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Quantum multifractality as a probe of phase space in the Dicke model
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We study the multifractal behavior of coherent states projected in the energy eigenbasis of the spin-boson
Dicke Hamiltonian, a paradigmatic model describing the collective interaction between a single bosonic mode
and a set of two-level systems. By examining the linear approximation and parabolic correction to the mass
exponents, we find ergodic and multifractal coherent states and show that they reflect details of the structure of
the classical phase space, including chaos, regularity, and features of localization. The analysis of multifractality
stands as a sensitive tool to detect changes and structures in phase space, complementary to classical tools to
investigate it. We also address the difficulties involved in the multifractal analyses of systems with unbounded
Hilbert spaces.
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I. INTRODUCTION

Mandelbrot first introduced the notion of multifractality
to describe the statistical properties of turbulent flows [1].
Multifractality is characterized by an infinite set of criti-
cal exponents that determine the scaling of the moments of
the distribution of some quantity. It has been observed in a
wide range of phenomena, from mathematical objects, such
as strange attractors [2–4] and diffusion-limited aggregates
[5], to the human heartbeat series [6] and brain activity [7].
In the last two decades, the subject has gained attention in
the quantum domain, for both disordered and clean systems,
in relation to problems, such as the Anderson localization
phenomena [8–11], many-body localization [12–15], quan-
tum phase transitions [16], disordered Josephson junctions
[17], the Bose-Josephson junction [18], Floquet eigenstates
[19–21], quantum phases in spin chains [22], quantum maps
[23], robustness against perturbations [24,25], open quantum
systems [26], quantum scarring [27], and applications to quan-
tum computing [28].

In quantum mechanics, multifractality roughly means that
the wave function is extended but effectively restricted to a
portion of the Hilbert space [29,30]. This restriction happens
because the weight of each component of the wave function
scales differently and independently when the Hilbert space
dimension increases. Each weight is a fractal on its own, hence
the name multifractal. Quantum multifractality is intertwined
with the concepts of localization, ergodicity, and chaos [31]
and was recently used as a local measure of chaos for the
kicked top model [32]. In this work, we perform quantum
multifractal analyses to examine and compare the classically
chaotic and regular structures of the phase space of the Dicke
model, in the same spirit as what was done in Ref. [33],

where a measure of quantum state localization, the so-called
participation ratio, was used to probe classical chaos in that
model.

The spin-boson Dicke model describes a bosonic field
strongly interacting with the collective degrees of freedom
of N two-level systems (qubits) [34]. It has drawn attention
in recent years not only because it is the most simple, yet
nontrivial, interacting model for exploring equilibrium and
nonequilibrium properties [35–38], but also because it can be
realized in various experimental setups, such as neutral atoms
[39–42], ion traps [43,44], and Raman cavities [45,46]. One
of the most prominent features of the model is the prediction
of the transition to a superradiant quantum phase. In addition,
the system’s spectrum exhibits a transition from regularity to
chaos as the energy increases [47–49], thus granting a fertile
ground for exploring the onset of (multi)fractality.

Multifractality was recently studied in an interacting Tavis-
Cummings model [50] (an integrable version of the Dicke
model without the counter-rotating terms), where the eigen-
states written in the computational basis were shown to be
nonergodic. Fractality was also identified in the ground state
of both the standard and anisotropic Dicke models [51,52].
However, investigating multifractality for energies above the
ground state is challenging, because the model has an un-
bounded Hilbert space, and the study of multifractality relies
on scaling analysis.

Here, we explore the multifractal behavior of coherent
states spanned by the eigenbasis of the Dicke Hamiltonian.
Each coherent state represents a point in the phase space
where it is centered. We show that the analysis of quantum
multifractality can be used as a probe to identify chaos and
regularity.
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The paper is organized as follows. In Sec. II, we describe
the formalism for classical and quantum multifractality. In
Sec. III, we present the Dicke Hamiltonian, its classical limit,
and the general protocol to study the multifractality of co-
herent states. In Sec. IV, we analyze the fractal dimension of
representative coherent states, and in Sec. V, we explore the
overall behavior of multifractality over phase space structures
across different energy surfaces. Finally, in Sec. VI, we offer
our perspectives and conclusions. We also include appendices
with further technical details.

II. FRACTAL ANALYSIS

Generally speaking, multifractality is a tool for charac-
terizing, in a statistical sense, the nature of a local positive
measure, that is, how a positive quantity is distributed on a
set supporting that measure [53,54]. The scaling of the mea-
sure provides information about the measure’s singular local
behavior.

A. Multifractality quantification

In mathematics, to describe the dimensionality of an object
quantitatively, one divides it into N pieces labeled by k =
1, . . . , N , and considers an event occurring upon the object
at the piece k with a probability pk , which is given by the
measure dμ or resolution length [53]. Next, one defines the
partition function,

Z (q) =
N∑

k=1

pq
k, (1)

where Z (1) = 1 to fulfill normalization. The partition function
provides global, quantitative information on the local behavior
of the measure around each piece. As N → ∞, the size of
each piece decreases as N−1, and the scaling behavior of the
partition function is given by Z (q) ∼ N−τq , where τq denotes
the scaling in terms of q only, and τq=1 = 0 due to normal-
ization. The exponents τq are called mass or homogeneity
exponents [55].

The measure is multifractal when τq is a nonlinear function
of q. This is expressed by parametrizing the mass exponents
as

τq = Dq(q − 1), (2)

where Dq is the generalized (Rényi) dimension [56,57] de-
fined as

Dq = lim
N→∞

(
1

1 − q

log Z (q)

log N

)
. (3)

For q = 0, the partition function counts the number of
nonempty pieces of size N−1, so τ0 = −D0 = −D, where
D is called Hausdorff fractal dimension or capacity of the
support of the measure [55]. When Dq is a constant func-
tion of q, the system is monofractal with dimension D.
This also includes objects of integer dimension (typically
considered nonfractals). The generalized dimensions have
specific names for some values of q. D1 is called informa-
tion dimension, because it measures the information gained
by observing a system’s trajectory with some precision and
quantifying the Kolmogorov-Sinai entropy after a long time

of observation [58]. D2 is known as the correlation dimen-
sion of the measure [2,3], because it corresponds to the
scaling of the correlation between two points in the classi-
cal phase space. It has been conjectured that in the case of
strange attractors, D1 and D2 are related to the Lyapunov
exponents [59].

