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Abstract

Traditional computer-aided synthesis planning (CASP) methods rely on iterative
single-step predictions, leading to exponential search space growth that limits
efficiency and scalability. We introduce a transformer-based model that directly
generates multi-step synthetic routes as a single string by conditionally predicting
each molecule based on all preceding ones. The model accommodates specific
conditions such as the desired number of steps and starting materials, outperforming
state-of-the-art methods on the PaRoutes dataset with a 2.2x improvement in Top-1
accuracy on the n1 test set and a 3.3x improvement on the n5 test set. It also
successfully predicts routes for FDA-approved drugs not included in the training
data, showcasing its generalization capabilities. While the current suboptimal
diversity of the training set may impact performance on less common reaction types,
our approach presents a promising direction towards fully automated retrosynthetic
planning.

1 Introduction

Finding the most efficient route to a desired chemical compound is a daily challenge for synthetic
organic chemists in both fundamental research and drug discovery. Route efficiency is determined by
various factors, some of which can be objectively assessed, such as overall yield (not all chemical
reactions have 100% conversion rate) and enantiomeric excess (in case of chiral compounds), where
higher values are always preferred. Other factors, such as atom efficiency (minimization of byprod-
ucts) and availability (cost) of starting materials, are more case-dependent. A used chemical reactant
is considered waste unless it can be repurposed as a reactant in a different process. Similarly, the
choice of starting materials depends on factors such as budget, logistics, and the availability of specific
equipment. It’s worth noting that many commercially available compounds can be synthesized from
other commercially available compounds, adding another layer of complexity to the decision-making
process.

A significant contribution to the development of algorithmic frameworks for identifying synthetic
routes leading to any desired compound (subject of the 1990 Nobel Prize in Chemistry) was made by
Elias James Corey. Corey’s framework, now known as retrosynthetic analysis, begins with identifying
atoms that would serve as reaction centers. Disconnecting bonds between these centers results in
the formation of hypothetical fragments (called synthons) from which a precursor molecule can be
created. This mapping from fragments to actual molecules is one-to-many because there is usually
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more than one functional group that could participate in any given type of reaction. Importantly,
meticulous application of Corey’s framework (i.e., systematically breaking small subsets of bonds)
will eventually lead to commercially available starting materials. The algorithmic nature of this
process allowed Corey to envision automating these rules to create Computer-Aided Synthesis
Planning (CASP) as early as 1969 [1].

Recent advancements in data science and machine learning (ML) methods have led to a surge of
interest in developing CASP methods [2, 3]. The vast majority of existing methods [4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] are
designed to automate single-step retrosynthetic (SSR) analysis, i.e. predicting a list of compounds
from which a target product could be made in one step. A full multi-step route can be determined
by iteratively applying SSR methods to the identified precursors until a termination condition is
satisfied (e.g., identifying reactants in the database of commercially available compounds). Notably,
because each SSR method call creates a list of candidates, iterative application of these methods
generates an exponentially growing search space. Graph traversal algorithms such as Monte Carlo
Tree Search (MCTS), Depth-First Proof Number (DFPN) search, and A-star (Retro*) have been
applied to efficiently traverse this exponential search space [36, 37, 38].

However, evaluation of performance of these SSR methods on full route prediction has been limited by
the scarcity of open-source datasets containing valid multi-step routes. The creation of PaRoutes [39],
an open-source dataset containing 450k multi-step routes extracted from the United States Patent
and Trademark Office (USPTO), marked a major development. Notably, even state-of-the-art SSR
models [6, 40] combined with advanced search algorithms (MCTS, DFPN, Retro*) correctly identify
multi-step routes (Top-1 accuracy) for only 17% and 10% of the target compounds in n1 and n5,
respectively. This performance can be rationalized by recognizing that retrosynthesis is inherently
a multi-step problem: the optimal choice of reaction to make a compound depends on subsequent
steps in the synthesis. For example, a common pattern in multi-step routes includes: 1) protection of
certain functional groups, 2) the desired transformation of unprotected groups, and 3) deprotection
of the protected groups. An SSR method applied to the reactant of reaction 2 may output numerous
candidate precursors; however, knowing that protective groups are removed in subsequent steps
dramatically changes the probability distribution over those precursors.

In this work, we propose a novel approach for direct prediction of multi-step routes, bypassing
the need for single-step models and sophisticated exponential graph traversal algorithms. Our
DirectMultiStep model demonstrates state-of-the-art performance on n1 and n5 evaluation sets and
shows generalizability by successfully predicting routes for FDA-approved drugs absent from the
training set. We also discuss the model’s limitations, which may include the need to split longer
routes into sub-routes, provide the structure of the starting material, or supply a precursor to the
target compound when dealing with transformations not well-represented in the training dataset.
Despite these limitations, we believe our results are promising enough to warrant further attention to
developing retrosynthetic methods that directly predict multi-step routes.

