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ABSTRACT: We introduce quantum circuits for simulations of
multimode state vectors on 3D circuit quantum electrodynamics
(cQED) processors using matrix product state representations.

The circuits are demonstrated as applied to simulations

of

molecular docking based on holographic Gaussian boson sampling
(GBS), as illustrated for the binding of a thiol-containing aryl
sulfonamide ligand to the tumor necrosis factor-a converting
enzyme receptor. We show that cQED devices with a modest
number of modes could be employed to simulate multimode
systems by repurposing working modes through measurement and
reinitialization. We anticipate that a wide range of GBS applications
could be implemented on compact 3D cQED processors analogously using the holographic approach. Simulations on qubit-based
quantum computers could be implemented analogously using circuits that represent continuous variables in terms of truncated

expansions of Fock states.

1. INTRODUCTION

Graph theory plays a crucial role in computational chemistry,
aiding in the modeling of molecules, chemical data sets, and
reaction networks, as shown in recent studies."™ It enables
easier calculations in diverse areas from cheminformatics® to
quantum chemistry,”® and polymer chemistry.” Despite its
utility, the complex nature of molecules and chemical
databases often results in large graphs, challenging the
capabilities of classical algorithms. For instance, several classes
of problems require the computation of permanents, which is
known to be #P-hard, escalating to #P-complete for binary
matrices.'’ Such complexity places these computations beyond
the reach of conventional methods.'' Near-term quantum
computers that implement boson sampling (BS)'” offer a
promising quantum solution. Here, we explore the application
of BS to simulations of molecular docking, focusing on the
possibility of sampling subgraphs describing the interactions
between a molecule and a biological receptor using compact
bosonic processors.

BS in its fundamental form involves the sampling of photons
dispersed through a passive N-mode linear interferometer, as
proposed by Aaronson and Arkhipov,'> building upon the
work by Troyansky and Tishby on quantum calculations of
permanents and determinants.’®> In such experiments, the
outcome distribution is determined by the permanent of the N
X N matrix representing the transition probability amplitudes
of the linear interferometer. As a result, BS enables the
sampling of bosons from a distribution that would be
challenging to simulate classically for large values of N,
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offering a promising approach to tackling problems previously
considered intractable.

BS has been implemented on a diverse array of hardware
platforms,'*~"” offering versatility and potential in applications
of chemical relevance.'® >* Notably, BS has been applied to
compute the vibronic spectra of triatomic molecules using 3D
circuit quantum electrodynamics (cQED) processorslg’19 and
to simulate molecular docking on photonic devices.”’™**
fact, the initial BS sampling setup utilized optical photons.
However, the efficient generation and detection of nonclassical
light states pose significant challenges.'®* Here, we explore
the use of microwave photons within the cQED architecture,”
offering a promising alternative technology with unique
advantages for implementing BS.

The cQED architecture stands at the forefront of quantum
technology, featuring superconducting qubits based on
Josephson junctions that are strongly coupled to the modes
of superconducting microwave cavities. This setup facilitates
efficient information exchange and enables universal quantum
control over quantum states. Moreover, it supports quantum
nondemolition measurements of photon numbers within the
microwave cavities of the superconducting circuits. The
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Figure 1. Schematic representation of the GBS approach implemented to investigate molecular docking due to a ligand—receptor interaction (i).
The interactions are represented by a graph where vertices correspond to pairs of interactions between pharmacophores in the ligand and in the
receptor, while the edges connect pairs of contact that can be established simultaneously (ii). The graph adjacency matrix is used to define the
covariance matrix of a multimode Gaussian state, generated by a passive linear interferometer of beam splitters (iii). Sampling bosons from that
distribution reveals the subsets of compatible pairs of interactions that can be established simultaneously. To sample from that distribution, initially
a MPS representation of the circuit is generated (iv), which can be implemented with a holographic approach (v) on a compact cQED device (vi).
The observed photon patterns in the output modes indicate the heavier cliques (vii), from which optimal ligand—receptor interactions are

established.

precision in photon counting afforded by this architecture
enhances the feasibility of implementing BS as evidenced by
previous studies.'®

In this paper, we explore the possibility of implementing BS
simulations of molecular docking using 3D cQED processors.
Molecular docking, an essential computational technique for
drug design, predicts the binding configuration and most
favorable interactions of a molecule and its receptor. This task
is difficult for classical computers due to the need to perform
an exhaustive search of possible molecular configurations. BS,
with its ability to sample from a distribution defined by the
permanent of the interaction matrix, holds promise for
significantly enhancing the efficiency of molecular docking
simulations, offering a novel approach to overcoming the
limitations of traditional computational methods.

