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Dissipative tunneling remains a cornerstone effect in quantum mechanics. In chemistry, it plays
a crucial role in governing the rates of chemical reactions, often modeled as the motion along the
reaction coordinate from one potential well to another. The relative positions of energy levels
in these wells strongly influences the reaction dynamics. Chemical research will benefit from a
fully controllable, asymmetric double-well equipped with precise measurement capabilities of the
tunneling rates. In this paper, we show that a continuously driven Kerr parametric oscillator
with a third order non-linearity can be operated in the quantum regime to create a fully tunable
asymmetric double-well. Our experiment leverages a low-noise, all-microwave control system with
a high-efficiency readout of the which-well information. We explore the reaction rates across the
landscape of tunneling resonances in parameter space. We uncover two new and counter-intuitive
effects: (i) a weak asymmetry can significantly decrease the activation rates, even though the well
in which the system is initialized is made shallower, and (ii) the width of the tunneling resonances
alternates between narrow and broad lines as a function of the well depth and asymmetry. We predict
by numerical simulations that both effects will also manifest themselves in ordinary chemical double-
well systems in the quantum regime. Our work paves the way for analog molecule simulators based
on quantum superconducting circuits.

I. INTRODUCTION

Engineering Hamiltonians to produce a desired poten-
tial landscape is a crucial task in quantum computing
[1–5]. Among these landscapes, double-wells hold partic-
ular importance, serving as models for diverse systems
like two-level defects [6, 7], nuclear structures [8], and
chemical reactions [5, 9]. However, tuning parameters ex-
perimentally within these systems, like the barrier height,
often proves to be challenging [5, 10]. Additionally, classi-
cal computational models can struggle with accuracy, e.g.
failing to reach chemical accuracy [11]. Consequently, de-
veloping a low-noise system capable of generating tunable
double-well potentials is highly desirable for the simula-
tion of quantum chemistry problems.

In this manuscript, we report the results of the ac-
tivation dynamics of a continuously tunable asymmet-
ric double-well parametric oscillator. During our explo-
ration we found two unexpected effects. First, we find
that the asymmetric double-well can experience a signif-
icantly longer activation time (well-switching time) from
one well to the other than the symmetric one, even when
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the system is initialized in the shallower well. This is
counterintuitive, because one would think that by reduc-
ing the barrier height, the activation time should decrease
[12–14]. We find this is not always the case in our system
due to a subtle quantum effect described below, which
suggests a technique to stabilize bosonic quantum states.
The second unexpected effect is that the activation ex-
hibits pronounced quantum resonances whose width al-
ternates between narrow and broad with both the depth
and the asymmetry of the wells. This is a manifestation
of the width of the Hamiltonian anti-crossing of the en-
ergy levels close to the top of the barrier of the double-
well energy surface. The location and width of these
resonances are well explained within the rotating wave
approximation (RWA) and by a semiclassical model, but
we note that there is only qualitative agreement between
the measured rates and the model.
Based on the experimental and theoretical observation

of these effects in the Kerr parametric oscillator (KPO),
we investigate whether they are present in other double-
well systems. A particularly important class of double-
well problems are found in chemistry, for example for
modelling electron-transfer reactions [5]. We predict the
effects should be generically observable in quantum dis-
sipative double-wells.

II. SETUP AND MODEL SYSTEM

Our setup consists of two chips with superconducting
circuits, shown in Fig. 1 A, that are addressable by mi-
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FIG. 1. Experimental set-up. A) Rendering of the half-
aluminum, half-copper sample package containing two sap-
phire chips magnified in B). Each chip consist of a SNAIL-
transmon, a readout resonator, and a Purcell filter. Only
one chip is used in this work. The normalized resonance
frequency of the SNAIL-transmon is noted ωa. Applying
a strong microwave drive at ω2 ≈ 2ωa morphs the SNAIL-
transmon Hamiltonian into the parametric oscillator Hamil-
tonian. C) Schematic of the SNAIL-transmon: a two-SNAIL
array serves as the nonlinear element. The capacitor pads are
shifted with respect to the axis of the array to couple it to the
readout resonator. D) Scanning electron micrograph of the
two-SNAIL array. The SNAIL loops are biased with an ex-
ternal magnetic flux Φ/Φ0 = 0.31, where Φ0 is the magnetic
flux quantum. Figure reproduced from [15].

crowave drives via charge-coupling. In this experiment,
we only make use of one of the two chips. The relevant
chip contains an array of two superconducting nonlinear
asymmetric inductive elements (SNAILs) [16, 17] shunted
by a large capacitor [18], as depicted in Fig. 1 B-D.
The Hamiltonian of our SNAIL transmon with charge

drives can be approximated as [17, 18]

Ĥ(t)

ℏ
= ωoâ

†â+
g3
3
(â+ â†)3 +

g4
4
(â+ â†)4

−iΩ1 sin(ω1t+ ϕ)(â− â†)− iΩ2 sin(ω2t)(â− â†),

(1)

where ωo is the bare resonance frequency of the SNAIL
transmon, g3, g4 are the third- and fourth-order non-
linearities of the circuit and â is the bosonic annihilation
operator. This Hamiltonian is the so-called (asymmetric)
parametric oscillator Hamiltonian when ω2 ≈ 2ωo and
ω1 = ω2/2 [19, 20]. Here, Ω1 is the amplitude and ω1 the
frequency of the drive that will henceforth be referred
to as the linear (additive) drive, while Ω2 and ω2 are
the amplitude and frequency of what we refer to as the

FIG. 2. Symmetric and asymmetric double-well spec-
trum. A) Effective double well potential energy V (x), rep-
resented here with the quantum energy levels. B) Transition
spectrum |En − E0|/K of the parametric oscillator Hamilto-
nian as a function of ϵ2 controlling the barrier height [22]. The
levels highlighted in green become degenerate at ϵ2/K ≈ 12,
while the next pair of levels (highlighted in orange) is not yet
degenerate at this value of ϵ2/K. C) Same as but A with
asymmetry. D) The transition spectrum as a function of ϵ1
controlling the asymmetry. The ground level in the shallow
well is highlighted in pink. The pair of levels at the barrier
top is highlighted in violet. Note the oscillation of the energy
separation between these two levels as a function of ϵ1/K.