2 Methods

2.1 Definitions and multi-step route representation

This subsection defines key terms related to our multi-step retrosynthetic methodology. The "target
compound" (green in Fig. 1) represents the final product of the multi-step synthesis tree. Starting
materials (SM, orange in Fig. 1) are compounds for which no further precursors need to be identified,
i.e., they are the leaves of the synthesis tree. The "number of steps" denotes the largest number of
reactions from SM to the target compound (tree height). In our approach, routes are represented
as recursive dictionaries (Fig. 1a) containing the SMILES representation of the molecule and a
list of other dictionaries, containing either starting materials or trees leading to precursors of the
current node. Removing space and newline characters creates a string representation predicted by
our transformer model. We train the DirectMultiStep (DMS) transformer, which takes the target
compound, (optionally) starting material, and number of steps as input, and predicts the multi-step
route represented as a string.
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2.2 Data curation and preparation

A second version of the PaRoutes [39] dataset containing 450k routes is stripped of all metadata
and stored as recursive dictionaries representing multi-step routes. The two evaluation sets, n1 and
n5, are processed similarly. A training partition is created by removing all permutations (swapping
left and right subtrees) of routes in n1 and n5 from the full dataset, resulting in 407k routes. The
training dataset is augmented by adding 2 permutations for each route. To train the DMS model
which takes starting material as an input, we find all starting materials (leaves) for each tree and store
a combination of the target compound with each starting material as a separate entry. As a result,
DMS with SM is trained on 3 349 118 inputs, and the DMS without SM on 1 078 951 inputs. All
SMILES strings are tokenized by treating each character as a token, and the string representation of
the multi-step route is tokenized similarly, treating delimiters of the tree (smiles’, children’, [’,
]’, {’, and }’) as separate tokens. The final vocabulary size is 52 (including start, end, and padding
tokens), the largest multi-step route has 1074 tokens, while the largest target compound and starting
material have 145 and 135 tokens, respectively.
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Figure 1: The workflow of DirectMultiStep. (a) The SMILES representation of the target compound
(green), (optional) starting material (orange), and the number of steps are tokenized, concatenated,
and fed into our transformer model. The model predicts a string representation of the multi-step
synthesis tree. Spaces are added for clarity, and indentations indicate the levels in the synthesis route
(tree). (b) Molecular structures corresponding to the target compound (green), (optional) starting
material (orange), and the predicted synthesis tree with structures of all molecules.

2.3 Model architecture and training

We present two variants of the DirectMultiStep (DMS) model: DMS-10M and DMS-60M, with ap-
proximately 10 million and 60 million parameters, respectively. Both models employ the transformer
encoder-decoder architecture [41]. DMS-10M has 6 layers and 8 attention heads in both encoder
and decoder, with inputs embedded in 256 dimensions and amplified 3x in the feedforward blocks.
DMS-60M has 8 layers and 8 attention heads, with inputs embedded in 512 dimensions and amplified
4x in the feedforward blocks. Both models use GeLU activations [42]. The encoder of DMS with SM
receives a concatenation of the tokenized target compound, starting material, and number of steps,
while the encoder of DMS without SM receives only the tokenized target compound and number of
steps. In all models, the decoder receives output from the encoder and the start token of the multi-step
route.

During training, a 10% dropout rate is used in embedding, attention, and feedforward layers. The
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Figure 2: Distribution of the relative frequencies of route lengths (in terms of number of steps) in
the training dataset before augmentation with permutations (407 148 routes, black), n1 test set (10
000 routes, blue), and n5 test set (10 000 routes, purple). Distribution is split into routes shorter (left
subplot) and longer than 6 steps (right subplot).

ADAM optimizer [43] is used with a learning rate scheduler that warms up from 0 to 3× 10−4 for
DMS-10M and 1× 10−4 for DMS-60M during the first 10% of training steps and undergoes cosine
decay to 3× 10−5 over 20 epochs. Gradients are clipped to 1.0. Finally, during training, each token
in the input to the encoders has a 5% chance of being masked. Training requires approximately 200
clock hours using 4 NVIDIA A100-40 GB GPUs on an external cluster. An additional 450 hours
were used for experimentation with model architectures and optimization of hyperparameters.