In this study, we focus on Gaussian boson sampling (GBS),
a version of BS based on multimode Gaussian states.”* > We
explore the possibility of simulating GBS using 3D cQED
processors employing a holographic approach.'**”*® This
method is inspired by the successful utilization of GBS in
conjunction with 3D c¢QED processors for simulations of
molecules."®

Our methodology begins by approximating the multimode
state vectors as low-rank matrix product states””*° (MPS, also
called tensor trains®'~*?), followed by the variational para-
metrization of quantum circuits to represent these state
vectors. The resulting circuits are executed holographically

. 1427,28
by repurposing modes,'#*”

with the term “holographic”
reflecting the dimension reduction benefit from the repurpos-
ing algorithm, in echo with holography that constructs 3D
image from 2D snapshots. This allows for hardware efliciency,
enabling simulations of a few tens of modes with as few as 2—3
microwave modes in the cQED devices.

Our numerical simulations reveal that these cQED circuits
could accurately simulate multimode Gaussian states, closely
matching the benchmark Gaussian states of conventional GBS
applied to molecular docking problems. Therefore, we
anticipate that these findings will pave the way for experimental
investigations of compact 3D cQED devices into molecular
docking and other subgraph isomorphism problems,®* high-
lighting the potential for conducting realistic simulations with
numerous modes on modestly sized cQED devices.

https://doi.org/10.1021/acs.jctc.4c00384
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2. METHODOLOGY

2.1. Molecular Docking by GBS. Figure 1 shows a
schematic representation of the GBS methodology imple-
mented to investigate molecular docking. Ligand—receptor
interactions (Figure 1i) are established by ligand and receptor
pharmacophores, as described in Section 2.2. The interaction
graph (Figure 1ii) describes the network of compatible pairs of
interactions where the vertices correspond to pairs of
interactions while the edges connect interactions that can be
established simultaneously. Section 2.3 outlines how the
interaction graph is mapped into a GBS device to generate a
multimode Gaussian state vector, with the covariance para-
metrized by the adjacency matrix of the interaction graph
(Figure liii).

Our simulations represent the state vector in MPS format
(Figure liv), allowing for a holographic implementation
(Figure 1v) using a cQED device (Figure 1vi). Sampling
from that state vector distribution reveals subgraphs with
maximum cliques (Figure 1vii) corresponding to subsets of
interactions that can be established simultaneously (Figure
1viii). Section 2.4 outlines experimental strategies for holo-
graphic implementations of GBS based on MPS networks with
one and two layers of two-mode beam splitters, parametrized
to approximate the full GBS network. Section 2.5 describes
cQED devices based on bosonic 3D cQED devices for
simulations of holographic MPS networks.

2.2. Interaction Graph. Molecular docking algorithms
predict favorable binding configurations of ligands (or drug-
like molecules) as determined by interactions established by
pharmacophores in the ligand with complementary pharma-
cophores in the target macromolecule (receptor). Config-
urations are ranked in terms of docking scores that give a
rough estimate of relative binding affinities based on molecular
descriptors.

Reliable determination of docking scores for a series of
ligands and favorable binding configurations is particularly
valuable since it allows for rapid in silico screening of a large
number of compounds. That process can quickly identify
promising lead compounds for subsequent more accurate
analysis and discard unsuitable ligands. In the simplest
approach, both the ligand and the receptor are approximated
as rigid bodies, although methods that account for the inherent
flexibility of the ligand and the receptor are available.”
Favorable ligand orientations at the binding site can be
revealed by using the isomorphous subgraph matching
method, as iméplemented in the DOCK 4.0, FLOG, and SQ_
algorithms.***°™* In that formulation of the binding problem,
the ligand—receptor interactions are represented by the so-
called interaction graph G(V, E), shown in Figure 2. Here, the
vertices V represent 1i§and—receptor interactions established
by pharmacophores,” while the edges E link pairs of
interactions that can occur concurrently since the drug
pharmacophores involved in these interactions are at the
same distance apart as the corresponding pharmacophores in
the receptor.

The interaction graph G(V, E) is defined by its M X M
adjacency matrix A, where M > 1 is the total number of
possible ligand—receptor interactions, with A; = 1 if the
interactions i and j are compatible (if both interactions can be
established simultaneously) and A; = 0 otherwise. To model
the interaction strength between pharmacophores, we weight
every vertex according the type of pharmacophores i and j,
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Figure 2. (Top left) Crystal structure of the tumor necrosis factor-a
converting enzyme receptor (TACE, orange) with thiol-containing
aryl sulfonamide ligand (AS, gray). (Top right) Zoomed-in binding
site with four pharmacophores in the ligand (A1, D1, H1, and H2)
and six in the receptor (al, a2, a3, d1, d2, and hl). Two pairs of
binding interactions (a3, Al) and (hl, H1) can be concurrently
established, as shown by blue dashed lines. (Bottom) Binding
interaction graph of all possible pairwise ligand—receptor interactions.
Larger nodes indicate heavier weights (stronger interactions).

biasing the strength of the intermolecular interactions with a
preparameterized potential.*' ~** Having defined the adjacency,
the problem of docking is reduced to the so-called maximum
clique problem,34 which involves finding the largest fully
connected subgraph within the graph, representing the largest
set of compatible interactions as determined by the types of
pharmacophore interactions and the interpharmacophore
distances.