squeezing, or two-photon, parametric drive. The phase ϕ
is the relative phase between the two drives. By apply-
ing displaced frame transformations, transforming into
the rotating frame ω2/2 and keeping some terms beyond
the RWA [15, 21], we arrive at the effective Hamiltonian
describing the asymmetric parametric oscillator

Ĥeff

ℏ
= −Kâ†2â2+ ϵ2(â

2+ â†2)+ |ϵ1|(eiϕâ+e−iϕâ†) (2)

where K = − 3g4
2 +

10g2
3

3ωa
is the leading order Kerr non-

linearity, and ω2 = 2ωa with ωa ≈ ωo the renormalized
SNAIL transmon resonance frequency. The drive coef-
ficients are given by |ϵ1| = Ω1

2 and ϵ2 = g3
4Ω2

3ωa
. The

relation to a double-well becomes apparent in the classi-
cal limit by defining

V (x)

ℏ
=

Heff

ℏ

∣∣∣
p=0

= k4x
4 − k2x

2 + k1x, (3)

where â 7→ 1√
2
(x + ip) together with k1 =

√
2|ϵ1| cosϕ,

k2 = −ϵ2, and k4 = −K/4. Two instances of V (x) are
shown in Fig. 2 A and C, while in Fig. 2 B and D,
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the associated energy spectra of Eq. (2) are shown as a
function of the control parameters ϵ1 and ϵ2 for ϕ = 0.
From Eq. (2) or Eq. (3), ϵ1 controls the asymmetry of the
wells and ϵ2 controls their depth [19]. Note, however, that
the parametric oscillator Hamiltonian cannot be written
as a sum of kinetic [T (p)] and potential [V (x)] energy
since cross terms like x2p2 are present. These terms can
lead to interesting consequences [13, 23–25] but they do
not play a critical role in the new effects described in this
paper (see Section IV).

For ϵ1 = 0, we recover the conventional (symmetric)
parametric oscillator Hamiltonian that creates a double-
well along the position axis [15, 18, 22, 24–26]. If ϵ1 ̸= 0,
the phase ϕ becomes relevant. For ϕ = 90◦, the linear
drive adds a term proportional to the momentum, p, thus
not breaking the symmetry of the double-well. For ϕ = 0,
this drive adds a term proportional to the position, x,
thus lifting the degeneracy between the two wells [19, 27]
(see Fig. 2 C and D). In the main text, we focus on the
case ϕ = 0 and leave the experimental study of the effect
of the phase-variation for the Supplementary Material
(SM).

To model the activation rate, we use an ordinary Lind-
bladian model containing only single photon gain and
single photon loss with phenomenological rates and tem-
perature [22, 28, 29].

III. EXPERIMENT AND ANALYSIS

To measure the activation rate of our system, the states
localized at the bottom of the wells need to be prepared
and monitored as a function of time. A number of steps
are required for this. To ready the setup for our exper-
iments, we bias our SNAIL loops with an external mag-
netic field sourced by a solenoid lying below the copper
part of the enclosure (orange block in Fig. 1 A). This
flux allows us to set the Hamiltonian parameters ωa and
K. In this work, we choose a flux point at which we di-
rectly measure ωa/2π = 6.086 GHz andK/2π = (528±8)
kHz (see SM for this and other calibrations). From the
flux dependence of both ωa and K we can fit a model
for the SNAIL [17] to extract g3/3 = 2π × (−5.6) MHz
and g4/4 = 2π × (−74) kHz. The values of Ω1 and Ω2

are directly proportional to the microwave amplitude we
apply to our sample and, therefore, we have precise con-
trol over ϵ1 and ϵ2. In our system, dielectric loss sets the
single-photon lifetime to 20 µs.
By turning on the squeezing drive, and waiting five

times the single-photon lifetime, we prepare the oscilla-
tor in its steady state. We observe the bifurcation of
our SNAIL oscillator by homodyning the emitted radi-
ation activated by a tone parametrically coupling the
parametric oscillator with the on-chip readout resonator
itself coupled to our quantum-limited amplifier detection
line [18]. The homodyne signal clearly shows the typi-
cal pair of stable oscillations out-of-phase by 180◦. Im-
portantly, the photons emitted by the oscillator during

FIG. 3. Population of the shallow well as a function of
time and of the asymmetry, theory vs. experiment.
A-B) Probability of being in the shallow well as a function
time and ϵ1/K. The curve in black represents the half-life
of the population decay in time, which we measure to be ex-
ponential. Resonances with characteristic widths are appar-
ent. Notice that these widths alternate between narrow and
broad. Also note that the maximum of the first lobe occurs at
finite asymmetry and therefore the half-lifetime is larger at fi-
nite asymmetry than at zero asymmetry, which is unexpected.
Data is collected and fitted from zero to 900 µs but the por-
tion from 400 µs to 900 µs is not shown. The theory plot in
B) is obtained from independent calibration of all Hamilto-
nian parameters (ωa, ϵ2, ϵ1, and K). The agreement between
experiment and theory, which has no adjustable parameters,
is remarkable. The horizontal shift between the resonances is
consistent with a 5% uncertainty in the calibration of ϵ1/K
and ϵ2/K. Note, however, that when taking into account the
experimental value of K the timescales are different between
experiment and theory.

readout are continuously replenished by the squeezing
drive: the driven oscillator in presence of dissipation re-
mains in one of its two quasi-steady states. Acquiring
a single data point for the which-well information takes
4 µs, which is typically much shorter than the activation
time across the double-well parametric oscillator barrier.
We postselect the instances when the system is initially
found in the shallower well. By performing a second mea-
surement after a variable waiting time (see SM), one can
detect well-switching. By repeating these measurements,
one can determine the probability per unit time of wit-
nessing an activation event and therefore obtain the ac-
tivation rate for a given set of Hamiltonian parameters
ϵ1/K and ϵ2/K.
In Fig. 3 A we show measurements of the population

dynamics of the wells for different values of the asym-
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FIG. 4. Analysis of the dissipative tunneling reso-
nances according to different models and the exper-
iment. A) Measurement of dissipative tunneling time T as
a function of ϵ2/K (controlling the barrier height) and ϵ1/K
(controlling the asymmetry) in linear color scale. B) Theory
prediction from a Lindbladian model including single pho-
ton loss and gain with logarithmic color scale. The wavy
green-black lines show the maxima of T ‘avoid’ the resonances
marked by the red circles. C) Hamiltonian prediction for the
resonance conditions (parabolic dashed lines) and EBK’s orbit
quantization condition for n and m allowed quantum numbers
in the small (orange) and large (blue) figure-8 lobes. The red
circles mark triple intersections labeled (n,m).

