centers). The output of the model is the template shown in Fig. 12b along with the labeled product where
the reaction centers are labeled in Fig. 12a. The corresponding reaction is shown in Fig. 12c where it is an amide bond
formation and a removal of protection group for the ketone.

In Fig. 12d, we provide a encoder-decoder attention matrix from one of the attention heads, where the column labels on
top represent the encoder input target compound SMILES, and the row labels on the right represent the decoder output
site-specific template and center-labeled product. The reaction centers from the row labels are highlighted in yellow for
encoder input for better visualization (the column labels). The presence of the ketone oxygen, originating from the
protection group removal, significantly affects the output. Also, the matrix reveals that the influence on the template
output extends beyond the reaction centers. Furthermore, the product input affects the labeled product portion of the
output, resulting in a distinct diagonal pattern in the bottom of the matrix. These findings demonstrate the model’s
integration of critical chemical features that enhance its ability to generate accurate and relevant reaction templates.
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Figure 11: Top 5 references for the allylation step in the synthesis of 2-substituted cyclohexanone provided by Model C.
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(a) Encoder Input Product (centers are
from decoder output).

(b) Decoder Output Template.

(c) Corresponding Reaction.

(d) Encoder-Decoder Attention Matrix.

Figure 12: Visualization of the encoder-decoder-attention obtained from the product:
CC(=O)c1ccc(Cn2ncc(NC(=O)c3nc(C)oc3-c3cccc(C(F)(F)F)c3)n2)o1.
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5.7 Supplementary Tables

Table 1: USPTO Full Top-K accuracy (in %) comparison.
Methoda Model Top-1 Top-3 Top-5 Top-10 Top-20 Top-50

Template-Based GLN[26] 39.3 63.7
LocalRetro[27]b 39.1 53.3 58.4 63.7 67.5 70.7
Neuralsym[22]b 42.7 58.7 63.4 67.9 70.8 72.1

Semi-Template GraphRetro[32]b 24.8 34.5 36.9 38.7 39.5 39.8
RetroPrime[33]b 45.8 61.6 63.9 70.3 71.2 72.6
RetroExplainer[34] 51.4 70.7 74.7 79.2

Template-Free GTA[43]b 46.6 52.5 57.9 63.3 67.2 70.4
Tied-Transformer[48]b 37.7 53.6 58.7 63.7 67.8 71.0
MEGAN[45] 33.6 63.9 74.1
Transformer[42]b 44.7 61.1 66.0 70.7 74.1 76.2
R-SMILES[50] 48.9 66.6 72.0 76.4 80.4 83.1

Template-Generation Model A 34.4 52.2 58.3 64.5 69.2 72.6
(This Work) Model Ac 37.3 56.2 62.6 68.8 73.3 76.6

Model Bd 48.1 67.8 72.6 76.4 78.7 80.2
Model Bc,d 51.1 71.6 76.4 80.0 82.0 83.3

a Reactant-based methods are not included due to out-of-memory for USPTO-Full dataset. b Results obtained from [19]. c If the
correct reactants contain one of the 50 most commonly seen spectators in the USPTO Full dataset, the reaction is removed from the

test set. d Positional embedding of the reaction centers are included.

Table 2: Top-K accuracy (in %) for different number of reaction centers using Model B.
Maximum Reaction Centers Top-1 Top-3 Top-5 Top-10 Top-20 Top-50 % of Test Dataa

No Limitb 51.1 71.6 76.4 80.0 82.0 83.3 90.7%
5 53.0 74.1 79.0 82.6 84.6 86.0 85.2%
4 54.7 76.0 80.9 84.5 86.5 87.8 81.5%
3 57.8 78.9 83.8 87.3 89.2 90.4 75.1%
2 61.2 81.7 86.6 89.9 91.7 92.8 58.3%
1 60.1 80.8 86.3 90.3 92.7 93.5 11.6%

a Reactions containing 50 most common spectators as reactants are removed for all these cases, so no limit does not mean 100% of
the test data. b The maximum reaction center count in test set is 18, while the maximum for training set is 19.