2.4 Beam search for route generation

We utilize beam search with a width of 50 to generate several candidates for the same target compound
(and starting material, if provided). The cumulative probability of each beam serves as the ranking
metric for prediction accuracy (Top-K). After beam search, predicted routes are checked for the
validity of all SMILES strings (which are canonicalized), the correctness of the target compound, the
presence of starting materials in the stock compound (if applicable), and the absence of repetitions.

2.5 Evaluation metrics and post-processing

Evaluation is performed on all 10 000 routes in both n1 and n5, with the deepest leaf selected as the
starting material to be included in the input to the encoder (for models that use starting materials).
Top-K accuracy evaluates the percentage of top K predictions precisely matching correct multi-step
routes from the test set. Predictions matching any permutation of the correct route are counted as
matches.

3 Results and Discussion

3.1 Test accuracy

Top-K accuracy is shown in Table 1 for set-n1 and Table 2 for set-n5. Our DirectMultiStep-SM-10M
model achieves state-of-the-art performance, surpassing all previous methods in all Top-K accuracies,
with the most significant increase in Top-1 accuracy: 2.2x on n1 and 3.3x on n5. Remarkably, our
model’s Top-3 accuracy exceeds the Top-10 accuracy of top tree search methods using single-step
retrosynthesis (SSR), highlighting the advantages of the multi-step first approach.

The DirectMultiStep-SM-60M model, despite having six times more parameters than the 10M variant,
exhibits lower performance on higher Top-K accuracies, suggesting that the 10M model size is
optimal for the current dataset when starting material structure is provided. However, achieving com-
parable performance without starting material information requires a larger model, as demonstrated
by the DirectMultiStep-noSM-60M model’s performance. These findings reveal a trade-off between
model generality and size at the current dataset scale: less input information necessitates a larger
model to maintain high performance. In all subsequent analysis, we use the routes predicted by the
DirectMultiStep-SM-10M model.
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Table 1: Top-K accuracy on route test set-n1 (10 000 routes).
Method Top-1 Top-2 Top-3 Top-4 Top-5 Top-10

MCTSa 0.17 0.46 0.49
Retro*a 0.15 0.41 0.45
DFPNa 0.11 0.17 0.17

DirectMultiStep-SM-10M 0.38 0.46 0.50 0.52 0.53 0.56
DirectMultiStep-SM-60M 0.38 0.46 0.48 0.50 0.51 0.52
DirectMultiStep-noSM-60M 0.36 0.42 0.44 0.45 0.45 0.46
aThese data are collected from the 2.0 version of PaRoutes in their GitHub repository [39].

Table 2: Top-K accuracy on route test set-n5 (10 000 routes).
Method Top-1 Top-2 Top-3 Top-4 Top-5 Top-10

MCTSa 0.10 0.28 0.33
Retro*a 0.10 0.30 0.36
DFPNa 0.05 0.07 0.07

DirectMultiStep-SM-10M 0.33 0.40 0.43 0.44 0.46 0.48
DirectMultiStep-SM-60M 0.34 0.41 0.43 0.44 0.45 0.46
DirectMultiStep-noSM-60M 0.32 0.37 0.39 0.40 0.41 0.41
aThese data are collected from the 2.0 version of PaRoutes in their GitHub repository [39]

Importantly, our model requires only one call to obtain multiple routes for each target compound,
instead of hundreds of single-step model calls and even more reaction template applications (as
shown in PaRoutes [39]). Furthermore, our model’s inference time (beam size 50) on a single GPU is
comparable (3-16 seconds depending on the number of steps) to the time required to find the first
successful route using previous methods (7-50 seconds [39])

Fig. 3 shows the distribution of Top-1 and Top-10 accuracy over different route lengths on both n1 and
n5. Given that 90% of routes in the training partition have 4 or fewer steps Fig. 2), one would expect
accuracy to decrease dramatically with increasing route length. However, the performance on routes
with 5-8 steps is comparable to that of shorter routes, and the performance on 9-step routes is even
comparable to that of 2-step routes. The exceptional accuracy on 9-step routes could be rationalized
by the fact that their relative abundance in n1 and n5 does not exceed the relative abundance in the
training partition (unlike for routes with length 3-7, as seen in Fig. 3).
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Figure 3: Distribution of Top-1 and Top-10 accuracy of predictions with our model on test sets n1

and n5. There is only one route with length 10 in n1, and our model does not predict it correctly. That
route is reproduced by splitting it in half, as shown in Fig. 4