metry, controlled by ϵ1/K. For these measurements the
squeezing amplitude is set to ϵ2/K = 7.7. The proba-
bility, as a function of time, of being in the initial well
is well approximated by an exponential decay (see SM).
This timescale T of this exponential is a direct measure-
ment of the activation rate (1/T ). In Fig. 3 B we see
a theory prediction computed from a Lindbladian model
including single-photon loss at rate κ/K = 0.025 and
gain associated with a finite temperature corresponding
to a mean number of thermal photons nth = 0.05 (or
equivalently 95 mK at 6 GHz). The agreement between
theory and experiment for the variations of T with well
parameters is remarkable, except when we consider the
measured scale of T , which differs from theory by more
than an order of magnitude. This remains only qualita-
tively understood [30].
We observe in both the theory and in the experiment

resonances for certain values of ϵ1/K, where the acti-
vation rate is markedly increased. These are resonances
between levels localized in different wells. The resonances
for levels deep within the wells behave effectively as level
crossings since the coupling is exponentially small due
to the suppression of tunneling under the barrier. There-
fore, these activation events are mediated by thermal and
quantum heating [13, 14] from the ground state into the
tunneling levels at the barrier top.
That the crossing is of over-the-barrier type is seen

from Figs. 3 and 4 by noting that the alternating width
of the different resonance in Fig. 2 D correspond to the
strength of the anticrossings of the spectrum at the bar-
rier top (purple levels in Fig. 2 C). This interpretation of
the data allows us to predict the location in parameter
space where resonant tunneling takes place. This hap-
pens when the uncoupled levels in the right and left well
align. By realizing that the energy spacing of the levels
in the wells can be estimated by S ≈ 4ϵ2 [22] and that
the asymmetry, defined as the energy difference between
the lower-lying state of each well, can be estimated from
Eq. (3) as A ≈ 4ϵ1

√
ϵ2/K (see also [20]) we write the

resonance condition as (A = nS)

ϵ2
K

≈
( ϵ1
nK

)2

, (4)

where n numbers the different resonances. This simple
formula predicts the location of the resonances with re-
markable precision (see dashed lines in Fig. 4).
We complement this analysis with a semiclassical ac-

tion quantization taken here as a proxy for the quantum
levels. The number of allowed quantum orbits is given by
the number of action quanta enclosed by the asymmet-
ric “figure eight” lemniscate delineating the phase space
separatrix in between the wells. The orange and blue
curves in Fig. 4 C show the pairs ϵ1/K and ϵ2/K where
the Einstein–Brillouin–Keller (EBK) [31] action quanti-
zation condition is met. That is,

1

2π

∮
p dx = ñ

ℏ
2

(5)
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where ñ = n,m are the odd quantum numbers of the
shallow and deeper wells respectively. The triple intersec-
tion points of the parabolas from Eq. (4) with the equi-
action curves meeting the quantization condition mark
the point in parameter space where a new level enters
the wells in the tunneling resonances condition. We mark
them with red circles labeled by (n,m), the quantum
number of each well. At these points, where each well
contains exactly (n + 1)/2 and (m + 1)/2 semiclassical
orbits, we expect the resonance to broaden due to a new
orbit contributing to the activation rate. This is seen as
sharpening structures in Fig. 4 A and B (see also Fig. 3
for the broadened resonances).

In Fig. 4 A we show the measured activation time for a
scan of both ϵ1/K and ϵ2/K. The resonances are shown
to have widths that change along the scan. They are
found to reflect the width of the tunneling anti-crossings
at the top of the barrier. This can be seen by follow-
ing the purple energy curves and their tunnel splitting
in Fig. 2 D. The agreement of the semiclassical Hamilto-
nian theory with the experiment is remarkable (see SM
for a full quantum treatment). The Hamiltonian the-
ory predicts, quantitatively, the resonance condition and,
qualitatively, their widths.

In Fig. 4 B, we show the Lindbladian model of the
experiment. The agreement is excellent with regard to
the location and behavior of the resonance in parameter
space, but falls short in quantitatively predicting the ac-
tivation rates measured. However, many features of the
data are correctly captured. For example, the Lindbla-
dian model shows that an asymmetric system can have
a longer activation lifetime than the symmetric system,
even if one of the wells is markedly shallower. See this
directly from Fig. 3 at ϵ1/K ≈ 1. The green-black line in
Fig. 4 A shows the experimentally determined maxima
of activation time T as a function of the control param-
eters. The theoretical maxima are shown in Fig. 4 B by
the line of the same colors. The location of the max-
ima is nontrivial, and it is relevant because it can readily
be used to extend the lifetime of a Kerr-cat qubit [18].
The effect was unknown to us before the analysis of our
experimental data.

In Fig. 5, we show the increase of T with the asym-
metry. To provide physical insight into this effect, we
note that for the symmetric case (ϵ1 = 0), T is modu-
lated in a step-like fashion by the orbits falling under the
barrier [15]. The linear drive can be exploited to break
the (parity) symmetry of these orbits as shown in Fig. 2
and therefore avoid altogether the resonant saturation
seen for ϵ1 = 0 in Fig. 5 A, B. This observation explains
the trajectory of the green-black curve in Fig. 4 A, B
which snakes around, avoiding the new resonance condi-
tions marked by the red circles. In other words, quantum
tunneling produces a hybridization of the classically de-
coupled orbits right under the barrier, so the asymmetry
parameter can be used to minimize that hybridization,
reducing the tunneling rate via the excited states, and
avoid the plateaus in Fig. 5 almost completely.

