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The extreme sensitivity of critical systems has been explored to improve quantum sensing and
weak signal detection. The closing of the energy gap and abrupt change in the nature of the ground
state at a quantum phase transition (QPT) critical point enhance indicators of parameter estimation,
such as the quantum Fischer information. Here, we show that even if the system lacks a QPT, the
quantum Fischer information can still be amplified due to the presence of an excited-state quantum
phase transition (ESQPT). This is shown for a light-driven anharmonic quantum oscillator model
that describes the low-lying spectrum of an exciton-polariton condensate proposed as a platform
for quantum computation. In the classical limit, the ESQPT translates into the emergence of a
hyperbolic point that explains the clustering of the energy levels at the vicinity of the ESQPT and the
changed structure of the corresponding eigenstates, justifying the enhanced sensitivity of the system.
Our study showcases the relationship between non-conventional quantum critical phenomena and
quantum sensing with potential experimental applications in exciton-polariton systems.

Quantum metrology and quantum sensing aim to use
quantum properties to enhance measurement precision
beyond what could be classically achieved [1, 2]. Entan-
glement, for example, is a pure quantum property that
has been used to improve measurement sensitivity [3–
7], but several other mechanisms have been explored [2].
Squeezed light has been used to improve the sensitivity
of detectors based on laser interferometry [8, 9]. An-
other promising avenue is quantum criticality, which ex-
tends the use of phase transitions in classical sensing to
the quantum domain. The diverging susceptibility of the
ground state at a quantum phase transition (QPT) can,
in principle, be used to enhance parameter estimation
and to saturate the Heisenberg limit [10–22]. Experi-
mentally, access to external control parameters that al-
low reaching critical points are of extreme importance to
tune a sensing platform. Here, we present a system that
can be taken into a critical state through simple light
control.

The abrupt change in the nature of a quantum state
|Ψj⟩ that takes place as a (set of) control parameter(s) λ
of a system reaches the critical point of a QPT is reflected
in the increasing value of the quantum Fisher information
(QFI) defined as [23, 24],

F
(j)
λ = 4

∑
i ̸=j

|⟨Ψi|∂λĤ|Ψj⟩|2

(Ei − Ej)2
, (1)

where ∂λ := ∂
∂λ , Ĥ(λ) = Ĥ0 + λĤ1 is the Hamiltonian

that describes the system, Ei are its eigenvalues, and |Ψi⟩
its eigenstates. Usually, F

(j)
λ is computed for the ground

state (j = 0), but the analysis can be extended to other

states. F
(j)
λ is equivalent to the quantum fidelity suscep-

tibility [25], which is the second-order term in the Taylor
expansion of the fidelity |⟨Ψj(λ)|Ψj(λ+δλ)⟩| between two
states |Ψj⟩ obtained for two values of the control param-
eter that differ by an infinitesimal amount δλ. The QFI
also coincides with the real part of the quantum geomet-
ric tensor [15, 26], which measures the distance between
two states. The importance of the QFI for quantum
sensing becomes evident with the quantum Cramér–Rao

bound, which states that the inverse of F
(0)
λ limits the

accuracy of an unbiased estimation of a system parame-
ter [23, 24]. At a QPT, in particular, where the energy
gap between the ground-state E0 and the first-excited
state energies vanishes, the QFI peaks, indicating im-
proved sensitivity and enhanced measurement precision.
The merging of energy levels is not restricted to the

two lowest levels. It can propagate to higher excita-
tion energies as the control parameter increases beyond
the ground-state critical point, a phenomenon that be-
came known as excited state quantum phase transition
(ESQPT) [27]. Despite the increasing interest in ES-
QPTs [28] and its consequences to localization [29, 30],
the subject has not yet received much attention in the
context of quantum metrology. There are systems that
present both a QPT and an ESQPT, but only their
QPT was explored for quantum sensing, such as the Lip-
kin–Meshkov–Glick model [16, 31] and the Kerr para-
metric oscillator [21, 32]. The latter, in particular, can
be realized in superconducting circuits, where the energy
levels can be experimentally measured as a function of
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the control parameter [33], thus allowing for the detec-
tion of the ESQPT [34]