The mass exponents and the generalized dimensions follow
some rules that need to be observed [55]. The exponents
τq must be monotonically increasing functions with nega-
tive curvature [57]. Hence, it holds that dτq/dq > 0 and
d2τq/dq2 � 0. Instead, the generalized dimensions Dq are
positive monotonically decreasing functions of q bounded
by D±∞ = D(q → ±∞) [60]. Thus, dDq/dq � 0, and 0 �
D∞ � Dq � D−∞.

B. Quantum multifractality

One way to bring the concept of multifractality to the
quantum realm is in terms of the level of delocalization of
a quantum state written in a given basis. Consider a quantum
state |�〉 and a complete basis {|k〉} over a Hilbert space of
dimension ℵ. The probability of finding the quantum state in
one of the elements of the basis is given by |ck|2 = |〈k|�〉|2,
which plays the role of the probability of finding the state (the
event) over a given eigenstate (the piece). Thus, in this case,
the partition function can be built in terms of the generalized
inverse participation ratios [61] as

Z (q) = IPRq =
ℵ∑

k=1

|ck|2q, (4)

Here, the defining integrated measure is the normalization
condition, so IPRq=1 = 1. The case q = 2 corresponds to the
standard inverse participation ratio (IPR) [62,63]. The scaling
of IPRq with the size of the Hilbert space reveals the asymp-
totic statistics of the participation of the basis elements |k〉 in
the state |�〉 and is expected to be of the form IPRq ∼ ℵ−τq ,
where the exponents τq are now defined as

τq := − lim
ℵ→∞

log IPRq

log(ℵ)
. (5)

The scaling of IPRq for all q is used to classify the states.
Localized states have Dq = 0, extended but nonergodic states
have 0 � Dq < 1, and ergodic states imply Dq = 1. Multifrac-
tal wave functions are nonergodic extended states, because
the ratio between the effective portion of the Hilbert space
that they occupy and the full size of the Hilbert space is
neither one nor vanishing as the system size increases [16].
In condensed matter, systems classified as insulators have
Dq = 0, and conductors have Dq �= 0 [61]. However, a full
theory linking specific nonlinear behaviors of either τq or
Dq to specific physical phenomena for all values of q is, in
general, absent. Depending on the system, the connection is
usually made ad hoc.

To determine whether τq is nonlinear, one resorts to the
so-called anomalous scaling exponent,

�q = τq − D(q − 1), (6)

which quantifies the deviation of the mass exponents from the
linear behavior [61]. In the above equation, D is the linear
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approximation to Dq. If the behavior of the mass exponents
with q is parabolic and the anomalous fractal dimension
is quadratic, �q ≈ �(1 − q)q, with � constant, then we
have weak multifractality, a concept introduced as an effort
to provide a first approximation for multifractal behavior.
Some symmetries have been proved for the anomalous frac-
tal dimension, such as the reciprocity relation �q = �1−q

[8,64,65], that has been predicted to be valid for transitions
belonging to the Wigner-Dyson classes. Efforts have been
made to show its universality, being proved in some cases
including the critical point of the Anderson localization tran-
sition [8,66–68], the power-law banded random matrix [69],
and the integral quantum Hall effect [70]. Conversely, it has
been found that the relation is not fulfilled when mecha-
nisms like Gaussian fluctuations at small scales or algebraic
localization of the wave function are present, such as in Flo-
quet critical systems and random graphs [71]. However, as
is discussed below, given numerical convergence constraints,
we cannot verify this relation systematically for the Dicke
model.

In what follows, we investigate linear and quadratic fits
for τq as a function of q and then use Eq. (6) to obtain the
approximate values to D and �. If the linear fit of τq is very
good, then � 
 0, so the system is closer to a monofractal.

III. DICKE HAMILTONIAN

The spin-boson Dicke Hamiltonian is given by

ĤD = ωâ†â + ω0Ĵz + �√
N

(â† + â)Ĵx, (7)

where h̄ = 1, â† (â) is the bosonic creation (annihilation)
operator, and Ĵx,y,z = 1

2

∑N
i=1 σ̂ i

x,y,z are collective pseudospin
operators satisfying the su(2) algebra, with each Pauli matrix
σ̂ i

x,y,z describing a single spin-1/2 (qubit). Here, ω, ω0, and
� are the boson, single qubit, and Rabi energy splittings.
The Hamiltonian has two symmetries. First, it commutes with

the total pseudospin length operator Ĵ
2 = Ĵ2

x + Ĵ2
y + Ĵ2

z , so
the Hilbert space is divided into different subspaces corre-
sponding to the pseudospin length j. The ground state of the
collective system lies on the totally symmetric subspace with
maximum pseudospin length j = N /2, where the collective
degrees of freedom are equivalent to bosons. Second, the
Hamiltonian commutes with a discrete parity operator, �̂ =
exp[iπ (â†â + Ĵz + jÎ)], which leads to the further separation
of the Hilbert space into two subspaces corresponding to each
parity value.

An advantage of working within the totally symmetric
subspace, as done here, is that one can straightforwardly
associate a classical Hamiltonian to the Dicke model in
Eq. (7) by employing coherent states. The correspond-
ing classical Hamiltonian hD is obtained by taking the
expectation value of ĤD under the tensor product of
bosonic Glauber |β〉 and atomic Bloch |w〉 coherent states
[48,72–77]

|z〉 = |β〉 ⊗ |w〉 = e−|β|2/2

(1 + |w|2) j
eβâ†

ewĴ+|0〉 ⊗ | j,− j〉, (8)

where |0〉 and | j,− j〉 are the boson and pseudospin fiducial
states, respectively [78]. By dividing over j, we obtain

hD(z) = j−1〈z|ĤD|z〉 = j−1ω|β|2 − ω0

(
1 − |w|2
1 + |w|2

)

+ �(β + β∗)(w + w∗)√
2 j(1 + |w|2)

. (9)

Changing to canonical variables (x, p) and (φ, jz ) in phase
space, it reads

hD(z) = ω

2
(x2 + p2) + ω0 jz + �

√
1 − j2

z x cos φ, (10)

where β = √
j/2(x + ip), w = tan(θ/2)e−iφ , jz = − cos θ ,

and φ = tan−1( jy/ jx ). While x and p are the classical quadra-
tures of the field, θ and φ are the spherical angles of the
angular momentum vector �j = j( jx, jy, jz ) lying in the Bloch
sphere. Using coherent states, one can establish a direct
quantum-classical correspondence, where a given coherent
state |z0〉 = |x0, p0; φ0, jz0〉 represents a point in the classical
phase space. We exploit this connection to explore the multi-
fractal properties of the classical phase space from a quantum
point of view, much in the sense of what was done for D2 in
Ref. [33].