FIG. 5. Experimental and theoretical activation time
T for symmetric KPO and at optimal asymmetry. De-
picted as function of barrier height ϵ2/K. A-B) The
symmetric case is modulated by resonances in the quantized
energies (see [15] and SM). Exploiting asymmetry, it is pos-
sible to avoid these resonances and substantially increase the
activation time. The asymmetric optimum corresponds to the
green-black lines in Fig. 4 A, B.

IV. RELEVANCE FOR CHEMISTRY

The experimental observations presented here raise the
question of whether they are present in other double-well
systems, like the type of double-well used to describe
chemical reactions. This may prove useful for investiga-
tions of problems relevant to chemistry (see, for example,
[5] and references therein). To investigate this, we run
a Lindbladian simulation for the chemical system with
Hamiltonian Ĥ/ℏ = p̂2/2+k4x̂

4−k2x̂
2+k1x̂ and includ-

ing single photon loss and gain with rate κ/k4 = 0.025
and at temperature nth = 0.05 (parameters that corre-
spond to the ranges accessible by our system). Note that
the dissipation model is still that of a high-quality factor
linear oscillator, and we work under the hypothesis that
this dissipation model captures the relevant phenomenol-
ogy for applications in chemistry. With this, we answer
our question affirmatively. On the one hand, the green-
black line in Fig. 6 A depicts the maximum lifetime as
a function of well-asymmetry and well-depth, showing
that - just like in our experiment (Fig. 4 A, B) - a small
asymmetry increases the lifetime significantly (see also
Fig. 5 A, B and Fig. 6 B). On the other hand, Fig. 6 C
depicts a horizontal linecut of Fig. 6 A and clearly re-
veals the same width alternation (broad-narrow-broad)
as discovered and explained in our experiment (see Fig.
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FIG. 6. Lindbladian simulation of an ordinary double-
well system. A) Dynamics simulated as a function of well-
asymmetry k1/k4 and well-depth k2/k4. The color code marks
the activation time (compare to Fig. 4 B). The green-black
line shows the maximum activation time. B) Comparison
of the activation time for the ordinary symmetric (k1 = 0)
double-well and the (optimal) activation time along the green-
black line in A as a function of well-depth k2/k4. C) Activa-
tion time as a function of asymmetry for k2/k4 = 12.6 (black
dashed line in A), showing resonant tunneling (as in Fig. 3,
see also [5]). Note that, as in the parametric oscillator Fig. 3,
the linewidths alternate from broad to narrow.

3). The finding of these two unexpected effects shows
that our asymmetric Kerr parametric oscillator setup is
already able to produce meaningful predictions for chem-
ical quantum rate theory.

Double-well systems have been extensively studied in
various contexts [32, 33], including in superconducting
circuits [34–37]. However, we speculate that the unique
combination of precise real-time microwave control, com-
plete tunability over Hamiltonian parameters, experi-
mental stability, fast repetition rates, and high-fidelity
readout in our setup is the reason why we observed ef-
fects not previously reported.

Based on these results, we will propose in a forthcom-
ing paper [38] a hardware modification to our setup that
implements a one-to-one single-transmon quantum sim-
ulation of tautomerization reactions in Malonaldehyde

(cis-cis) and proton transfer reactions between the DNA
base pairs Guanine-Cytosine. The key to this simulator
is that, for realistic circuit parameters, the Hamiltonian
cross terms ∝ x2p2 and the relativistic-like ∝ p4 term be-
come irrelevant perturbations [these arise from the Kerr
term â†2â2, which in turn arises from the x4 term as
perturbations, see Eq. (1)]. Also, our system allows for
a clean microwave control of effective temperature [39]
and dissipation [15], allowing us to experimentally ex-
plore chemical dynamics across a wide range of param-
eter spaces [5, 40] in this new type of single-transmon
parametric quantum simulator.

V. CONCLUSION

We reported the measurement of the activation rate in
a continuously tunable asymmetric Kerr parametric oscil-
lator with dissipation and observed a fine structure that,
to the best of our knowledge, was unknown in the litera-
ture. Our experiment shows that the activation rate dis-
plays resonances whenever a level close to the barrier top
aligns with one in the other well. We derive an analytical
formula that predicts the occurrence of these resonances
as a function of asymmetry and well depth. Furthermore,
we discover that these tunneling resonances alternate in
width between narrow and broad lines as the asymmetry
and well depth are changed. We trace this effect back
to the alternating strengths of level anticrossings in the
spectrum close to the barrier top. This shows that the
activation is of over-the-barrier type (i.e., not via direct
quantum tunneling by the low-lying states), as predicted
[13, 20, 41]. We are thus able to learn the level structure
near the barrier top without having to prepare these ex-
cited states.
We also note the importance of this system for quan-

tum computation since qubits can be encoded in the well
state manifold [18, 22]. In this regard, two contributions
of the present work deserve to be highlighted. The first
one is the increase of the activation timescale T by a
fine control of the asymmetry. This directly leads to a
reduction of bit-flip errors [42] with no extra hardware
requirements. The second one is that we demonstrated
the operation of a highly asymmetric parametric oscilla-
tor in the quantum regime. We provide direct evidence
that the static effective description is not compromised
under strong linear drives, which are required for fast
gates [22] and new implementations of hardware efficient
readout schemes [43].
Our control over the well-asymmetry opens the path

for quantum simulation of chemical reaction dynamics
with a parametric oscillator [38]. The herein shown con-
trollable asymmetry and well depth, in conjunction with
adjustable detunings [24], allows for the emulation of
chemical double well potential energy surfaces [38]. This
in turn allows for the analog simulation of proton tunnel-
ing, and e.g. the study of transfer reactions between the
Guanine-Cytosine DNA base pairs appears within reach
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of current Kerr parametric oscillator technology [38].
After writing this manuscript, we were made aware of a

similar experiment at Rice University using trapped-ions
to create an asymmetric double-well to simulate electron
transfer [32].
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SUPPLEMENTARY MATERIAL