Here, we investigate an anharmonic quantum oscil-
lator model that describes the low-lying spectrum of
an exciton-polariton condensate whose polariton interac-
tions lead to a Kerr-like nonlinearity [35]. Remarkably,
the system exhibits an ESQPT without a QPT. It can
be taken to the ESQPT critical point by light control,
where we find an enhancement of the QFI. This happens
not only for the excited states in the vicinity of the ES-
QPT critical energy, but for the states all the way down
to the ground state. This analysis sheds light on the
interplay between the structures of quantum states and
critical phenomena, with consequences that could be ex-
perimentally detected and built up for sensing devices in
exciton-polariton condensates.

Exciton-polariton condensate model.— We consider an
exciton-polariton condensate at zero momentum formed
inside a semiconductor microcavity pumped with an ex-
ternal coherent optical field [35–38]. Exciton-polaritons
offer a promising platform for tunable Kerr-like non-
linearities [39]. These quasiparticles emerge when pho-
tons get dressed by the excitons in the semiconductor
under a strong light-matter coupling regime [40]. By in-
heriting the properties of their original constituents, po-
laritons yield effective photon interactions [41], that allow
for the creation of macroscopic quantum phenomena with
novel features due to their non-equilibrium character [41,
42], such as Bose-Einstein condensation [43–45], supeflu-
idity [46–48], and topological states of light [49]. Polari-
ton interactions have potential applications in novel opti-
cal nonlinearities [50], polaritonic logical devices [51, 52],
and quantum computing [35, 53, 54].

The Hamiltonian that describes the low-lying spec-
trum of the considered exciton-polariton condensate is
given by

Ĥ = −∆â†â+Kâ†2â2 − P0(â+ â†), (2)

where ℏ = 1, â† (â) is the creation (annihilation) op-
erator, ∆ is the pump-polariton detuning between the
optical field frequency ϵ0 and the lower-polariton mode
ϵLP, K = g C4

0 is the Kerr-like nonlinear interaction
strength, with g being the bare exciton-exciton contact
interaction and C0 the Hopfield coefficient at zero mo-
mentum [39, 40], and P0 is the effective optical pump,
that depends on the quasi-mode coupling of the exter-
nal field to the microcavity [55, 56] and the Hopfield
coefficients. The three parameters in Eq. (2) are inde-
pendently tunable in microcavity semiconductors via the
light-matter detuning that modulates the polariton light-
matter content. An illustration of the system is given in
Fig. 1(a).

The exciton-polariton model in Eq. 2 does not exhibit
a QPT. The energy gap between the ground-state en-
ergy and the first-excited energy does not close as we
vary the parameters ∆, K or P0; the ground state does

FIG. 1. (a) Illustration of the experimental setup: a mi-
crocavity semiconductor is pumped by an external coherent
field with frequency ϵ0 and effective amplitude P0, creating a
condensate of interacting exciton-polaritons with energy ϵLP.
The exciton-polaritons are depicted as red spheres and their
interaction strength is K. (b) Colored lines are the quantum
Fisher information (QFI) for the first seven eigenstates as a
function of the control parameter ∆; P0/K = 3. The red
line in the inset corresponds to the QFI of the ground state
|Ψ0⟩ only and the dashed pink vertical line depicts the critical
point of the ESQPT.

not present any singularity. Yet, as we show below, the
system presents an ESQPT, which affects the system’s
sensitivity all the way down to the ground state.
Quantum Fisher information divergence.— We set

P0/K constant and study the QFI as a function of the
control parameter ∆ in Fig. 1(b). According to the
Hamiltonian in Eq. (2), the numerator in the equation for
the QFI [Eq. (1)] involves the off-diagonal elements of the
number operator, ⟨Ψi|n̂|Ψj⟩, since ∂∆Ĥ = −â†â = −n̂.