We work in the parameter space of the superradiant phase.
The superradiant quantum phase transition occurs when the
Rabi splitting attains the critical value �c = √

ωω0, and the
system goes from an uncorrelated, normal phase (� < �c) to
a strongly correlated, superradiant phase (� > �c) [79–82].
It has been shown that in the superradiant phase, the spectrum
of the model exhibits a transition from regularity to chaos
as the energy increases for both the quantum and classical
Hamiltonians [48,76]. We set the Rabi splitting to � = 2.0�c,
where the regular-to-chaos transition happens smoothly.

IV. MULTIFRACTALITY IN THE DICKE MODEL

The Dicke model is nonintegrable, because it does not
possess enough conserved quantities as degrees of freedom,
so it must be solved numerically. Due to the bosonic degree of
freedom, the Hilbert space is unbounded, which constitutes a
significant challenge for the complete analysis of multifractal-
ity. To obtain the energy spectrum, one has to impose a cutoff
to the bosonic subspace (irrespective of the chosen basis) and
then ensure that the eigenfunctions are converged up to the
desired energy that one plans to investigate [83,84].

A. Convergence and effective dimension

We use a convergence criterion for q = 1 to ensure that
most of the wave function of the coherent states that we
consider lie within the energy interval of numerically con-
verged eigenstates, ranging from the ground-state to a selected
excited energy, so minor components over higher energies
remain negligible, and the normalization is guaranteed to a
set of significant figures. Nevertheless, minor components
associated with high-lying states are magnified and become
not negligible for q ∼ 0. The analysis of multifractality is thus
challenging for IPRq with q ∼ 0, which are highly sensitive to
the convergence of the wave functions and the truncation. In
particular, the Hausdorff dimension D0 = D of the coherent
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states can hardly ever be identified for the Dicke model, al-
though it can be estimated for some cases. The convergence
problem is minimized by increasing the value of the cutoff,
but this becomes highly expensive in terms of computational
resources.

The scaling analysis also requires setting a finite, effective
dimension ℵeff for the coherent states with a given mean en-
ergy. A naive choice would be the size of the collective qubit
space, which goes as j = N /2. Nevertheless, by studying the
participation of states in a given energy surface and consider-
ing that the density of states (DoS) scales as j, it was recently
shown that the proper scaling should go as ℵeff ∼ j3/2, instead
of ℵeff ∼ j [85]. Therefore, we use ℵeff ∼ j3/2 as the effective
size of the Hilbert space to perform the multifractal analysis.

B. Limiting cases of the generalized dimension

To analyze the numerical results, we contrast them with
two bounds for the scaling of IPRq. They are obtained as
follows.

(i) First, we consider a state |� (r)〉 with random compo-
nents and a Gaussian profile. We can estimate the scaling of
IPRq exactly (see Appendix A),

IPR(r)
q ∼ ℵ(1−q)

eff . (11)

The mass exponent is linear as a function of q, τ (r)
q = q − 1,

and the state is described in terms of a single fractal of
dimension D(r)

q = D = 1. This corresponds to an extended
state and constitutes an overall upper bound of localization
of the coherent states in the energy eigenbasis. This bound is
indicated with a red dotted line in both Figs. 1 and 2, panels
(a2)–(a4) and (b2)–(b4).

(ii) The other bound is obtained with a state |� (c)〉 for
which most of the components in the eigenbasis are zero,
except for a single sequence of nearly equally spaced energy
levels {..., E (seq)

k , E (seq)
k+1 , ...}. We assume that these nonzero

components also follow a Gaussian profile. This would be
the case of a coherent state centered in a point in phase
space over a regular classical orbit with a single frequency
ωcl = E (seq)

k+1 − E (seq)
k [86]. As it is shown in Appendix A, one

obtains that

IPR(c)
q ∼ ℵ

1
3 (1−q)
eff . (12)

This means that τ (c)
q = (1/3)(q − 1) is also linear and that a

single fractal of dimension D(c)
q = D = 1/3 can describe the

state. This is an overall lower bound for the localization of a
coherent state over the eigenbasis (lower bound for Dq). This
case is indicated as a blue dotted line in both Figs. 1 and 2,
panels (a2)–(a4) and (b2)–(b4). We note that for a Gaussian
distribution of a real state, where the components may be
small but not exactly zero, the curve of τq versus q in the
region 0 < q < 1 deviates from D = 1/3. Then, for q = 0, all
the components have the same weight, and the distribution
covers the full available support, so D0 = −1.

We expect the fractal dimension of most coherent states
to be in the interval Dq ∈ [D(c)

q , D(r)
q ] when neglecting minor

deviations due to finite-size effects and convergence of the
wave functions. However, some states may have D = 0 for
q > 1 thus presenting localization features for q > 1.

FIG. 1. (Top row) Poincaré surface of sections for two selected
energies, ε0 = −1.8 (a1) and ε0 = −1.5 (b1), where there is predom-
inance of regular structures in phase space. (Below) Mass exponents
τq (first and third columns) as a function of q for selected coherent
states in each energy surface, and their PDoSq (second and fourth
columns) for different values of q, and ε0 = −1.8 (a2–a4) or ε0 =
−1.5 (b2–b4); j = 100 for all panels. The location of each coherent
state in the Poincaré surface is marked with a symbol (circles for
ε0 = −1.8 and diamonds for ε0 = −1.5). In the τq plots, the dotted
cyan line corresponds to numerical results, the colored lines indicate
the ergodic (red) and regular (blue) limiting cases of the Dq, the
vertical black solid lines mark q = 1/2, 1, and 2. In the PDoSq plots,
the vertical blue line marks the mean energy.

C. Procedure for the analysis of multifractality

Our procedure to study the multifractal properties of co-
herent states goes as follows. We select a coherent state |z0〉
centered at the point z0 in phase space. We choose a set
of points from an energy surface that coincides with one of
the Poincaré surfaces of sections as shown in Figs. 1 and 2,
panels (a1) and (b1). The Poincaré sections are chosen by
setting p0 = 0 and selecting the positive branch of the solution
x+

0 = x+
0 (ε0, p0 = 0; φ, jz ) that results from solving the equa-

tion hD(x0, p0 = 0; φ, jz ) = ε0 for a given energy ε0 = E0/ j
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FIG. 2. Similar to Fig. 1 for the two selected energies ε0 = −1.1
(a1) and ε0 = −0.5 (b1), where there is predominance of chaos.
Notice the change of scale in panel (b1) due to the sudden increase
of available phase space at high energies [74]. The location of each
coherent state in the Poincaré surface is marked with a symbol
(squares for ε = −1.1 and stars for ε = −0.5).