A. Calibrations of experimental parameters

1. Measurement of Kerr coefficient and frequency

The Kerr coefficient K, as used in the parametric oscil-
lator Hamiltonian Eq. (2), is extracted by spectroscopy.
A saturating probe drive ωpr is applied to the SNAIL
transmon operated with ϵ2 = 0. Varying the probe
drive frequency and measuring the response via disper-
sive readout, results in the data shown in Fig. 7. The
spectrum shows two clear dips, which correspond, from
lower frequency to higher frequency, to the two-photon
gf/2 transition and the ge transition (the SNAIL lev-
els are labeled following the atomic physics convention
in increasing energy order g, e, f, ...). Note that the
measured ωge is a good approximation for ωa used in the
main text (Eq. (2)). We then extract Kerr by using the
relation ωge−ωgf/2 = K. Fitting two Gaussian peaks to

FIG. 7. Continuous-wave spectroscopy measurement
showing the readout response as a function of the
probe tone frequency. From left to right, the pronounced
dips in the signal show the gf/2 and ge transitions of the
SNAIL transmon. Those occur at (ωge −K)/2π and ωge/2π
respectively. With gf/2, we refer to the two photon transition
from ground state to second excited state. Fitting to the
experimental data, we extract a Kerr value of K/2π = (528±
8) kHz.

the spectrum in Fig. 7, we find K/2π = (528 ± 8) kHz.
These measurements, when taken as a function of the
biasing flux Φ of the superconducting loops, allow for a
calibration of the SNAIL non-linear parameters g3, g4. In
Fig. 8 we show a flux scan of our sample with measured
frequencies, Kerr nonlinearities, and the fit by the model
presented in [17].

2. Calibration of relative phase between squeezing drive and
linear drive

Quantum coherent Rabi-like oscillations as a function
of this phase ϕ are shown in Fig. 9 A [18]. For ϕ = 0,
this drive is position-like and lifts the degeneracy between
the two wells (see Fig. 2 C and Fig. 20 A). This energy
difference induces the Rabi-like oscillation. For ϕ = 90◦

(Fig. 9 A), the linear drive is momentum-like (the Hamil-
tonian term is ∝ p̂), thus not breaking the symmetry of
the double-well (see Fig. 20 D).

3. Calibration of squeezing (parametric) drive amplitude ϵ2
and linear drive amplitude ϵ1

In the experimental setup, the drive amplitudes are di-
rectly controlled by a digital to analog voltage converter.
To calibrate the strength of the drive in MHz we measure
time-resolved Rabi oscillations as a function of the dig-
ital control of the squeezing drive ϵ2. The experimental
data is shown in Fig. 10 A. The oscillations of the ob-
servable X̂ = (|α⟩ ⟨α| − |−α⟩ ⟨−α|)/|α|2 occur at a rate

Ωcat(ϵ2) ≈ ℜ(4ϵ1α∗) where α =
√

ϵ2/K and the approx-
imation is valid for |α| > 1. Using, also, that for ϵ2 = 0
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FIG. 8. Extraction of non-linearities from fit to fre-
quency and Kerr parameter. A) Spectroscopic mea-
surement of the oscillator’s frequency and B) its Kerr non-
linearity as a function of flux as extracted from the ge and
gf/2 transitions (see Fig. 7). Solid lines are a simultaneous
fit of frequency and non-linearity from the circuit model. We
remark that several arrangements of parameters fit the data
satisfactorily, producing a large correlation and errors (see [17]
for the SNAIL model). In C) we show the third and fourth
order non-linearities as extracted from the fit. The vertical
dashed line represents the flux operating point for the exper-
iments in the main text.

the oscillation has a frequency of 2ϵ1 [18], just like for an
ordinary transmon, we obtain ϵ1 in MHz completing the
calibration of the drive amplitudes. To be clear, we can
rewrite this relation as ⟨â†â⟩ = ϵ2/K = Ωcat(ϵ2)

2/16ϵ21,
where ⟨â†â⟩ is the average photon number of the coherent
states. By extracting the Rabi rate Ωcat for each voltage
of the digital control of ϵ2 and using the previously de-
termined value of ϵ1, we find ⟨â†â⟩ as a function of the
digital control of ϵ2. The data is shown in Fig. 10 B
and shows a clear linear relationship between the applied
voltage for the drive and the average photon number.
The slope of the linear fit (together with the previously
extracted value of Kerr) determines the proportionality
constant between the digital to analog converter in volts
and the drive amplitude ϵ2 in MHz as required by the
Hamiltonian description.

FIG. 9. Effects of the relative phase of the linear
drive. A) Time-resolved quantum coherent oscillation in

Ŷ = i |α⟩ ⟨−α| − i |−α⟩ ⟨α| as a function of relative phase
ϕ between squeezing and linear drive [18]. This measurement
shows Rabi-like oscillation between the cat states created by
superposing states in different wells. The oscillation frequency
is a direct measure of the asymmetry. B) Linear drive with
relative phase of ϕ = 90◦. Symmetry between wells is pre-
served and no resonances are visible (compare to Fig. 3 A).
C) Same experiment as depicted in Fig. 3 A, but with a Rabi
phase of 180◦ instead of 0◦. The flipped phase results in an
exchange of the left and right well, meaning that now the left
well is the deeper well. In the experiment, we still initial-
ize in the shallower (now right) well, but now measure the
time-resolved population of the deeper (now left) well. As a
result, the population of the left well is initially zero and then
increases over time. We again observe trends and features,
such as the resonant-tunneling also seen in Fig. 3 A. This
confirms that the 180◦ phase shift only exchanges the roles of
the wells, but otherwise exhibits the same physical phenom-
ena.
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FIG. 10. Calibration of drive strengths. A) Time-
resolved quantum coherent Rabi-like oscillations as a function
of squeezing amplitude. The squeezing amplitude is measured
as the voltage of the digital controller. B) Photon number
⟨â†â⟩ as function of applied voltage for the digital control of
squeezing drive ϵ2. The experimental data points are obtained
from Fig. 10 A using ⟨â†â⟩ = ϵ2/K = Ω2

cat/16ϵ
2
1. A linear fit

allows us to convert the voltage set by the digital control of
ϵ2 to the squeezing drive ϵ2 in MHz. In the main text, we
only present data measured with up to ϵ2/K = 12 (vertical
dashed grey line).