5.8 Experimental Section

5.8.1 General

All reactions were carried out under an inert nitrogen atmosphere with dry solvents under anhydrous conditions unless
otherwise stated. Stainless steel cannula or syringe was used to transfer solvent, and air- and moisture sensitive liquid
reagents. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica gel plates
(60F254) using UV light as the visualizing agent and potassium permanganate and an acidic solution of p-anisaldehyde,
on SiO2 as developing agents. Flash column chromatography employed SiliaFlash® P60 (40-60 µm, 230-400 mesh)
silica gel purchased from SiliCycle, Inc.

Materials: Pd2(dba)3 was purchased from Strem. t-BuXPhos was purchased from Sigma Aldrich. R-TRIP
((R)-3,3’-bis(2,4,6-triisopropylphenyl)-1,1’-binaphthyl-2,2’-diyl hydrogenphosphate) was purchased from AmBeed.
NfF (nonafluorobutanesulfonyl fluoride) was purchased from Oakwood Products, Inc. BTTP (tert-butylimino-
tri(pyrrolidino)phosphorane) was purchased from Sigma Aldrich. Dry cyclohexane and DMF were purchased from
Sigma Aldrich. All other reagents were used as received without further purification, unless otherwise stated.

Instrumentation: All new compounds were characterized by means of 1H NMR, 13C NMR, FT-IR, and HR-MS.
Optical rotations were measured on Polarimeter Rudolph Autopol IV at 589 nm, 22°C. Data are reported as: [α]D

t ,
concentration (c in g/100 mL) and solvent. The absolute configurations were determined by comparison between the
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measured optical rotations and the reported values in literature. Copies of the 1H- and 13C-NMR spectra can be found
after experimental procedures. NMR spectra were recorded using a Varian 400 MHz NMR spectrometer. All 1H NMR
data are reported in δ units, parts per million (ppm), and were calibrated relative to the signals for residual chloroform
(7.26 ppm) in deuterochloroform (CDCl3). All 13C NMR data are reported in ppm relative to CDCl3 (77.2 ppm) and
were obtained with 1H decoupling unless otherwise stated. The following abbreviations or combinations thereof were
used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. All IR spectra were
taken on an FT-IR Shimadzu IRTracer-100 (thin film. High resolution mass spectra (HRMS) were recorded on a LC-MS
Shimadzu 9030 Quadrupole Time-of-Flight high resolution mass spectrometer.

5.8.2 Synthesis

O

Me

R-TRIP
Pd2(dba)3, t-BuXPhos

O O

O

Me

CyH, 45 ºC, N2, 5 days

O
Me

(R)-2-Allyl-2-methylcyclohexan-1-one [71]. For the synthesis of (R)-2-allyl-2-methylcyclohexan-1-one, procedure
reported by Pupo et. al was applied [59]. To a flame-dried microwave vial equipped with a magnetic stir bar were added
Pd2(dba)3 (75.4 mg, 0.0824 mmol, 5 mol % Pd), t-BuXPhos (154 mg, 0.362 mmol, 11 mol %), R-TRIP (248 mg, 0.329
mmol, 10 mol %), 3Å molecular sieves (3.3 g), cyclohexane (33 mL), 2-methylcyclohexanone (400 µL, 3.29 mmol, 1
equiv) after which allyl methyl carbonate (1.12 mL, 9.88 mmol, 3 equiv) was added dropwise. The reaction vial was
capped and placed into a pre-heated 45 ºC oil bath and stirred for 5 days. The reaction mixture was removed from the
oil bath and cooled to ambient temperature before filtering through a short pad of celite. The celite was washed with
Et2O (30 mL) and the solution was concentrated under reduced pressure by rotary evaporation. Purification by flash
column chromatography on silica gel (Et2O/pentane = 1:99 to 5:95) afforded the product (245 mg, 49%) as a colorless
oil.

Rf: 0.50 (EtOAc/Hex= 1:9)

[α]D
22 : 40.96 (c = 0.166, CH2Cl2, lit. 49.60 for c = 2.9, ee 95%)

1H NMR (400 MHz, CDCl3): δ 5.75 – 5.63 (m, 1H), 5.10 – 4.98 (m, 2H), 2.43 – 2.31 (m, 3H), 2.27 – 2.18 (m, 1H),
1.91 – 1.65 (m, 5H), 1.63 – 1.54 (m, 1H), 1.07 (s, 3H)
13C NMR (100 MHz, CDCl3): δ 215.5, 133.9, 118.0, 48.6, 42.1, 38.9, 38.7, 27.5, 22.8, 21.2