[33]. The points in phase space are thus located using only the
atomic variables (φ, jz ). Next, we sample the energy surface
by focusing only on the points along φ0 = 0 [red points in
Figs. 1 and 2, panels (a1) and (b1)].

The surface energies grant insight into different regions
of chaos and regularity: for ε0 = −1.8, there is a major
presence of regular orbits with chaos emerging in small re-
gions [Fig. 1(a1)]; for ε0 = −1.5 the phase space is mixed
[Fig. 1(b1)]; for ε0 = −1.1, there is a predominance of chaos
with some remaining regular islands [Fig. 2(a1)]; and at ε0 =
−0.5, the system appears to be fully chaotic [Fig. 2(b1)].
Within each energy surface, we choose a set of three represen-
tative points marked with colored symbols, whose coordinates
jz0 are given in Table I.

Then, we solve the Dicke Hamiltonian numerically for
several values of j from 5 to 120 (2 j qubits) and a cutoff of
nmax = 300 quanta in the bosonic field to ensure convergence

TABLE I. Values of jz0 for twelve representative points in the
Poincaré surfaces in Figs. 1 and 2, panels (a1) and (b1). The points
are taken with φ0 = 0, p0 = 0 and the positive branch of the solution
for x+

0 at the corresponding energy ε0.

ε0 = −1.8 ε0 = −1.5

(a2) (a3) (a4) (b2) (b3) (b4)
jz0 −0.492 −0.290 −0.143 jz0 −0.548 −0.250 0.123

ε0 = −1.1 ε0 = −0.5

(a2) (a3) (a4) (b2) (b3) (b4)
jz0 −0.512 −0.202 0.418 jz0 −0.807 −0.257 0.431

of about 30 000 eigenstates. See Appendix B for a comparison
between the truncation for nmax = 300 and nmax = 250. The
first step for our analysis of multifractality is to get the mass
exponents. For each j and each coherent state considered,
we calculate IPRq and, according to Eq. (5), obtain τq by
linearly fitting the logarithmic plot of IPRq versus ℵeff, as
shown in Figs. 3(a) and 3(b) for two representative coherent
states, as examples. To avoid finite-size effects, we ignore
the first points (from j = 5 to j = 20) when performing the
fittings in Fig. 3. The results obtained are used in the plots
of τq versus q shown in Figs. 1(a2)–1(a4), 1(b2)–1(b4) and
Figs. 2(a2)–2(a4). These plots are subsequently used to extract
the generalized dimensions Dq. To assist our studies of multi-
fractality, we also examine the distribution of the coefficients
of each coherent state with respect to energy for a given q,
what we call generalized participation local density of states,

PDoSq(ε) =
∑

k

|ck|2qδ(ε − εk ), (13)

where |ck|2q = |〈Ek|z0〉|2q, |Ek〉 are the eigenstates of the
Dicke Hamiltonian, and εk = Ek/ j are the scaled eigenergies.
The PDoSq is related to the generalized local density of states

FIG. 3. Logarithmic plot of IPRq as a function of j3/2 ( j = 5 to
120) for (a) the same coherent state as in Fig. 1(a2) and (b) the same
coherent state as in Fig. 1(a3), for q = 1/4, 1/2, 2, and 4. The linear
fits ignore the first points, from j = 5 to j = 20, to avoid finite-size
effects.
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[87] upon changing 2q by q. Plots for the PDoSq are shown
in Figs. 1 and 2. The analysis of PDoSq for different values of
q reveals structures hidden in the coherent states that help us
better understand the source of multifractality.

D. Predominance of regularity

We start by analyzing three representative coherent states
within a low-energy domain (ε0 = −1.8), where regularity is
predominant in phase space.

1. Green circle in Fig. 1(a1)

The green circle in Fig. 1(a1) indicates the center of a
coherent state placed near a stable periodic orbit that emanates
from a pseudoconserved quantity of the Dicke Hamiltonian
[88,89]. This coherent state is mainly described by a subset of
nearly equally spaced eigenstates, and its PDoSq for q = 1,
shown in Fig. 1(a2), has a Gaussian profile. The shape of
PDoSq for q > 1, as illustrated for q = 2 also in Fig. 1(a2),
remains Gaussian, because small coefficients |ck|2q become
negligible as q increases from 1. Accordingly, the Dq for
q > 1, obtained using Eq. (2) and the data in Fig. 1(a2),
follows almost exactly D(c)

q = 1/3.
The result for Dq with q > 1 suggests that the coher-

ent state is monofractal. However, for q < 1, new structures
emerge within the Gaussian envelope of PDoSq, as seen for
q = 1/2 in Fig. 1(a2). They are caused by small contributions
|ck|2q that are associated with classical trajectories slightly
away from the center of the set of regular orbits in the Poincaré
section, which are sampled by the selected coherent state. In
turn, this is reflected in the behavior of the mass exponents as a
function of q. For q < 1, τq deviates from the linear behavior,
thus suggesting multifractality.

To determine whether the state is then mono- or multifrac-
tal, a better picture is achieved by analyzing τq versus q for
q < 1 in Fig. 4(a) and for q > 1 in Fig. 4(b). We show in
Fig. 4(a) that the linear fitting, given by τq = D(0) + D(1)(q −
1) (solid black line), fails to describe the behavior of τq around
q ∈ [0.2, 0.5], as it becomes nonlinear when q decreases.
Instead, both the parabolic fitting τq = D(0) + D(1)(q − 1) +
D(2)q2 (red dashed curve) and the square root τq = D(0) +
D(1)(q − 1) + D(1/2)q1/2 (blue dashed curve) perform better.
Instead, for q > 1 in Fig. 4(b), the behavior is mostly linear,
being described by the slope D(c)

q = 1/3. Thus, the result
for q < 1 makes it clear that this state is multifractal, and it
serves to benchmark the multifractal behavior in the regular
region. As we shall see, the nonlinear departure from D(c)

q for
q < 1 also appears for other coherent states centered in regular
regions of the phase space.