B. Complementary analysis

1. Exponential decay

A crucial step in our data processing relies on fitting
the activation dynamics with exponential decays. The
experimental sequence is shown in Fig. 11 A and three
exemplary decay curves for different values of the asym-
metry are shown in Fig. 11 B. The data with the corre-
sponding exponential fits is shown in Fig. 3A. We remark
that each of the curves is well described by an exponen-
tial decay. Next, we notice that for small asymmetry
ϵ1 = 0.1 the steady state population of the shallower well
is around 50%. This is because for a symmetric double-
well the probability of being in either well is identical
by construction, thus leading to equal steady-state pop-
ulations. On the other hand, with increasing asymme-
try, the tunneling rates from one well to the other be-
come asymmetric, leading to a bias towards the deeper
well. This is represented in our data, where for increas-
ingly large asymmetries, the steady-state population of
the shallower well is reduced.

FIG. 11. Pulse sequence and typical decay curve for
determination of activation time. A) Pulse sequence for
the determination of the activation time. The squeezing drive
is turned on adiabatically. This is followed by a measurement
of the which-well information, projecting the parametric os-
cillator into either of the wells. Then the linear drive is turned
on adiabatically. Next, the state evolves for a variable time
t, during which both the squeezing and linear dive remain
on. After that, the linear drive is turned off adiabatically.
Finally, the which-well information is measured again to find
the remaining population. B) Decay of a coherent state ini-
tiated on the shallower well for different asymmetry values
ϵ1/K. Experimental data are dots, solid lines are exponen-
tial fits. For small well asymmetry ϵ1/K, the probability to
be in the shallower well decays to 0.5. For increasingly large
asymmetry, the steady-state population is no longer equally
distributed between both wells, becoming increasingly biased
towards the deeper well.

2. Steady state population

In Fig. 12 we show experimental data of the ratio of
upper to lower well populations Pup/Pdown as a func-
tion of asymmetry at ϵ2/K = 7.7. The color lines are
full Lindbladian simulations with single-photon dissipa-
tion (κ/K = 0.025) for different values of nth. These in-
volve dynamically obtaining the steady state population
rate given by the offset O by fitting the simulation data
to Pdown(T,O) = 1 −

(
e−t/TK +O(1− e−t/TK)

)
(refer

to Fig. 14 B). The Lindbladian steady-state population
tends toward zero rapidly as a function of asymmetry,
much faster than observed experimentally (compare the
experimental data with the nth = 0.05 theory line). No-
tably, the base temperature of the dilution refrigerator is
approximately 30 mK, indicating again inadequacies in
the dissipation modeling.
To investigate further the thermal properties of the
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FIG. 12. Ratio of upper to lower well populations plotted
against asymmetry ϵ1/K at ϵ2/K = 7.7. Experimental data
is represented by black dots, while Lindbladian simulations
are shown with colored solid lines for various values of nth

and their corresponding temperatures. Note that the theory
curves exhibit slight kinks near the locations where the ex-
perimental data show peaks. Temperature estimates are for
photons at 6 GHz.

system, we analysed the Lindbladian steady state ρss in
greater detail. To determine how well ρss is described
by a Boltzmann thermal state, we computed a collec-
tion of βn,m values using the detailed balance condition
pn/pm = exp(−βn,m(En−Em)), where pn are the eigen-
values of ρss with eigenvectors closest to the eigenvectors
|En⟩ of Heff . We focused on pairs of neighbouring pn
and pm values exceeding a small threshold (10−6) and
examined the distribution of βn,m values, as shown in
Fig. 13 B and C. Additionally, we calculated the trace
distance between ρss and exp(−βavgHeff), where βavg is
the average of all computed βn,m values. This is shown
in Fig. 13 A. Overall, we found that the detailed balance
condition is not well-satisfied for ρss, especially at the 1st

to 3rd resonances (indicated by yellow lines), where the
standard deviation of βn,m values is large, and their aver-
age appears to diverge. Notably, however, the condition
holds moderately well between resonances and exception-
ally well at the 4th resonance, where the trace distance is
approximately 10−3 and the standard deviation is around
10−2.

3. Control experiment for the relative phase dependence of
the linear drive

The relative phase ϕ between the squeezing drive and
linear drive is determined by searching for the phase of
maximum Rabi rate, which occurs at ϕ = 0. The calibra-
tion measurement is shown in Fig. 9 A. This additional
degree of freedom allows for several control experiments.
To confirm that the resonant features we see are actually
caused by the controlled symmetry breaking, and are not
for example just power-dependent non-linear resonances
[44, 45] or Stark shifting into resonance with spurious

FIG. 13. Lindbladian simulation of detailed balance
hypothesis at ϵ2/K = 7.7, κ/K = 0.025, nth = 0.05 and
N = 60. A) Trace distance between Lindbladian steady state
ρss and Boltzmann distribution ρ ∼ exp(−βavgHeff) as a func-
tion of well’s asymmetry ϵ1/K. Note the near orthogonality
at the 1st to 3rd resonance conditions (yellow lines) and the
similarity at the 4th resonance condition (purple line). B)
Average inverse temperature βavg with error bars represent-
ing the standard deviation. C) Standard deviation of inverse
temperature β. Note how the standard deviation becomes
small at the 4th resonance condition (purple line).

modes [46, 47], we repeat the experiment of Fig. 3 A
for a symmetric double-well under an equally strong lin-
ear drive. To achieve this, we set the linear drive phase
ϕ = 90◦. The resulting measurement is shown in Fig.
9 B (see also Fig. 20 E). We note that the resonances
are not present here, thereby proving that they are in-
deed a controlled effect from the symmetry breaking in
the parametric oscilator.