2.3. Maximum Clique Subgraph. GBS addresses the
maximum clique problem, as shown below, through prepara-
tion of a multimode Gaussian state vector whose covariance
matrix is parametrized by the adjacency matrix of the ligand—
receptor interaction graph. The state vector is generated from a
vacuum state using single-mode squeezing and a multimode
linear interferometer. For simplicity, it is assumed that the
mode count significantly exceeds the average photon number,
resulting in either a single photon or no photon detection (1, €
{0, 1}) in each mode j.

2.3.1. Multimode Gaussian of Bosonic Modes. A Gaussian
state of a system with M bosonic modes, designated as j, with

a4 and

creation and annihilation operators 4,

ﬁj, can be described

by the density matrix

5 = Q) Midet(o)/2e/2E -7 E =) 0

where & = (@, ..., Gy, 8, , ., &;)" is a 2M-component vector
of operators. According to eq 1, the Gaussian state is defined
completely by its first and second statistical moments, d and o,
respectively. The first moments

4 = Trpg] @
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describe the mode displacements, while the second moments

1 ~ ~
= —Tr[p{(E - d), (E —d)
define the 2M X 2M covariance matrix ¢ in terms of the
anticommutators

(& -d), (& -d)}
= (a - dl)(é; - dj)T + (é; - dj)T(a - di) (4)

Measurements of the modes, when the system is described
by the Gaussian statevector defined by eq 1, report whether a
photon is detected or not in each mode, as follows:
7 = (n, ny, - nM)T, where n; € {0, 1} withj=1, ., M. In
the realm of molecular docking, each mode j symbolizes a
distinct interaction between a pharmacophore of the drug and
a pharmacophore of the receptor. Detecting a photon in a
particular mode suggests that the corresponding interaction is
established, whereas the absence of photons signifies a
disruption of that interaction.

2.3.2. Probability Distribution. The probability distribution
of outputs 7, obtained by measuring the multimode Gaussian
in the Fock basis, is defined, as follows

Pr(7) = Tr[p 7] ©)

where i = ®jj\i1 ﬁj is the tensor product of number state
operators i, = Inl->(n}-| corresponding to the probability of
observing n; bosons in output mode j. The right-hand side of
eq S can be expanded by using the P-representation of
operators, as follows (Supporting Information 1)

Tr (6)

M
®|”j>(”j|/3} =/P®‘f;1 \n])(n]\@)Q(Of) d’a,
j=1

where

M

Pt (@) = ]
j=1

Q(a), introduced by eq 6, is the Husimi function of the
Gaussian state, defined as follows (Supporting Information 1)

elasl?

aan
Al uj AN A F
n;l 0" a0 o

5 (7)

-M

N
,/|det(O'Q)| (8)

where @ = (ay, .., ay, @, .., &))" and 0q = 6 + Ly/2, with
Ly, being the 2M X 2M identity matrix. The Husimi function
obtained with eq 8, using the Gaussian density matrix
introduced by eq 1, can be substituted into eq 6 to obtain
(Supporting Information 2)

—ate!
e %% Y

Q(a) = z™alpla) =

M 2n;

1 1 o 1,7x

Pr(7) = ——— [[ =
Idet(aQ)| 1 n;! 0"ay0"a; o )

]
where
-1

K = XZM(IZM -0 ) (10)

with X, = [Ii\)/f 164] Since n; € {0, 1}, the multivariate

derivatives in eq 9 can be easily evaluated by using the high-
order chain rule given by the Faa di Bruno’s formula
(Supporting Information, Section 3), as follows
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Pr(7) =

= 2 H
e — K.
— y
n!,/ldet(O'Q)I peP, lij)ep (11)

where N = n; +---+ ny, is the total number of modes, where a
photon was detected according to 7, and 7! = n;!n,!..ny .
Moreover, P,y” is the set of partitions of the set {1, 2, .., 2N}
into subsets of two indices. The summation in eq 11 is exactly
the Hafnian of the 2N X 2N submatrix of K with rows and
columns corresponding to the modes where photons were
detected (i.e, modes j with n; = 1). Defining the submatrix of
those modes as matrix K, we obtain

1

7!, /ldet(ap)l (12)

To encode graph problems into Gaussian quantum states,
we consider the matrix K to be defined in terms of the graph
adjacency matrix A, as follows™

K=c(A®A)

Pr(7) = Haf(Ky)

(13)

where the circled plus sign denotes the construction of a block-
diagonal matrix from the component matrices. Furthermore, 0
< ¢ < A" is a positive rescaling parameter, with A, > 0 the
maximum eigenvalue of A. Note that for an undirected graph
without self-connection, A is a real symmetric matrix with all
diagonal elements being 0. Since Tr[A] = 0 implies that the
eigenvalues must be either all 0 or containing both positive and
negative numbers, and the only real symmetric matrix that
contains all zero eigenvalues is the zero matrix, the largest
eigenvalue of A must be positive for a nonzero A. In particular,
the scaling factor ensures that K corresponds to a valid
covariance matrix ¢ as in eq 10, resulting in a probability
distribution Pr(7) that is bounded between zero and one. In
Section 2.3.5 we show that an M-mode Gaussian state with
such a K can always be prepared by a programmed optical
network.
Substituting eq 13 into 12, we obtain

N
c

il /ldet(aq)!