The requirement to provide the starting material structure as input to the model is a limitation,
although not as significant as it may seem. Corey’s retrosynthetic framework allows finding at
least one route to starting materials by performing one functional group transformation at a time,
usually requiring protection of other functional groups. However, such a route will be too long to
be efficient in terms of yield (overall yield is the product of yields of individual steps). The art of
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Figure 4: Separation of a 10-step route from set-n1 into two 5-step routes. (a) Correct prediction for
the first half of the 10-step route with starting material information. (b) Correct prediction for the
second half of the 10-step route with starting material information.

organic synthesis lies in finding ways to perform several transformations simultaneously using a
minimal number of protecting groups. We believe our model provides value as an assistant to this
task: finding better ways to get to the target compound from a starting material. The requirement
to specify the number of steps as an input becomes a useful option in this context. Moreover, if the
target compound is chiral (i.e., it has a mirror image which cannot be superimposed), even during
manual retrosynthetic planning, chemists check if chiral centers can be obtained from chiral starting
materials (such as naturally occurring amino acids) because developing reactions that create chiral
centers in the desired conformation remains an active research area (and subject of 2001 and 2021
Nobel Prizes in Chemistry). An example of such a route is shown in Fig. 6.

3.2 Separation of Long Routes into Shorter Routes

As seen in Fig. 3, our model does not find the single 10-step route in the n1 set. However, this
route can be correctly reproduced with rank 1 if split into two 5-step routes and the intermediate
compound is provided as the starting material for the first 5 reactions (Fig. 4a) and a target compound
for the last 5 reactions (Fig. 4b). While ideally the necessity to provide an intermediate compound
should be avoided, this resembles the bidirectional search technique commonly employed in manual
retrosynthetic analysis [44].

3.3 Retrosynthetic planning of pharmaceutical compounds

We demonstrate the generalizability of our model by testing on three FDA-approved drugs: Vono-
prazan, Mitapivat, and Daridorexant, which were used for evaluation by Xiong, et al. [45]. These
drugs and their intermediates are absent from the training set. Vonoprazan, a potassium competitive
acid blocker for Helicobacter pylori infections, was initially proposed with a 2-step route (Fig. 5a) [46].
However, one of its starting materials is unstable, and the final reaction leads to significant byproducts.
Subsequently, an improved 4-step route (Fig. 5b) was introduced [47]. Mitapivat, a pyruvate kinase
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activator for treating hemolytic anemia, has been associated with both a 5-step route (Fig. 5c) and
a 3-step route (Fig. 5d) [48, 49]. Daridorexant, an orexin receptor antagonist for adult insomnia, is
linked to a 4-step route (Fig. 6) [50].
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Figure 5: Literature routes for Vonoprazan and Mitapivat correctly reproduced by our model. Target
compounds are in green, starting materials that are given as inputs are colored in orange. Ranks
denote the rank of this route when the specified starting material is provided. (a) First literature route
for Vonoprazan. The model predicts correctly no matter which starting material is given. (b) Second
literature route for Vonoprazan. The model predicts the route correctly only when an immediate
precursor to Vonoprazan is given as the target compound. (c) First literature route for Mitapivat. (d)
Second literature route for Mitapivat.
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Our model correctly reproduces Vonoprazan’s first literature route (Fig. 5a) regardless of the starting
material provided, with high ranks. However, the model struggles to find the first transformation
(counting from the target compound) from the second route. In the first route, the first step is a
reductive amination, while in the second route, it’s a reduction of the carbonyl bond in the amide
group. Reductive amination is much more common for creating C-N bonds, so the training set is
heavily biased toward it. As a result, all routes predicted by our model start as in Fig. 5a. However,
if we provide the precursor to Vonoprazan in the second route as the target compound, the model
correctly reproduces the full route (Fig. 5b). This highlights an important limitation of our model: it
may not perform as well on routes involving transformations that are inadequately represented in the
training dataset. We envision that as larger multi-step datasets become available, this problem will
naturally disappear.
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Figure 6: Daridorexant literature multi-step routes and predictions from the model with starting
material information. The compounds that are missing from the prediction are in red.

Our model correctly reproduces both routes for Mitapivat (Fig. 5c and Fig. 5d). In contrast, the route
for Daridorexant (Fig. 6) is only partially predicted: our model does not split the right child of the
root node (Daridorexant itself) into the two compounds highlighted in red. All other intermediates
and starting materials are predicted correctly. The reason for this behavior is not well understood, but
it can be rationalized by looking at the distribution of the number of leaves at root nodes: 73% of root
nodes (target compounds) have at least 1 leaf (see SI Fig. 7). Such dependence on the distributions of
the training set comprises an important limitation of the multi-step first approach. This issue would
not occur with methods based on single-step prediction because the tree search framework would not
halt at compounds outside the stock compound set before reaching the maximum iterations. Ensuring
that multi-step first models reproduce that aspect of SSR methods constitutes a direction for future
research.
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4 Conclusion

In this work, we introduced DirectMultiStep, a transformer-based model that directly generates
multi-step synthetic routes for a given target compound. By predicting the entire route as a single
string, our approach bypasses the need for iterative single-step predictions and exponential search
space traversal. The model accommodates specific conditions such as the desired number of steps
and starting materials, enabling efficient route planning.