As discussed in the Sec. III, we have full control over
the Rabi phase (see Fig. 9 A) which controls how the
symmetric double-well is perturbed. A phase of ϕ = 0◦

applies a drive that lifts the left well (see Fig. 20 A)
and a phase of ϕ = 90◦ does not break the x-symmetry
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FIG. 14. Lindbladian simulation of dynamics with
κ/K = 0.025 and nth = 0.05. A) Decay constant extracted
from exponential fit to dynamics. They agree well with the
smallest non-zero eigenvalue of the Lindbladian which can nu-
merically computed without requiring to fit the dynamics. B)
Steady state population of shallower well extracted as offset
from exponential fit. Shows quick decay towards zero as a
function of asymmetry, while having the expected value of
0.5 in the symmetric case.

(see Fig. 20 D). If a Rabi phase of ϕ = 180◦ is applied,
then the definitions of left and right well swap, mean-
ing the right well becomes the shallower well and the
left well becomes the deeper well. We can then run the
same experiment again as in Fig. 3 A, meaning we ini-
tialize the system in the shallower (now right) well and
then measure the population of the left well as a func-
tion of time and asymmetry. The resulting data (Fig. 9
C) shows the same increase in tunneling rate with larger
asymmetry ϵ1/K and resonances at specific values. The
observation of the same physical phenomena confirms our
understanding of the system and validates our explana-
tions of the observed effects.

4. Adjusted Kerr

Upon close inspection of Fig. 3, a slight deviation be-
tween the theoretical location of the resonances and the
experimental observations comes to light. This deviation
seems to increase with ϵ1/K, suggesting there could be
a constant scaling factor between the independently cali-
brated ϵ1/K and the actual value. Indeed, allowing for a
small rescaling by 5% gives great agreement between the-
ory and experiment, as demonstrated in Fig. 15. While
this is not within the calibration uncertainties (Fig. 7),
past experiments have shown that the driven Kerr under
the squeezing drive can be slightly renormalized com-
pared to the spectroscopic measurement of Kerr [15, 24].

FIG. 15. Kerr correction. A) Reproduction of Fig. 3 A
with a corrected Kerr to account for a ≈ 5% uncertainty in
the independent experimental value of ϵ1/K. That is, we use
(ϵ1/K)′ = 1.05× (ϵ1/K). There is only a minor improvement
in the agreement between theory and experiment with respect
to Fig. 3. B) Reproduction of Fig. 3 B.

In Fig. 16 B, we show the Kerr adjusted experimental
data from Fig. 4 B.

5. Lifetime along resonances

In Fig. 18 we display the lifetime along the first four
resonances/parabolas in Fig. 4 B. As per resonance con-
dition Eq. (4), an increase in ϵ1/K corresponds to an in-
crease in ϵ2/K when following the parabolas. Therefore,
we expect the lifetime to increase along the parabolas,
which is what we observe in Fig. 18. The step like be-
haviour is a consequence of activation assisted tunneling
close to the separatrix between the wells (see [15]).

Full quantum Hamiltonian treatment

In this section, we show that the physics captured by
the semiclassical analysis used to explain the data is iden-
tically captured by a full numerical quantum treatment.
For this, we introduce the inverse logarithmic anti-cross
space (ILAS), denoted by J and defined as

J .
=

Ncff∑
n=0

1

log (En+1 − En)
, (6)

where En are the eigenenergies of Eq. (2) at a particular
ϵ1/K and ϵ2/K andNcff is a numerical cutoff. We plotted
a J colour-map as a function of ϵ1/K and ϵ2/K, along
with two different cuts in Fig. 17.
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FIG. 16. Kerr correction and additional visualization
of resonance condition. A) Reproduction of Fig. 4 B
with a 5% Kerr adjustment like in Fig. 15 A. That is, we use
(ϵ1/K)′ = 1.05 × (ϵ1/K) and (ϵ2/K)′ = 1.05 × (ϵ2/K). B)
Lindbladian theory for comparison, now showing a slightly
better agreement. C) Is another representation of the semi-
classical approach to be compared with Fig. 4 A. In the latter
we focus the attention on the phase quantization argument,
while in this figure we focus the attention in the resonance
condition between the levels in the asymmetric wells. Only
the wells corresponding to the red circles are shown. The
wells corresponding to the maroon circles are not shown.

By construction, J diverges when a new pair of levels
in {E0, E1, · · · , ENcff

} are closing. To see this, consider

FIG. 17. Numerical quantum treatment and analysis.
A) Heatmap of J (numerical quantum treatment) with the
semiclassical prediction on top (see Fig. 4 C). B) Plot of J
along the red dashed line in A parameterised by ϵ2/K. Ver-
tical dashed lines indicate the location of the singularities of
J which happen very close to the triple blue-orange inter-
sections. C) Plot of J along the horizontal black dashed
line at ϵ2/K = 10 in A parameterised by ϵ1/K. Vertical
dashed lines indicate the resonance condition from Eq. (4).
The different semiclassical predictions agree well with the full
quantum Hamiltonian calculation.

the scenario where the gap between the pair E0 and E1

and the gap between the pair E2 and E3 are closed, and
the rest of the levels are not anti-crossing. In this situa-
tion, J is roughly constant since 1

log(En+1−En)
is zero for

the two closed pairs and finite for E2 − E1 and the rest
of the levels. Consider now that E4 and E5 are interact-
ing, starting to close their gap as in Fig. II D. These
interacting levels will close fast and at some point have
an energy difference E4−E5 = 1 where 1

log(En+1−En)
will

diverge. Also, this approach to E4−E5 = 1 happens dif-
ferently depending on how one approaches the resonance
in parameter space, approaching 1 from the left or from
the right in ϵ2 makes J abruptly change sign near a new
anti-crossing. Observe the close agreement between the
semiclassical treatment, the resonance condition Eq. (4),
and J .
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FIG. 18. Experimental lifetimes of Fig. 4 A along each resonance parabola as parameterised by ϵ1/K. A-D) show
the the four parabolas for n = 1, 2, 3, 4 as defined by resonance condition Eq. (4). The orange curves are guides to the eye (a
box average).