N
c

7!, /ldet(cp)!

providing the probability distribution of outputs 1 in terms of
the Hafnian of Ag (with Ag the submatrix of A defined by the
intersection of rows and columns of A corresponding to the
modes where photons were detected).

2.3.3. Binary Graphs. In the simplest formulation of a
binary graph, A is the M X M real and symmetric adjacency
matrix with A; € {0, 1}. Aj; =1 denotes that nodes i and j share
an edge, while A; = 0 denotes that nodes i and j are not
connected. In the context of binding interaction graphs that are
of our primary interest, a node denotes a binding interaction
between a pair of pharmacophore points, connection between
two nodes indicate the two binding interactions can be
established simultaneously, and no connection indicates that
the two binding interactions cannot be concurrently
established because by establishing one interaction the other
one is disrupted. This binary approach can be generalized to
account for the strength of the connections using instead a
weighted binding interaction graph as described later in
Section 2.3.4.

Pr(n) Haf(Ag @ Ag)

Haf(AS)2
(14)
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It is important to note that each term in the sum of the
Hafnian in eq 14 represents a perfect matching where each node
of the subgraph is connected to one (and only one) other
node. As a result, the Hafnian gives the count of perfect
matchings and thus reveals the number of possible ways the
drug pharmacophores can concurrently establish interactions
with pharmacophores in the receptor. As per eq 14, subgraphs
with larger Hafnian are sampled with higher probability.

Gaussian states are prepared with covariance o, obtained by
inverting eq 10, as follows

I

0 = (Ly — XpuK) P2 (15)
with K defined according to eq 13. This is achieved by using a
quantum circuit that integrates single-mode squeezing gates
and a multimode linear interferometer, as detailed in Section
2.3.5. Sampling from the state vector generated by that circuit
enables us to effectively identify the subgraphs with larger
Hafnian within the interaction graph, revealing the capability of
the drug to establish concurrent interactions with the receptor.

2.3.4. Weighted Graphs. Extending the method to
accommodate weighted graphs beyond binary adjacency
matrices A (with A; € {0, 1}) is straightforward. This requires
a weighting vector Q where each element Q; = ¢(1 + w,) is
defined by a weight w; assigned to the ith node This design of
the weighting vector ensures that sublgraphs with a larger
weight are favored during sampling.”’ In the context of
molecular docking, these weights are obtained from a
knowledge-based potential, where a heav1er weight w;
corresponds to a stronger binding interaction.** For instance,
if the ith node corresponds to a hydrogen bond donor—
acceptor interaction, w; would be larger than for nodes
representing weaker interactions (e.g,, hydrophobic contacts).
The weighting vector Q is written as a diagonal matrix
[diag(Q) — Q] and applied on both sides of A to generate a
weighted graph adjacency matrix, as follows

A - QAQ (16)

generates a photon distribution defined by both A and €, as
follows

N
c

AN Idet(aQ)I
\/m Z H’JGP "A"

peP
/Idet(aQ)l ENTC Z H o
N

pEP} tijlep
Cc

B ﬁ!,/ldet(dq)l (17)

where € is the submatrix of Q corresponding to the modes
registering photons (the modes that also define Ag). According
to eq 17, the resulting GBS with rescaled adjacency matrices
has higher probability of sampling cliques with a large number
of strongly interacting pharmacophores.

2.3.5. Quantum Circuit. Here, we show how to build a
quantum circuit of M modes that generates the desired
multimode Gaussian state with covariance defined by eq 15
with K = ¢(A @ A), as necessary for GBS. In particular, we

Pr(ﬁ) = [Haf(QSASQS)]Z

[det(Qs)Haf(Ag)]*
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show that such a state can be obtained by passing a vacuum
Gaussian state through an optical network composed of M
single-mode squeezers and an M-mode interferometer, both
parametrized according to A. First, we show how the single-
mode squeezers and M-mode interferometer transform the M-
mode vacuum state by preserving its Gaussian shape but
changing its covariance. Then, we show how the squeezers and
interferometer are parametrized according to A.