2. Yellow circle in Fig. 1(a1)

The coherent state centered at the yellow circle in
Fig. 1(a1) is close to the stochastic layer where chaos is
emerging [90]. In this case, the PDoSq for q = 1 is made of
a set of Gaussians. This feature is invariant and persists for
larger or smaller values of q. As a result, the mass exponent in
Fig. 1(a3) is basically a straight line leading to a value of Dq

very close to the upper bound D(r)
q = 1. This implies that this

state is not multifractal but an ergodic state.

FIG. 4. Mass exponent τq (blue dots) as a function of q for the
coherent state in Fig. 1(a2) for (a) q < 1 and (b) q > 1, and for the
coherent state in Fig. 1(a4) for (c) q < 1 and (d) q > 1. Three dif-
ferent fits are shown: linear (solid black line), quadratic (red dashed
line), squared root (blue dashed line). The dashed vertical black line
represents the lowest value of q where the convergence of the wave
function is applicable.

At very small values of q � 1, there is a change in the
curvature of the mass exponent [the beginning of this change
is noticeable in Fig. 1(a3)], but this is an artifact caused by
the truncation of the Hilbert space. We know this because
it gives a positive second derivative of the mass exponent,
while this derivative must always be negative [60]. In fact, the
point where the curvature of the τq becomes positive could
be used as an alternative tool to determine the convergence of
the wave function. Our current convergence criterion for the
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wave functions is established for q = 1 to ensure that most
of the state is contained within the energy domain of interest
[83,84]. It is impossible to guarantee the convergence of the
whole wave function unless we set the truncation to infinity.
This problem becomes more important for highly extended
states. For low energy regimes, such as ε0 = −1.8 and −1.5,
the small phase space available is another problem that one
needs to keep in mind. In this case, a finite-size effect arises,
turning the curvature of τq from negative to positive. This
effect is a result of the artificial truncation of low-energy states
due to the Hilbert space being bounded from below, as can be
seen in the PDoSq in Figs. 1(a2)–1(a4). This finite-size effect
can be removed by increasing j, but this requires even larger
values of nmax to ensure overall convergence. We must discard
any result that gives a positive curvature of τq when fitting the
curves to get Dq.

3. Magenta circle in Fig. 1(a1)

We now focus on the coherent state centered at the magenta
point in the phase space of Fig. 1(a1). The state is inside a
regular region but surrounded by regular orbits resulting from
a nonlinear resonance that appears in the Dicke Hamiltonian
between the two normal modes at low energies [88,89,91].
Like the case of the green circle, for q = 1 and q = 2, the
PDoSq shows the dominance of a single Gaussian, while for
q = 1/2, more Gaussians appear. For this state, we see that
τq is nonlinear not only for q < 1, as before, but also for q >

1. The slope of the curve for τq is close to D(c)
q = 1/3, but

deviates from it in both limits of q.
We compare the curve for τq versus q with different fittings

in Fig. 4(c) for q < 1 and in Fig. 4(d) for q > 1. Unlike the
green-circle coherent state in Fig. 4(a), for the magenta-circle
coherent state, the quadratic fit for q < 1 [Fig. 4(c)] is better
than the one that goes as q1/2. As we turn to q > 1, we see that
for q � 1, a linear fitting seems to be the best one, although
for q � 1, the quadratic fitting describes well the nonlinearity.
While both coherent states marked by the green and magenta
circles are in a regular region, the magenta one is surrounded
by orbits associated with a nonlinear resonance. This may
impact the structure of the coherent states and be associated
with the multifractal behavior for q > 1.

E. Mixture of chaos and regularity

By increasing the energy, we introduce a mixture of chaos
and regularity, as shown in Fig. 1(b1) for ε0 = −1.5. For our
analysis, we choose three coherent states with this energy and
centered at the points marked with diamonds in Fig. 1(b1).
The point indicated by a green diamond is away from the
three major regular islands and inside an emergent sea of
chaos. The coherent state associated with this point shows a
behavior similar to that of the yellow circle with ε0 = −1.8
in Fig. 1(a3). The PDoSq exhibits clustered Gaussians, and
τq is almost linear with a slope very close to D(r)

q = 1, which
indicates that this coherent state is ergodic.

The magenta diamond in Fig. 1(b1) is located in a mixed
region. Compared with the green-diamond coherent state,
the components of the PDoSq for the magenta-diamond
state are less concentrated around the energy of the surface.
Even though τq presents a linear behavior [see Fig. 1(b4)],

FIG. 5. (a) Mass exponents τq as a function of q for the coherent
state marked by the white square encircled in red in Fig. 2(a1) at
ε = −1.1, and PDoSq for (b) q = 2, (c) q = 1, and (d) q = 1/2.

indicating that the state is monofractal, the extracted value of
Dq is between those for a random and a regular state.

The coherent state indicated with the yellow diamond in
Fig. 1(b1) lies in a similar position to the magenta circle in
Fig. 1(a1), i.e., at the center of the regular island of the non-
linear resonance orbits. While it exhibits nonlinear behavior
for q < 1 [see Fig. 1(b3)], it shows an almost perfect linear
behavior for q > 1 with D(c)

q = 1/3. Finding linear behaviors
like this allows us to use Dq to identify regular regions in
phase space.

F. Predominance of chaos

We now explore a higher energy (ε0 = −1.1) in Fig. 2,
where chaos is dominant, but some regions of regularity still
exist. The first coherent state that we select is amidst the
chaotic sea and is marked with a green square in Fig. 2(a1).
The components of the PDoSq next to Fig. 2(a2) are randomly
distributed, but some regular structures can still be identified.
Hence, we obtain a slope for the τq curve that is between
D(c)

q and D(r)
q , similarly to the coherent state marked with the

magenta diamond in Fig. 1(b4).
In contrast to the above, the coherent state marked with

the yellow square in Fig. 2(a3) is fully extended. This is
not obvious from the PDoSq, as it seems to be shaped by
two Gaussians for q = 1. Instead, when we go to q < 1, all
the Gaussians seem to have comparable weight. The ergodic
nature of the state gets determined from the slope of the τq,
which is constant and equal to D(r)

q = 1.
Moving to larger values of jz in the Poincaré section of

Fig. 2(a1), we reach the magenta square, which is at a
regular island. The slope of the curve for τq in Fig. 2(a4)
is close to D(c)

q = 1/3, confirming that the state is regular.
This means that by studying the behavior of the mass ex-
ponents, we can locate regular regions even in very chaotic
domains.