C. Effects beyond the RWA model

In this section, we present novel experimental data
taken for ϵ2/K > 12 where the static effective descrip-
tion used fails, qualitatively, to describe experiment. In
Fig. 19 A, we present the coherent state lifetime up to
ϵ2/K ≈ 17, for ϵ1 = 0. The lifetime increases in a step-
like fashion, as predicted by the static effective model
[28, 29] until it starts decreasing. This decrease may be
captured by a more elaborated static effective treatment
[30]. However, resonant-like drops of the lifetime appear
too, which challenge the static effective treatment, even
if they can also be captured in principle [44]. Time-
dependent Floquet simulation of the driven system (not
shown, see [21]) suggest that these resonances may be
contained within a single-mode treatment of the nonlin-
ear transmon oscillator. Note that, since these experi-
ments were conducted with ϵ1 = 0, these resonances are
of a different yet similar nature from the ones presented
in the main text. Below, we present and discuss control
experiments supporting the viewpoint that these effects
belong to the nonlinear physics of single-mode driven sys-
tems.

As a control experiment to learn more about these res-
onances, we measure their temporal stability by repeat-
ing the same measurement again after 24h (see orange
and blue graphs in Fig. 19 A). This provides important
information since the parameters of spurious two-level-
systems (TLS) [48–50] coupled to transmons are known
to fluctuate in time, and TLS are a plausible candi-
date for this resonant-like lifetime drops at strong drives.

We re-calibrated the qubit frequency and observed good
agreement between the two measurements, with the res-
onances being located at the same positions. This data
suggests that the resonances are stable in time and are
therefore likely associated to stable electromagnetic tran-
sitions and not fluctuating TLSs.

To learn more, we study these resonances as a func-
tion of the detuning ∆ = ω2

2 − ωa between the squeezing
drive and the resonance frequency of the SNAIL trans-
mon. The system is initialized in one well and after 24 µs
the remaining population is measured. This is a proxy
for the coherent states lifetime and thus resonances show
up through low remaining population. Fig. 19 B depicts
this lifetime proxy as function of detuning and photon
number. This data contains resonances moving in differ-
ent directions. Other features can be seen, for example,
around ϵ2/K = 12 and ∆/K = 1: here two resonances
cross (i.e., no avoided crossing), which could provides
a bound to the possible coupling between the involved
modes. Lastly, we point out a feature around ϵ2/K = 17
and ∆/K = 2, where one of the resonances seems to split
up into two.

Moving beyond the case of ϵ1 = 0, we now study the
impact of an additional drive on the resonances. In Fig.
20 A, we show the equienergy contours of the effective
Hamiltonian for ϵ1 ̸= 0 and ϕ = 0, which creates an
asymmetry between the two wells (see also Fig. 2 C).
This picture is valid under the RWA, and we have ob-
served its conspicuous failure for ϵ2/K ≫ 1. In Fig. 20
B, for ϵ2/K = 18 we observe a “forest” of resonances,
very different from the case of smaller ϵ2/K (see Fig. 3).
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FIG. 19. Unexplained resonance-like features. A) Co-
herent state lifetime as a function of photon number ϵ2/K
(at ϵ1 = 0). The blue and red curve are the same measure-
ment repeated after a 24h time difference. The frequency was
recalibrated to account for a small drift. The lifetime sat-
urates at around 300 µs. For large photon numbers ϵ2/K,
resonance-like structures appear. The location of these is sta-
ble within the 24h time difference. B) The parametric os-
cillator is initialized in one of the wells and after 24 µs the
remaining population in this well is measured. This is a proxy
for the coherent state lifetime and thus allows us to identify
resonances like in A, which emerge as a low remaining popu-
lation. This is measured as a function of photon number ϵ2/K
and detuning ∆ = ω2

2
− ωa between the first subharmonic of

the squeezing drive and the SNAIL transmon resonance fre-
quency. At ϵ2/K = 12 and ∆/K = 1 a crossing between
resonances is visible. Another feature occurs at ϵ2/K = 17
and ∆/K = 2, where the line of a resonance splits into two.

These resonances are not explained by resonant tunnel-

ing in the RWA potential and described by Eq. (4), but
are instead reminiscent to the onset of chaotic behav-
ior [21, 51]. Changing the photon number (see Fig. 20
C) leads to a change in the forest of resonances. Sim-
ilar resonances have been observed during readout of
transmon qubits. Here a possible explanation is that
the AC Stark shift, induced by the strong readout drive,
tunes the qubit into resonance with lossy modes like TLS
[46, 47, 52]. To test this hypothesis, we change the phase
ϕ of our strong linear drive. For ϕ = 90◦, the RWA
double-well stays symmetric (Fig. 20 D). In Fig. 20
E, we show the same measurement as in Fig. 20 B,
(same value of ϵ1), but with a different relative phase be-
tween the drives. The absence of resonances in Fig. 20
E suggests that the effect is beyond a Stark shift into
lossy modes. This phase dependence of the spurious res-
onances has not been observed before. Finally, Fig. 20 F
shows an extended data set (compare to Fig. 4), where
the breakdown of the RWA description is self-evident for
ϵ2/K > 12.

While this spurious resonances have not been reported
before, the large discrepancy in between static-effective
open quantum system description of our strongly driven
nonlinear system and experimental observations is com-
mon to all parametric oscillator experiments in the
quantum regime reported in the literature [15, 18, 24–
26, 53, 54], etc. We believe this discrepancy runs deep
into our understanding of quantum physics [31] and is
intimately related to the problem of the quantum to clas-
sical transition and quantum chaos [51]. We also believe
it can be avoided once it is understood, by means as sim-
ple as filtering the lines at the relevant frequencies, for
example.

Our data set, presenting resonances at different loca-
tions in parameter space and of different widths, as well
as their dependence on the parametric drive frequency,
the parametric drive amplitude, the linear drive ampli-
tude, the relative phase between the linear drive and
the parametric drive, and their stability over a period of
24 hs, will guide research and lead to better theoretical
tools to understand and design parametric processes. We
also expect that this data will unlock new tools and pro-
posals to study nonlinear driven quantum systems and
quantum chaos in unexplored regimes [55–57].
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and M. H. Devoret, A diagrammatic method to compute
the effective Hamiltonian of driven nonlinear oscillators
(2023), arXiv:2304.13656 [quant-ph].

[45] M. F. Dumas, B. Groleau-Paré, A. McDonald, M. H.
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