The single mode vacuum state 10) is the eigenstate of 4 with
eigenvalue 0

alo)y =0 (18)
Therefore
(@), = Tr[l0){0la] = 0
(a"),,. = Tr[lo)0la™ =0
(aa),,. = Tr[l0)(0laa] = 0
(aa"),,. = Tr[lo)(0laa’] = 1
(@'d),, = Trll0)(0la"a] = 0
(@'a"),,. = Trllo)(0la"a’] = 0 (19)

where the subscripts indicate that the expectation values ( ) are
evaluated with p = 10)(0l. Substituting eq 19 into 3, we obtain
the covariance matrix of the single mode vacuum state

1 [1 o]
Cpac =

2(0 1 (20)
The single-mode squeezing operation is defined as follows
8(r) = L@ @M (21)

where r € R is real-valued and is referred to as the squeezing
parameter. Supporting Information 4 (eq S85) shows that in
the Heisenberg picture, the action of the squeezing operation
transforms the annihilation and creation operators, as follows

a/ — §(r)Tﬁ§(V) = COSh(V)a + smh(i’)ﬁT

a) = 8(rVa'8(r) = cosh(r)a’ + sinh(r)a (22)

Substituting eq 22 into 3, we find that the single mode
squeezed state is again Gaussian with the following covariance
matrix (eq $92)

o) = 1 cosh’(r) + sinh*(r) 2cosh(r)sinh(r)

2| 2cosh(r)sinh(r) cosh’(r) + sinh*(r)

(23)
Generalizing to M > 1 modes, we have
1 @‘,‘il cosh?(r;) + sinh?(r;) @Ai] 2cosh(r;)sinh(r;)
e =3 | & : 21

@_;‘il 2cosh(r;)sinh(r;) @;U:l cosh?(r;) + sinh?(r;)

Next, we evaluate the effect of the M-mode interferometer
on the squeezed state covariance matrix by starting from the
simplest two-mode case and then obtaining the M-mode case.

The smallest interferometer is the two-mode beam splitter.
It transforms a two-mode state according to the following
operator

https://doi.org/10.1021/acs.jctc.4c00384
J. Chem. Theory Comput. 2024, 20, 64026413
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. ata —aat
B(g) — ef)(‘ﬁ“z 1) (25)

where 6 € [0, 27] is a given angle. In the Heisenberg picture,
B(0) transforms the annihilation operators, as follows

a/ = B(0) a,B(0) = cos(0)a, + sin(0)a,

a, = B(Q)T&ZB(G) = cos(#)a, — sin(0)a, (26)
Hence, for k = 1 and 2, we obtain
2
=) Ugd
j=1
2
@) = Y, Uga/
j=1 (27)

where U = U(9) = [_C;;((gg)) zg;((g))} is a unitary trans-

formation. Additionally, when a phase-shifter is placed after

the beam splitter such that 4, — ¢/, for ¢, € [0, 2], the
resulting unitary transformation becomes

o=voa= [0 |

Note that any 2 X 2 unitary matrix U can be implemented like
this using a beam splitter and a phase-shifter with a suitable
choice of values for @ and ¢,.** The generalization to M modes
is straightforward and involves an M-mode interferometer, as
follows

M
Al — ~
il =) U,
j

M
A LN
(3) = Z Ud;

j (28)
where U is now an M X M unitary matrix. Substituting eq 28

into 3, we find that the M-mode interferometer U transforms
an arbitrary covariance matrix &, as follows (eq S95)

T
0 U 0 U

Therefore, the outgoing Gaussian state obtained by rotating
an M-mode squeezed vacuum state is described by the
following covariance matrix

Orot

(29)

U o '

0o U*

U* o
0 U

out — sque|

(30)

With the general covariance matrix defined, we now explain
how the parameters of the squeezers and interferometer are
obtained to ensure that o, corresponds to eq 15, with kernel
K defined by eq 13.

According to Takagi’s matrix factorization, the symmetric
matrix A can be decomposed, as followswhere X is the diagonal

M
1

A=USUT=U( - anh(r;) JUT, 1

UsU U(c]e?tan (7J))U , (31)
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matrix of singular values of A, and 0 < ¢ < A,”" is a rescaling
parameter, with A; > 0 the maximum eigenvalue of A. The
rescaling ensures that every singular value can be represented
as tanh(r;)/c (note that ltanh(r)l < 1 for all r € R). The
unitary matrix U is used to parametrize the M-mode
interferometer. The resulting covariance defined by eq 30 is
consistent with the kernel K, introduced by eq 13, as shown in
the Supporting Information 5 where eq 13 is obtained by
substituting eqs 30 into 10.

Section 2.4 introduces an efficient implementation of the
multimode Gaussian, with hardware efficiency, by first
squeezing each mode and then implementing U in the MPS
format by using an M-mode passive interferometer. Measure-
ment of the modes generates a probability distribution of
photon outcomes as defined by eq 17. We note that the
theoretical analyses in this subsection neglects errors in the
squeezed states, which could potentially hinder the perform-
ance of the quantum device.”” More detailed investigation is
the subject of follow up research studies of this initial
theoretical proposal.