In Fig. 2(a1), we identify another regular coherent state
with special behavior. It is located in the other stability island
in Fig. 2(a1) and is marked with a white square encircled in
red. The behavior of τq for this coherent state is shown in
Fig. 5(a). It presents a highly nonlinear behavior for q < 2,
while τq becomes nearly flat for q > 2. This indicates that this
state has an effective dimension of D∞ 
 0. This is confirmed
by looking at the PDoSq in Fig. 5(b). We see in Figs. 5(b)–5(d)
that as q increases from q = 1/2 to q = 2, the number of
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components relevant to describe the state decreases quickly,
in agreement with the idea that when Dq = 0, we have a
state with zero measure in the Hilbert space. However, for
q < 1, we see in Fig. 5(a) that Dq follows the behavior of
an ergodic state with D(r)

q , which is also suggested by the
PDoSq in Fig. 5(d). This state is of particular interest be-
cause it exhibits a highly multifractal behavior. For q < 1, it
behaves as a Gaussian state, while for q > 1, D∞ tends to
0. Although the phase space might look qualitatively simi-
lar in the Poincaré section, the multifractal method unveils
quantitative differences between this coherent state and that
marked by the magenta square at the same energy but in
another regular zone [see Fig. 2(a4)]. Because of the res-
olution limits imposed by the numerical diagonalization, a
supplementary approach as a dynamical tool, such as the sur-
vival probability [86] or out-of-time ordered correlators [92],
could help to understand the details of the participating struc-
tures and unveil the reasons behind the observed multifractal
behavior.

In Fig. 2(b1), we consider an even higher energy (ε0 =
−0.5), where one expects ergodic behavior [48,93]. The three
selected coherent states are centered at the points labeled by
stars. As shown in Figs. 2(b2)–2(b4), they are not multifractal
but just single fractals with an approximated dimension close
to D(r)

q = 1, indicating ergodicity. The different shape of the
phase space happens because the two wells at low energies in
the energy surface of the Dicke model merge together [74].

V. FRACTAL DIMENSION OVER ENERGY SURFACES

Now that the detailed study of representative coherent
states is complete, we proceed to build a general characteri-
zation of the energy surfaces through the information stored
in the mass exponents. To this end, we fit the curve for τq ver-
sus q with the parabolic approximation τq = D(0) + D(1)(q −
1) + D(2)q2. This way, we can extract the linear part of the
fit, D(1), and use it as a probe to determine whether the state
is ergodic (D(1) = D(r)

q = 1), regular (D(1) = D(c)
q = 1/3), lo-

calized (D(1) = Dq = 0), or anything in between. We can also
obtain the quadratic part, D(2), and use it as a first-order
measure of the nonlinear behavior of the state, hence the
presence of multifractality. For our analysis, we study the
sample of points over the Poincaré surface of sections with
φ0 = 0 marked in Figs. 1 and 2, panels (a1) and (b1).

The linear part of the fit D(1) is used to approximate the lin-
ear part of the generalized dimension D fitted over the q > 1
domain. We investigate D(2)q2 for both q < 1 and q > 1 to es-
timate the departure from the linear behavior quantified by �.

A. Ergodic versus multifractal coherent states

We first use the parabolic approximation to fit the mass
exponents for q > 1, in the region q ∈ [1, 2] and focus on the
analysis of the linear approximation characterized by D(1).
Under the weak multifractality approximation, as discussed
in the context of Eq. (6), the coefficient to the linear part
should formally be D(1) = D + �. However, as the parabolic
approximation does not hold systematically over the whole
phase space, we work under the approximation that D(1) 
 D
for q > 1.

FIG. 6. Linear approximation to the generalized dimension D(1)

as a function of jz with φ = 0 over the energy surface for (a) ε0 =
−1.8, (d) ε0 = −1.5, (g) ε0 = −1.1, and (j) ε0 = −0.5. Parabolic
approximation to the anomalous fractal dimensions D(2) over the
same energy surfaces for q > 1 (b, e, h, k) and q < 1 (c, f, i, l). The
region in gray indicates the points that should not be considered, as
D(2) becomes positive.

Our results for D(1) as a function of jz are shown in
Figs. 6(a), 6(d) 6(g), and 6(j) for the energy surfaces studied
in Figs. 1 and 2. For the surface with ε0 = −1.8 [Fig. 6(a)],
where regularity dominates, D(1) locates the regular regions
around jz ∼ −0.5, jz ∼ −0.2, and jz ∼ 0.1, where D(1) ∼
1/3. Notice that the lowest value of D(1) for this energy sur-
face with ε0 = −1.8 is D(c)

q , so there are no states with features
of localization, that is, D(1) is never close to zero. The value
of D(1) in Fig. 6(a) also detects the emergence of chaos. Even
though it does not reach D(r)

q , it does capture significantly
extended states around jz ∼ −0.3, where the stochastic layer
is developing.

In the mixed region at ε0 = −1.5 [Fig. 6(d)], D(1) again
detects regular and chaotic regions. For jz ∼ 0.0, D(1) now
reaches D(r)

q , indicating the presence of ergodic states and thus
of fully chaotic regions.
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The most interesting results appear at the energy surface
ε0 = −1.1 [Fig. 6(g)], where chaos has developed, and only a
few regular domains survive in phase space. This figure makes
it evident that the linear approximation to the fractal dimen-
sion D(1) provides more detail about the phase space than the
Poincaré section. While the latter suggests that most of the
phase space is fully chaotic, D(1) shows that only the states
around jz ∼ −0.2 are fully extended, having D(1) ∼ D(r)

q = 1.
As we move away from this point, towards larger values of
jz, there is an abrupt decrease in the values D(1) until it
reaches D(1) = 0 around jz 
 0.1, indicating that we have
found a state with localized features for q > 1. If instead
we move away from jz ∼ −0.2, towards smaller values of
jz, then we see that for the coherent states with jz < −0.4,
D(1) has values similar to those seen for surfaces with low
energies, getting close to D(c)

q = 1/3. This implies that energy
surfaces with qualitatively different phase space structures
may actually have similar values of the approximated fractal
dimension.

For the energy surface at high energy, ε0 = −0.5 in
Fig. 6(j), we expect ergodic behavior. Indeed, over the whole
energy surface, D(1) ∼ D(r)

q = 1. This analysis demonstrates
that D = D(1), despite belonging to the quantum world, is a
good quantity to probe chaos and regularity in phase space,
and to uncover its structures.