Figure 1(b) shows that F
(j)
∆ diverges when ∆ reaches

a value ∆c. This is illustrated for the first seven lowest
energy levels, including the ground state, which is also
shown alone in the inset. This result indicates the en-
hanced sensitivity of the system at ∆c. Our goal below
is to provide the origin of this behavior.
Excited state quantum phase transition.— To under-

stand the divergence of the QFI, we analyze the classical
limit of Eq. (2), which is obtained using Glauber coher-
ent states, â|α⟩ = α|α⟩, where α = q + ip. Expressed
in terms of the canonical variables (q, p), the classical
Hamiltonian reads

hcl = ⟨α|Ĥ|α⟩−∆

2
(q2+p2)+

K

4
(q2+p2)2−

√
2P0 q, (3)

where the classical energy is denoted by hcl(q, p) = ϵ.
The roots of the Hamilton equations are

q1 = − β
3
√
2 32/3K

−
3

√
2
3∆

β
,

q2 =

(
1 + i

√
3
)
∆

22/3 3
√
3β

−
(
1− i

√
3
)
β

2 3
√
2 32/3K

,

q3 =

(
1− i

√
3
)
∆

22/3 3
√
3β

+

(
1 + i

√
3
)
β

2 3
√
2 32/3K

,
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FIG. 2. (a)-(d) Phase space, where the green circle is the global minimum, the orange circle in (c)-(d) is the hyperbolic point,
and the purple point in (d) is the local maximum. The black lines indicate the classical energy shells, the orange dotted line in
(c)-(d) marks the energy ϵhyp of the hyperbolic point, and the purple dotted line in (d) is the energy ϵmax associated with the
local maximum. The red and blue shades indicate the positive and negative values of the Wigner function of the ground state
|Ψ0⟩; P0/K = 3. (e)-(h) Density of states (shaded area) and its classical limit (black line) for the same values of ∆/∆c. The
vertical dotted orange (purple) line marks ϵhyp (ϵmax). (i)-(l) Expectation value of the number operator, ⟨n̂⟩i, as a function
of the energies. The vertical dotted orange (purple) line marks ϵhyp (ϵmax). The roman numbers in (d) and (l) mark different
regions of the phase space. In (e)-(l): P0/K = 1000.

where β = 3

√√
6
√

27K4P 2
0 + 2∆3K3 − 9

√
2K2P0. This

implies that the classical system can have three criti-
cal points (q = qk, p = 0) with k = {min,hyp,max}
indicating a global minimum (min), a hyperbolic point
(hyp) and a global maximum (max). The global mini-
mum is always present, being given by qmin = q1 when
∆ < 0 and qmin = q2 when ∆ ≥ 0. The appearance of
the other two points is determined by the critical point
∆c = 3 3

√
KP 2

0 /2. The hyperbolic point qhyp = q1 ap-
pears when ∆ ≥ ∆c and the global maximum qmax = q3
when ∆ > ∆c. We denote the classical energies associ-
ated with the hyperbolic and local maximum points as
ϵhyp and ϵmax, respectively.

The three critical points are shown in the phase spaces
in Figs. 2(a)-(d), where the green circle is the global min-
imum, the orange circle appearing in Figs. 2(c)-(d) is the
hyperbolic point, and the purple circle visible only in
Fig. 2(d) is the global maximum. The black lines are
the classical energy shells. The dotted orange line that
intersects at the hyperbolic point (homoclinic orbit) in
Fig. 2(c) marks the critical energy ϵhyp of the separa-

trix that divides the phase space into two distinct re-
gions. This line and the purple dotted line at ϵmax in
Fig. 2(d) separate four regions of the phase space ac-
cording to the energies: the region (I) of lowest energies
(ϵ < ϵhyp), the regions (IIa) and (IIb) of intermediate
energies (ϵhyp < ϵ < ϵmax), and the outer region (III) of
highest energies (ϵ > ϵmax).