2.4. Holographic Implementation. Figures 3 and 4
illustrate the implementation of circuits corresponding to the
state of a system of four modes, such as a multimode Gaussian
state, in MPS format. Note that each beam splitter (BS)
couples two adjacent bosonic modes.

2.4.1. MPS Circuits. Figure 3a shows the MPS circuit with
one layer of beam splitters, inspired by a circuit previously
proposed for moderately entangled quantum states.”” Figure
3c shows a compact 3D cQED device that could implement
the circuit with hardware efficiency using the so-called
holographic quantum computing approach shown in Figure
3b. Note that the circuits shown in Figure 3a,b are equivalent.
The only difference is that the circuit in (b) repurposes the
modes after measurement. Mode 1 (q,) is measured after
squeezing and coupling with mode 2 by implementing the
gates S}, S,, and BS),. After that measurement, mode 1 can be
repurposed for representing mode 3 (g;) by first squeezing
with S; and coupling it with mode 2 according to BS,;. Mode 2
is measured and then repurposed as mode 4. After applying S,,
BS;,, modes 3 and 4 are measured completing the
implementation of the circuit with four modes using a two-
mode quantum device. Circuits with more modes could be
implemented analogously with the two-mode device by
iterative squeezing, coupling, and measuring modes. Figure
3a,b also show that the gate cost of our holographic algorithm
is O(m) for an m-mode Gaussian state.

States with more entanglement can also be implemented
with hardware efficiency by employing a few more modes. As
an example, Figure 4a shows a four-mode circuit with a higher
level of entanglement established by a second layer of beam
splitters. Here, we implement the circuit by employing a three-
mode device. Figure 4b shows the holographic implementation
starting with gates ), S,, S3, BS},, BS,3, and BS},’, which could
be implemented with the device illustrated in Figure 4c. Mode
1 would be measured first and repurposed for representing
mode 4. After this resetting, gates S,, BS;,, BS,3’, and BS;,’ are
implemented, and modes 2—4 are finally measured. The
resulting sampling is equivalent to that of the conventional
GBS experiment.

2.4.2. Parametrization. In this section, we explain how we
parametrize the beam splitters employed in the MPS circuits
introduced in Section 2.4.1, including the quantum circuits
shown in Figures 3 and 4 with one and two layers of beam
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J. Chem. Theory Comput. 2024, 20, 64026413


https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c00384/suppl_file/ct4c00384_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c00384/suppl_file/ct4c00384_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00384?fig=eq31&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00384?fig=eq31&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00384?fig=eq31&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00384?fig=eq31&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00384?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation pubs.acs.org/JCTC
(a): .
o o
BSi2 9
w0 —s:]H
BSa3 3
a:l0) S ———
BS34 4
a1:10)
(b): . 5
a : [0) g3 :10) —{ s
BSi, BSy3 9 BS34 4
a:(0) a:10)

Figure 3. (a) Quantum circuit for a system with four modes, implemented by squeezing gates and one layer of beam splitters. (b) Holographic
implementation of the circuit shown in panel (a) by repurposing two modes. The upper wire (blue) and lower wire (red) correspond to the two
cavities of the same colors in (c), coupled by a transmon as a beam splitter (olive green). (c) 3D cQED device of two modes implemented with

microwave cavity resonators coupled by a transmon.

splitters. As discussed in Section 4, the resulting para-
metrization allows for efficient and accurate GBS simulations
based on arbitrary adjacency matrices.

First, we obtain the covariance matrix of the reference state
O¢ as well as the single-mode squeezing parameters from the
adjacency matrix A, as described in Section 2.3.5. Next, we
prepare the single-mode squeezed states from vacuum and feed
them into the MPS-based network with variational beam-
splitting and phase-shifting parameters [0 = (0, .., Og), ¢ =
(¢, - Pr)] for a network with a total of K beam splitters.
These parameters are optimized by minimization of the
Frobenius distance di,,(6, @) = [|6uny(0, ¢) — Orefll ¢ using a
standard conjugate gradient-descent optimizer, which has the
computational complexity of O(dm*) for an m-mode
covariance matrix, where d is the number of iterations. The
parameter set 6, g, corresponding to the minimal distance is
then used as parameters for the quantum circuits.

2.5. Bosonic cQED Hardware Setup for Holographic
GBS. The experimental requirements for implementing the
holographic GBS include a high-coherence multimode cavity
system (with at least two storage modes), pairwise beam-
splitter operations with programmable phases and splitting
ratios, and efficient readout, reset, and squeezing of individual
cavity states. We emphasize that all of these requirements are
already met simultaneously in existing hardware demonstra-
tions, although design optimization is needed. For example, the
two-mode device used to demonstrate bosonic two-qubit gates
in ref 46, as reproduced in Figure 3¢, can already be used to
implement GBS of arbitrarily number of modes in principle
using the circuits shown in Figure 3b. More recent
demonstration of a quantum router connecting four storage
modes*” provides all the tools necessary to implement the
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holographic GBS routine with added beam-splitter layers such
as those shown in Figure 4b. In this section, we briefly review
the techniques necessary to physically implement the required
bosonic operations, discuss the limitations of existing
hardware, and introduce a minimal construction of the 3D
circuit QED device tailored for holographic GBS.