DirectMultiStep outperforms state-of-the-art methods on the PaRoutes dataset, achieving a 2.2x
improvement in Top-1 accuracy on the n1 test set and a 3.3x improvement on the n5 test set. The
model also successfully predicts routes for FDA-approved drugs not included in the training data,
showcasing its generalization capabilities. However, the model’s performance may be impacted by
the suboptimal diversity of the current training set, particularly for less common reaction types.

Despite these limitations, the DirectMultiStep approach presents a promising direction towards fully
automated retrosynthetic planning. As larger and more diverse multi-step datasets become available,
the model’s performance is expected to improve further. Future research should focus on addressing
the limitations identified, such as the need to split longer routes into sub-routes and the dependence on
the distributions of the training set. Overall, this work demonstrates the potential of transformer-based
models for efficient and scalable computer-aided synthesis planning.

5 Broad Impact

Chemical synthesis of target compounds of interest forms the routine for millions of organic chemists
around the world, including graduate students in PhD programs and synthetic chemists in pharmaceu-
tical companies. The ability to find shorter (and thus more efficient) routes to any desired compound
is an enticing challenge with the potential of saving on labor costs and chemical waste. As a result,
multi-step prediction methods have the potential to improve the lives of millions of people, and
potentially contribute to faster advances in the development of new drugs and materials. We hope
that our work constitutes an important advancement in that direction.

Quite unfortunately, however, there is no fundamental chemical difference between how safe and
useful compounds (such as drugs) and malign compounds (such as chemical weapons) are synthesized.
Both require application of the same set of rules of organic synthesis, and so the ability to make
drugs faster and more efficiently inherently brings along the ability to make poisons faster and more
efficiently. One cannot impose restrictions on the tokens (chemical elements) learned by the model,
as even some combinations of nitrogen and oxygen (which are widespread in proteins and DNA)
may be cytotoxic. Therefore, unless the humanity at large decides that the benefits of automated
retrosynthesis do not outweigh its potential harms, the most we can do is communicate the dangers
clearly and perhaps impose restrictions that would still require a trained (which often accompanies
training in ethics) chemist to use our model. Besides, all meta-data of reaction conditions and
catalysts are removed from the predictions of our model, which would present a deliberate barrier
against malicious uses.

6 Code and Data Availability

The reaction route dataset is from the 2.0 version of PaRoutes in their GitHub repository [39], available
under the Apache License 2.0. Code to process dataset, implementation of model architecture, code
for training, generation, and evaluation are available under MIT License at https://github.com/
batistagroup/DirectMultiStep.
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8 Supplementary Information

Table 3: Top-K accuracy on subset of test set-n1 (random 500 routes).
Method Top-1 Top-2 Top-3 Top-4 Top-5 Top-10

DirectMultiStep-SM-10M 0.402 0.476 0.522 0.550 0.564 0.582
DirectMultiStep-SM-60M 0.398 0.462 0.496 0.518 0.526 0.540
DirectMultiStep-noSM-10M 0.292 0.362 0.384 0.388 0.396 0.402
DirectMultiStep-noSM-60M 0.366 0.438 0.460 0.478 0.484 0.490

Table 4: Top-K accuracy subset of test set-n5 (random 500 routes).
Method Top-1 Top-2 Top-3 Top-4 Top-5 Top-10

DirectMultiStep-SM-10M 0.374 0.442 0.474 0.484 0.498 0.516
DirectMultiStep-SM-60M 0.344 0.428 0.454 0.456 0.462 0.480
DirectMultiStep-noSM-10M 0.222 0.264 0.282 0.288 0.290 0.298
DirectMultiStep-noSM-60M 0.310 0.368 0.388 0.400 0.406 0.418

Table 3 and Table 4 present the Top-K accuracy results for 500 random routes each from set-n1 and
set-n5. These results illustrate that a larger model is necessary to maintain high performance when
starting material information is not provided, as shown by the DirectMultiStep-noSM-60M model’s
superior performance compared to DirectMultiStep-noSM-10M.
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Figure 7: Distribution of the relative frequencies for the number of leaves (nodes with no children) at
root node.
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