The appearance of the hyperbolic point gets mani-
fested in the quantum system and is responsible for the
divergence of the QFI at ∆/∆c = 1 in Fig. 1(b). The
hyperbolic point affects the spectrum and the structure
of the eigenstates. In Figs. 2(e)-(h), we show the density
of states (shaded area) and its classical limit (black line)
obtained with the Gutzwiller trace formula [57]. The
density of states diverges logarithmically in Figs. 2(g)-
(h), where ∆ ≥ ∆c. The divergence happens at the crit-
ical energy EESQPT ∼ ϵhyp and is the principal signature
of an ESQPT [27]. Our result shows that the ESQPT
is dissociated from a QPT, which is absent for this sys-
tem. There is also a step discontinuity in Fig. 2(h) at
Estep ∼ ϵmax, which reflects the presence of the local
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FIG. 3. Energy spectrum as function of ∆/∆c; P0/K = 3.
Dashed vertical lines indicate the spectrum at A (∆/∆c =
−0.5), B (∆/∆c = 0.5), C (∆/∆c = 1) and D (∆/∆c = 2)
analyzed in Fig. 2. The orange (purple) dashed line is the
classical critical energy ϵhyp (ϵmax).

maximum.
The clustering of the energy levels that results in the

divergence of the density of states in Figs. 2(e)-(h) can
be verified in Fig. 3, where we show the eigenvalues Ei of
the Hamiltonian in Eq. (2), subtracted from the ground-
state energy E0, as a function of the control parameter
∆. The orange star at ∆/∆c = 1 indicates the energy
of the ESQPT, EESQPT. This energy follows the dashed
orange line for ∆ > ∆c. The clustering of the eigenvalues
happens along this line. The figure also shows with a
dashed purple line the energy Estep ∼ ϵmax of the step
discontinuity seen in Fig. 2(h).

Between EESQPT and Estep, the energy levels in Fig. 3
exhibit avoided crossings. This is associated with pairs of
classical orbits, one orbit in region IIa and the other in re-
gion IIb of the phase space, as shown in Fig. 2(d), where
the classical energies are equal. The values of ∆ where
the crossings occur can be obtained in the semiclassi-
cal limit using the Einstein-Brillouin-Keller quantization
rule [58].

Eigenstate Structure.— The vertical lines in Fig. 3 in-
dicate the selected values of ∆/∆c used to show the phase
space in Figs. 2(a)-(d), the density of states in Figs. 2(e)-
(h), as well as the expectation value of the number oper-
ator, ⟨n̂⟩i, as a function of the eigenvalue Ei in Figs. 2(i)-
(l). These four last panels display the effects of the ES-
QPT on the structure of the eigenstates. A singularity
appears at EESQPT in Figs. 2(k)-(l). The low value of
⟨n̂⟩i at this point reflects the strong localization of the
eigenstate at the ESQPT.

The expectation value of the number operator, ⟨n̂⟩i, co-
incides with the slope of an individual energy level Ei(∆)
according to the Hellmann–Feynman formula,

dEi(∆)

d∆
= ⟨Ψi(∆)|∂∆Ĥ|Ψi(∆)⟩ = ⟨n̂⟩i. (4)

These slopes appear explicitly in the equation for the
level flow in the continuity equation [28],

j(∆, E) =
∑
i

dEi(∆)

d∆
δ(E − Ei(∆)), (5)

which identifies the ESQPT [59, 60]. This transition re-
sults in a dramatic modification of the energy landscape
that gives rise to topological changes even in the vicinity
of the ground state. These changes are detected by the
QFI.
To show the effects of the ESQPT on the ground state,

we depict with red (blue) shades in Figs. 2(a)-(d) the
positive (negative) values of the Wigner function of the
ground state. As ∆ increases and approaches the ESQPT
critical point, the ground state gets squeezed in q. The
squeezing starts before the critical point, as in Fig. 2(b),
and anticipates the appearance of the hyperbolic point.
This behavior reflects the topology change created by the
hyperbolic point and its homoclinic orbit. In fact, the
squeezing of the ground state as the control parameter
approaches the ESQPT critical point can be seen as an
indirect signature of the ESQPT.
Conclusion.— Our study shows that a system of

exciton-polaritons can be remotely taken into an ESQPT
critical point through simple light frequency amplitude
control. The clustering of the eigenvalues and the change
in the structure of the eigenstates at the ESQPT combine
to enhance the QFI, indicating an amplified sensitivity of
the system. Our approach paves the way for the devel-
opment of exponentially sensitive and remotely tunable
sensing platforms.
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[28] P. Cejnar, P. Stránský, M. Macek, and M. Kloc, Excited-
state quantum phase transitions, J. Phys. A 54, 133001
(2021).
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