Simply speaking, the key figure of merit that characterizes
the performance of a device hardware for the proposed GBS
protocol is the ratio of cavity coherence times to the
operational cycle time. This ratio sets an upper bound on
the executable circuit depth or effective number of modes that
can be computed. The current state of the art in multimode
cavity QED has led to quantum control of over 10 cavity
modes with millisecond lifetimes.”® The coaxial stub geometry,
which is more widely adopted, consistently exhibits coherence
times at the millisecond level. It also offers spatial separation of
the modes, facilitating individual control.*® In principle,
seamless designs of superconducting cavities, leveraging low
surface-to-volume ratio and materials-processing technologies
borrowed from particle accelerators, can achieve coherence
times on the order of seconds.”” This represents a significant
potential for enhancing system performance by several orders
of magnitude.

Programmable two-mode beam splitter and single-mode
squeezing gates can be achieved with either the four-wave
mixing or the three-wave mixing process using external
microwave pumps in 3D circuit QED. In either case, the
external pump, applied under the appropriate frequency
matching condition, can activate a rotating-frame Hamiltonian

of the form a'be' + ab e for photon conversion between a
and b modes or 4% + 2% for squeezing drives in mode
a for the ith beamsplitter. The phase of the pump tone controls
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Figure 4. (a) Quantum circuit for a system with four modes, implemented by squeezing gates and two layers of beam splitters. (b) Holographic
implementation of the circuit shown in panel (a) by repurposing three modes. Gates with the same color are simultaneously applied. (c)
Multimode 3D cQED device implemented with microwave cavity resonators coupled by a transmon implemented as a quantum router.

the beam-splitting phase 6, or the squeezing phase ¢, while the
amplitude and length of the external pump controls the
splitting ratio or squeezing ratio. The four-wave mixing process
is ubiquitously available in standard circuit QED hardware
systems today, requiring only a fixed-frequency transmon
ancilla, which generally allows for gates on the order of several
us.>® Much faster gates on 100 ns scale or shorter can be
implemented with parametric charge or flux drives’"*” using
novel Josephson ancilla circuitry that supports three-wave
mixing processes. These ancillae, including, for example,
SNAIL (Superconducting Nonlinear Asymmetric Inductive
eLement),47’53’_55 RF SQUID, and ATS® have been under
intensive development recently. Their integration with high-
coherence 3D systems has led to record beam-splitter fidelity
in the range of 99.9—99.99%.>"**

Measurement and reset of cavities can use transmons’
ancillae and their low-Q readout resonators. A transmon qubit
dispersively coupled to both a storage cavity and a readout
resonator has been a well-developed tool to analyze the storage
photon number using Ramsey sequences or selective transmon
excitations.”” If the task is to distinguish between 10) and 1)
for the cavity, a Ramsey-like protocol for photon-number
parity measurement is preferable for its faster speed, which
should allow cavity measurements within 1 us for typical
coupling parameters. Cavity-state reset for arbitrary initial
photon number can employ a beam splitter between the cavity
and a linear low-Q mode (such as the readout resonators in
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Figure 3c). To achieve a reasonable operation speed (us or
less), however, requires a dedicated parametric coupler capable
of strong three-wave mixing (e.g, a SNAIL). Assuming the
expected number of cavity photons is low, an alternative
approach involves resetting specific number states to vacuum
through intermediary transmon states. Specifically, it is
possible to convert a single-photon excitation in the storage
cavity into double excitations in the transmon using a four-
wave mixing drive. Subsequently, resetting the transmon
should allow the resetting of the cavity I1) state within 1 ps.

In constructing a full device capable of the proposed
holographic GBS, a key consideration is the ability to measure
and reset one cavity mode without affecting the other cavity
modes. Therefore, a transmon ancilla with simultaneous
dispersive coupling to multiple storage modes for their
readout, such as in ref 48, is undesirable. Instead of designing
spatially separated storage cavity modes with independent
transmon ancillas as in refs 47 and 50, we propose a hardware-
efficient setup that satisfies all the requirements as in Figure 4c.
The storage cavity module containing multiple modes is
coupled to a three-wave mixing coupler (e.g., SNAIL) operated
under the condition to minimize the fourth-order nonlinearity
of the storage modes (self Kerr and cross Kerr). The three-
wave coupler is further coupled to another high-Q transfer
cavity with a transmon ancilla. The three-wave coupler allows
for fast beam-splitter operations between storage modes as well
as swapping between any storage mode and the transfer cavity

https://doi.org/10.1021/acs.jctc.4c00384
J. Chem. Theory Comput. 2024, 20, 64026413


https://pubs.acs.org/doi/10.1021/acs.jctc.4c00384?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00384?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00384?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00384?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00384?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

(typically prepared in vacuum) for readout and initialization.
The number of photons in the transfer cavity can be analyzed
by leveraging the dispersive interaction with the transmon.
Additionally, the reset of the transfer cavity can be carried out
using transmon-mediated sideband drives, which are condi-
tioned on the cavity states. Utilizing the transfer cavity not only
protects the storage modes from spurious fourth-order
nonlinearities but also protects the low-Q components of the
circuits, which are required for fast measurement and reset.