B. Multifractal versus fractal coherent states

The approximated linear fractal dimension, D 
 D(1), al-
lows for the quantitative classification of the coherent states
into ergodic, regular, or an intermediate fractal case. However,
it only reveals single fractal behavior. Extended states that
are neither ergodic (Dq = 1) nor regular (Dq = 1/3) can be
mono- or multifractal. To quantify multifractality and distin-
guish between mono- and multifractal states, we need to study
the deviations from linear behavior. For this, we look at the
quadratic order of the fitting curve for the mass exponents,
τq = D(0) + D(1)(q − 1) + D(2)q2, for both 1 � q � 2 and
0.3 � q � 1. If the value of the quadratic term in the fractal
dimension D(2) is different from zero and negative, then the
mass exponent has a nonlinear behavior of the order of weak
multifractality. It is worth emphasizing that the quadratic fit
is not general, as the anomalous fractal dimension �q could
be an arbitrary function of q (under the curvature constraints
for τq). Yet, we choose the quadratic fitting as a general
way to detect nonlinearity, so when the behavior is parabolic
D(2) 
 �.

At the energy surfaces ε0 = −1.8 [Figs. 6(b) and 6(c)] and
ε0 = −1.1 [Fig. 6(h) and 6(i)], we observe that for q > 1,
most states have D(2) ∼ 0, except those around the regular
islands. In this case, there is a slight decrease in the value
of D(2) indicating the multifractal nature of those states. The
same happens for q < 1, where D(2) signals nonlinear be-
havior and weak multifractality around the regular islands.
Notice that D(2) becomes positive for some states, typically
the most extended ones. This is an artifact caused by the
combination of the already mentioned finite-size effects at
low energies and the limitations of the wave-function conver-
gence. Since � must always be negative, any value of D(2)

different from zero but positive must be discarded. The region

where the points need to be discarded is indicated in gray in
Figs. 6(a)–6(l).

Nonlinearity is more visible for q < 1 when ε0 = −1.5
[Fig. 6(f)]. One sees large oscillations in the values of D(2).
In contrast, for ε0 = −0.5 in Figs. 6(k) and 6(l), we confirm
that the system mainly comprises ergodic states.

In general, we conjecture that structural changes in phase
space from an extended region to a very localized region,
as it occurs for the D(1) at ε0 = −1.5 [Fig. 6(g)], produce
significant multifractal behavior, which is identifiable for D(2)

and q > 1 [Fig. 6(i)]. From the three energy cases in Fig. 6,
ε0 = −1.8,−1.5,−1.1, it seems that the coherent states have
to gain a multifractal character across the phase space as they
transit from ergodicity to regularity or D = 0.

A systematic study of nonlinearities as one moves through
phase space is complicated. For example, we showed in
Fig. 4(a) that the coherent state marked by the green circle
in Fig. 1(a1) at ε0 = −1.8 is better fitted by a curve of the
form τq = D(0) + D(1)(q − 1) + D(1/2)q1/2 for q < 1, so a de-
tailed analysis to determine the true multifractal nature of a
coherent state must be done individually. Nevertheless, our
analysis in this section has demonstrated that the approxi-
mation D(2) 
 � is enough for a coarse-grained distinction
between monofractal and multifractal states.

VI. CONCLUSIONS AND PERSPECTIVES

We have analyzed the fractal properties of coherent states
projected in the energy eigenbasis of the Dicke Hamiltonian.
The motivation to explore multifractality in this model comes
from its experimental accessibility, its well-defined classi-
cal limit, and the fact that it represents many-body systems
with collective interactions and only two degrees of freedom,
which simplifies the description. However, the model has an
unbounded Hilbert space, which makes the study of multi-
fractality based on scaling analysis challenging. To obtain the
spectrum numerically, one must choose a cutoff of the bosonic
space large enough to ensure convergence of the high-energy
eigenstates. We used cutoff values that were large enough
to ensure the normalization of the wave functions and the
accurate computation of the generalized inverse participation
ratio with q > 1, but nonconverged components still impact
the multifractal analysis when one goes to small values of q.
We have circumvented this problem by restricting our study
to certain ranges of q values.

Although the multifractal analysis has been used before
as a probe of ergodicity, here our aim was to employ it as
a coarse-grained quantitative tool to capture changes in the
structures in a mixed phase space. The multifractal analysis
of coherent states reveals details of the rich phase space of
the Dicke model and provides a quantitative picture of its
structure. We have obtained two main results by studying the
mass exponents τq.

First, by fitting the curves of τq versus q, we verified
that the approximation to the linear generalized dimension,
D(1) 
 D, is a valuable tool to distinguish regular from chaotic
regions, similar to what was done for the kicked top model in
Ref. [32] using D1, D2 and D∞, and for the Dicke model using
D2 [33,89]. The value of D operates as a sensitive probe of the
phase space that allows for the identification of chaotic states
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in regular regions and regular states associated with islands of
stability in the chaotic regime.

Second, we showed that the parabolic correction, D(2) 

�, to the linear fit of the mass exponents works as a probe
of nonlinearity and thus reveals the presence of multifractal
coherent states. We emphasize that states whose linear frac-
tal dimension D is constant and between D(r)

q (ergodic) and
Dq = 0 (fully localized) are nonergodic extended states that
are fractal, but not necessarily multifractal. For multifractality
to hold, Dq needs to show a nonlinear behavior with q, which
can be detected with the analysis of D(2).

The multifractal analysis unveils the presence of nonlin-
earities in the quantum states. From the quantum-classical
correspondence, we know that the coherent state samples the
vicinity of the phase space around its center, so the presence
of multifractality must be a reflection of neighboring hidden
structures in the phase space, hinted by the examination of the
PDoSq. Multifractality is thus related to dramatic changes in
phase space and to the simultaneous participation of different
phase space structures.

Moreover, multifractality in the sense of nonergodic ex-
tended states was recently studied in the Tavis-Cummings
model, an integrable limit of the Dicke model [50]. Alongside
our results in the regular region of the Dicke model and those
in Ref. [94], it is clear that regular systems can also exhibit
multifractality. We leave for a future work, the analysis of
how the multifractality of coherent states over the energy
eigenbasis gets manifested at the level of classical dynamics.
Likewise, recently, there has been an active interest in de-
veloping dynamic quantifiers of chaos, including the survival
probability for a nonstationary state after a quantum quench
[77,86,87,95], or the different out-of-time-ordered correlators
(OTOCs) [96,97]. Most of these indicators require informa-
tion on the eigenfunctions of the Hamiltonian to calculate the
dynamics. We deem the multifractal analysis as a complemen-
tary approach to these dynamical indicators, and future work
will be devoted to understanding more about the phase space
structures participating in each coherent state. We hope that
the results of our work will motivate the study of multifrac-
tality in other systems with bounded and unbounded Hilbert
spaces.