IR (cm-1): 3076, 2932, 2864, 1704, 1640, 1451, 1437, 1428, 1314, 1124, 993, 912, 613

O
Me O3, CH2Cl2, - 78 ºC

then PPh3, - 78 ºC - rt
overnight

O
O

Me

(R)-2-(1-Methyl-2-oxocyclohexyl)acetaldehyde. To a round-bottom flask equipped with a magnetic stir were added
2-allyl-2-methylcyclohexan-1-one (80 mg, 0.526 mmol, 1.0 equiv) and CH2Cl2 (5.5 mL). The solution was cooled
to - 78 ºC in an acetone/dry ice bath and ozone was bubbled through until the solution turned blue. The excess ozone
was removed by bubbling oxygen thorough the solution until it turned clear. To the solution was added PPh3 (275 mg,
1.05 mmol, 2 equiv) at - 78 ºC and the reaction mixture was allowed to warm to room temperature and the stirring was
continued for 16 h. The solution was concentrated under the reduced pressure by rotary evaporation. Purification by
flash column chromatography on silica gel (Et2O/pentane = 1:9 to 3:7) afforded the product (70 mg, 86%) as a colorless
oil.

Rf: 0.67 (EtOAc/Hex= 2:8)
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[α]D
22 : -64.52 (c = 0.155, CH2Cl2)

1H NMR (400 MHz, CDCl3): δ 9.77 (t, J = 2.1 Hz, 1H), 2.64 – 2.32 (m, 4H), 2.07 – 1.96 (m, 1H), 1.88 – 1.68 (m, 5H),
1.28 (s, 3H)
13C NMR (100 MHz, CDCl3): δ 214.3, 201.5, 51.7, 47.8, 39.1, 38.4, 27.1, 23.7, 21.1

IR (cm-1): 2934, 2862, 1703, 1462, 1448, 1431, 1178, 1159, 1128, 1080, 1042, 1014, 978, 934, 901, 868, 797, 735, 573

HRMS (m/z): calc‘d. for C9H15O2
+: 155.1067; detected: 155.1069

O
O

Me NfF, BTTP, DMF
- 30 ºC - rt, 19 h

O
Me

(R)-2-ethynyl-2-methylcyclohexan-1-one. For the synthesis of (R)-2-ethynyl-2-methylcyclohexan-1-one, procedure
reported by Boltukhina et. al was applied [60]. To a flame-dried round-bottom flask equipped with a magnetic stir bar
were added 2-(1-methyl-2-oxocyclohexyl)acetaldehyde (309 mg, 2.00 mmol, 1 equiv), NfF (380 µL, 2.10 mmol, 1.05
equiv) and dry DMF (2 mL). The solution was cooled to - 30 ºC in an acetonitrile/dry ice bath and the BTTP base (3.68
mL, 12.02 mmol, 6 equiv) was added dropwise. The reaction mixture was allowed to warm to room temperature and
the stirring was continued for 19 h. The reaction was quenched with saturated solution of NH4Cl (15 mL) and extracted
with Et2O (3 × 15 mL). The organic solution was washed with water (4 × 15 mL) and brine (15 mL) and dried over
anhydrous Na2SO4. The solution was concentrated under the reduced pressure by rotary evaporation. Purification by
flash column chromatography on silica gel (Et2O/pentane = 1:99 to 3:97) afforded the product (212 mg, 78%) as a
colorless oil.

Rf: 0.48 (EtOAc/Hex= 1/9)

[α]D
22 : 274.14 (c = 0.116, CH2Cl2)

1H NMR (400 MHz, CDCl3): δ 3.01 – 2.90 (m, 1H), 2.38 – 2.25 (m, 2H), 2.16 – 2.03 (m, 3H), 1.78 – 1.49 (m, 3H),
1.31 (s, 3H)
13C NMR (100 MHz, CDCl3): δ 208.8, 86.4, 72.7, 45.8, 42.1, 38.6, 28.2, 23.3, 22.4

IR (cm-1): 3290, 3271, 2982, 2936, 2864, 2112, 1717, 1462, 1448, 1427, 1375, 1333, 1312, 1277, 1258, 1232, 1155,
1121, 1111, 1090, 1063, 982, 905, 851, 829, 737, 688, 636, 569, 536, 519, 511, 498

HRMS(m/z): calc’d. for C9H13O+: 137.0961; detected: 137.0964.
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