3. RESULTS AND DISCUSSION

We first demonstrate the capabilities of the MPS-based
holographic approach as applied to GBS for solving the
problem of molecular docking (Section 3.1). Next, we analyze
the scalability of the approach as applied to random adjacency
matrices (Section 3.2).

3.1. Molecular Docking Mapped as a Graph Search
Problem. In this section, we apply the MPS-based holo-
graphic approach to solve the molecular docking problem,
which involves finding the optimal binding mode of a small
drug molecule bound to a target biological receptor.
Specifically, we focus on the benchmark model system of a
thiol-containing AS compound bound to the TACE, shown in
Figure 2, that allows for direct comparisons of our MPS-based
GBS approach to full GBS simulations.”’ Binding of AS to
TACE is determined by hydrogen bonds and hydrophobic
contacts established by six pharmacophores in the TACE
active site and four pharmacophores in the AS. Therefore,
there is a total of 24 possible pairs of interactions that could be
established upon AS binding.

The binding interaction graph is thus defined by a 24 X 24
adjacency matrix A, where A; = A; is nonzero if the two
binding interactions i and j are geometrically compatible and
A; = 0 otherwise. With this adjacency matrix, the GBS routine
is carried out as described in Section 2.1, and the
corresponding MPS-based holographic implementation is
carried out as described in Section 2.4. The results of the
sampling are analyzed to identify the densest sampled
subgraph.

Figure 5 shows the result of GBS versus MPS-network
sampling. Dense subgraphs sampled by GBS are converted into
heaviest cliques representing the most probable binding
patterns using the algorithm for postprocessing GBS data
described in ref 21. The algorithm first shrinks the GBS
sampled subgraph into smaller cliques by sequentially
removing vertices with small degree until finding a clique.
Then, the found clique is locally expanded into a large clique
according to a local search algorithm that expands the clique
by one vertex that is fully connected with all vertices in the
original clique. As shown in Figure Sa, the sampling routines
successfully identify the heaviest clique (weight = 3.99) with
high probability. Moreover, sampling results from the MPS
network agree closely with the GBS result, confirming the
accuracy of the proposed MPS-based holographic approach.
Figure Sb plots the maximum clique as a subgraph in the
binding interaction graph, while Figure Sc visualizes the
binding interactions that correspond to the maximum clique.

3.2. Scalability Analysis with Random Graphs. Here,
we examine the scalability and accuracy of the MPS-based
algorithm described in Section 2.4 for a series of random
graphs specified by randomly generated adjacency matrices A
that satisfy the conditions described at the beginning of
Section 2.1.
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(3.33, 3.88, and 3.99) are selected with high frequency. (b) Subgraph
for the heaviest (weight 3.99) clique obtained in (a). (c)
Visualization of binding interactions of the subgraph in (b).

First, we examine the capabilities of our variational approach
to approximate the full optical network by comparing the
covariance matrix at the output of the optimized MPS-based
holographic network to the reference covariance matrix
generated by the conventional GBS setup (Table 1).

The results displayed in Table 1 indicate that MPS-circuits
equipped with either one or two layers of beam splitters
achieve high precision in approximating the GBS output states,
showing that the covariance matrix error remains below 5%,
even for circuits comprising up to 50 modes.
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Table 1. Performance of the MPS-Based Circuits
Parameterized by the Variational Covariance Matrix
Optimization”

(a) 1-layer MPS network

M distance
12 0.05
16 0.04
20 0.04
24 0.03
50 0.02
(b) 2-layer MPS network
12 0.04
16 0.04
20 0.03
24 0.02
NY 0.01

“The number of modes for each test is denoted by M. The relative
distance between covariance matrices is defined as [lo,, — Orefll/

”o-ref”'

4. CONCLUSIONS

In this study, we have introduced quantum circuits designed
for simulating multimode state vectors on 3D cQED
processors, leveraging MPS representations. These circuits
have been showcased through simulations of molecular
docking, specifically focusing on the binding of a thiol-
containing AS ligand to the tumor necrosis factor-a converting
enzyme receptor, utilizing holographic GBS. Our findings
reveal the proposed MPS scheme based on cQED devices with
only 2 or 3 modes is able to prepare multimode Gaussian states
that closely approximate those obtained by the conventional
GBS method even for systems with up to 50 modes. This
approach opens the door to a broad spectrum of GBS
applications that could be efficiently executed on compact 3D
cQED processors using the holographic method.
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