Measuring experimental signatures of multifractality in
quantum systems has remained elusive to date. Some progress
has been made with cold atoms [98–100], disordered conduc-
tors [101], and open three-dimensional elastic networks [102].
Three conditions are necessary to detect quantum multifrac-
tal features: the ability to measure the wave function in the
chosen basis, scalability, and robustness against perturbations
[24,25]. For our scheme of coherent states in the Dicke model,
we believe that ion trap platforms may offer a good route
to explore multifractal signatures [43,44,103], because of its
scalability [104] and the possibility of exploring a wide range
of Hamiltonian parameters [105]. In these experiments, the
spin degree of freedom is encoded in two internal states of
the ions, and the boson is realized through the collective
center-of-mass motional mode of the ion crystal. While it is
currently possible to prepare the system in low-lying states,
the challenge would be to prepare it in a high-lying energy co-
herent state. Another possible approach to extract multifractal
information via quantum simulation is to employ the quan-

tum wavelet transform, given that the Dicke model and the
coherent states could be efficiently simulated on a quantum
computer [106].
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APPENDIX A: SCALING OF TYPICAL STATES

In this Appendix we calculate the two bounds for the scal-
ing of the IPRq discussed in the main text.

1. Scaling of random state with Gaussian profile

We consider a state that has a Gaussian distribution over
the eigenbasis with random coefficients,

∣∣c(r)
k

∣∣2 = rk∑
k exp

(
− (Ek−Ē )

2σ 2
r

) exp

(
− (Ek − Ē )

2σ 2
r

)
, (A1)

where rk is a random number, Ē is the average energy of
the state, and the variance σr is chosen arbitrarily. When the
dimension of the system grows, i.e., in the limit j � 1, we
approximate the sum by an integral

∑
k

exp

(
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2σ 2
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 ν̄
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(
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dE = ν̄

√
2πσr, (A2)

where ν̄ is the average density of states around the energy
window. Therefore,

∣∣c(r)
k
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2πσr ν̄
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2σ 2
r

)
. (A3)

Now, we calculate the IPRq,

IPR(r)
q =

∑
k
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= 1

(
√

2πσr ν̄)q
ν̄ r̄q

√
2π

q
σr

=
[

(2π )(1−q)

q

]1/2

r̄q(σr ν̄)1−q. (A4)

The random state samples all the energies present in the en-
ergy window, and ν̄ ∼ ν0 j [74]. Additionally, we chose σr

corresponding to a coherent states, which scales as σr ∼ j1/2

[107]. Then, the scaling of the generalized inverse participa-
tion ratios, in this case, is

IPR(r)
q ∝ j (3/2)(1−q). (A5)

Then, for a random state with a Gaussian profile, we have
a similar result as that of an ergodic (extended) case, where
Dq = 1 for all values of q.

2. Scaling of a regular state

Let us now consider the limiting case when a coherent
state is centered in a point in phase space just in the center
of an island of regularity. As shown in Ref. [86], in this case
the coherent state spanned over the eigenbasis has only main
contributions from a subset of energy levels, which form a se-
quence of nearly equally spaced energies, �E (seq)

k = E (seq)
k+1 −

E (seq)
k

j→∞−−−→ ωcl, where ωcl is a finite value, corresponding
to the classical frequency of the classical mode activated in
the center of the stability island. The squared magnitude of
the sequence coefficients of this state are also described by a
Gaussian profile,

∣∣c(seq)
k

∣∣2 = 1∑
k exp

(
−E (seq)

k −Ē
2σ 2

c

) exp

(
−E (seq)

k − Ē

2σ 2
c

)
, (A6)

where σc is the variance of the Gaussian profile over the single
contributing eigenenergy sequence. By following a similar
procedure to that yielding Eq. (A4), we obtain now

IPR(c)
q =

√
(2π )(1−q)

q
(σcν̄c)1−q. (A7)

However, unlike the previous case, ν̄c is not the total density
of states, but the density of states of the participating sequence
of eigenstates, which is given by ν̄c = 1/�E (seq)

k and tends to
a finite value for large j,

ν̄c
j→∞−−−→ 1

ωcl
.

Conversely, as before, σc ∼ j1/2 because it comes from a
coherent state [86,107]. In this way, the scaling of the IPR(c)

q
is

IPR(c)
q ∼ j (1/2)(1−q) = [ j (3/2)]1/3(1−q). (A8)

FIG. 7. Comparison between the mass exponents τq for the re-
spective coherent states in Figs. 1(a2) and 1(a3) at ε0 = −1.8. The
data was adjusted for j = 5 to 100 and two values of the cutoff:
nmax = 250 (yellow dots) and nmax = 300 (blue dots).

Therefore, for this ideal case where the components out of
the main sequence are strictly zero, we get D(c)

q = 1/3 for the
generalized dimension. However, for the coherent states in the
center of the island of stability considered in the main text,
the components out of the main sequences are much smaller,
but not zero. As a consequence, in the limit of q → 0 the
generalized dimension should tend to the maximum value in
the space, i.e., Dq→0 = 1. This explains why some coherent
states around stable points have curvature for q � 1. Also,
this result shows that a Gaussian state possesses an intrinsic
multifractal effect as the Dq must go from 1/3 to 1 as q
decreases. This is not a finite-size effect.

APPENDIX B: INCREASING EIGENSTATE
CONVERGENCE

In Fig. 7, we show the results that we obtain by decreasing
the cutoff over the bosonic Hilbert space of the Dicke model
from the value used in the main text nmax = 300 (blue dots) to
nmax = 250 (yellow dots). We employ the same representative
points in phase space that are used in Figs. 1(a2) and 1(a3) at
the energy surface to ε0 = −1.8. We observe that the results
are robust and only slightly deviate for large values of q.
The main difference appears for q < 1. For nmax = 300, the
change in the slope for q < 1 signaling the limits on the
convergence of the wave function occurs for smaller values
of q than for nmax = 250, although this is hardly noticeable in
the figure. The distinction between the two curves becomes
visible only for very small values of q.
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