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Abstract

The nexus of quantum computing and machine learning––quantum machine learn-

ing––offers the potential for significant advancements in chemistry. This review specif-

ically explores the potential of quantum neural networks on gate-based quantum com-

puters within the context of drug discovery. We discuss the theoretical foundations of

quantum machine learning, including data encoding, variational quantum circuits, and

hybrid quantum-classical approaches. Applications to drug discovery are highlighted,
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including molecular property prediction and molecular generation. We provide a bal-

anced perspective, emphasizing both the potential benefits and the challenges that

must be addressed.

1 Introduction

1.1 Quantum Computing

In this introduction, we discuss the general methodology of quantum computing based on

unitary transformations (gates) of quantum registers, which underpin the potential advance-

ments in computational power over classical systems. We introduce the unique properties

of quantum bits, or qubits, quantum calculations implemented by algorithms that evolve

qubit states through unitary transformations, followed by measurements that collapse the

superposition states to produce specific outcomes, and lastly the challenges faced in prac-

tical quantum computing limited by noise, with hybrid approaches that integrate quantum

and classical computing to address current limitations. This introductory discussion sets the

stage for a deeper exploration into quantum computing for machine learning applications in

subsequent sections.

Calculations with quantum computers generally require evolving the state of a quantum

register by applying a sequence of pulses that implement unitary transformations according

to a designed algorithm. A measurement of the resulting quantum state then collapses the

coherent state, yielding a specific outcome of the calculation. To obtain reliable results,

the process is typically repeated thousands of times, with averages taken over all of the

measurements to account for quantum randomness and ensure statistical accuracy. This

repetition is essential to achieve convergence, as each individual measurement only provides

probabilistic information about the quantum state.

Quantum registers are commonly based on qubits. Like classical bits, qubits can be

observed in either of two possible states (0 or 1). However, unlike classical bits, they can
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be prepared in superposition states, representing both 0 and 1 simultaneously with certain

probability. In fact, the state of a single qubit can be described using the ket notation, as

follows:

|ψ⟩ = α|0⟩+ β|1⟩, (1)

where α and β are complex amplitudes satisfying the normalization condition |α|2+ |β|2 = 1.

Such a state represent the states |0⟩ and |1⟩ simultaneously with probability |α|2 and |β|2,

respectively.

Quantum registers with n qubits represent states that are linear combinations of tensor

products of qubit states. Therefore, a register with n qubits represents 2n states simulta-

neously, offering a representation with exponential advantage over classical registers. For

instance, the state of a register with two qubits represents four states simultaneously, as

follows:

|ψ⟩ = α00|0⟩ ⊗ |0⟩+ α01|0⟩ ⊗ |1⟩+ α10|1⟩ ⊗ |0⟩+ α11|1⟩ ⊗ |1⟩, (2)

with complex coefficients αjk satisfying the normalization condition |α00|2 + |α01|2 + |α10|2 +

|α11|2 = 1, and defining the probabilities Pjk = |αjk|2 of observing the state collapsed onto

state |j⟩ ⊗ |k⟩ when measuring the two qubits.

Quantum gates, analogous to classical logic gates, are used to represent the effect of the

pulses that manipulate the states according to unitary transformations. Commonly used

gates for transformation of a single qubit are the gates represented by the Pauli matrices:

X =



0 1

1 0


 , Y =



0 −i

i 0


 , Z =



1 0

0 −1


 . (3)

For example, the X (or, NOT) gate, flips the state of a qubit from |0⟩ to |1⟩, and vice-versa.

Another important class of transformations of a single qubit are the rotation gates Rx(θ),
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Ry(θ), and Rz(θ). The rotation around the Y -axis, for instance, is expressed as:

Ry(θ) = exp

(
−iθ

2
Y

)
= cos

(
θ

2

)
I − i sin

(
θ

2

)
Y, (4)

where I is the identity matrix.

For multi-qubit systems, universal computing can be achieved with single qubit gates

(such as Pauli, or rotation gates) and the two-qubit CNOT (Controlled-NOT) gate, defined

as follows:

CNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



. (5)

Measurements of individual qubits project the superposition states onto one of the basis

states of the operator used for the measurement. Averages over many measurements (i.e.,

many shots) are required to achieve statistical converge of the calculation. For example, for

a single qubit prepared in state |ψ⟩, given by Eq. 1, measurements with the Z operator yield

either 1 when the state is collapsed by the measurement onto state |0⟩ (with probability

|α|2), or −1 when the state is is collapsed into state |1⟩ (with probability |β|2).

Quantum mechanics introduces concepts such as superposition and entanglement, en-

abling computational parallelism. Quantum superposition allows for the representation and

manipulation of an exponential number of states simultaneously, offering potential quantum

advantage. Likewise, quantum entanglement, a form of correlation not present in classical

systems, could further enhance this advantage. The simplest example is a register prepared

in the Bell state |ψ⟩ = α00|0⟩ ⊗ |0⟩ + α11|1⟩ ⊗ |1⟩ where measurement of one of the two

qubits collapses the state of both qubits in highly correlated way so that both qubits end-up

in the same collapsed state (both |0⟩, or both |1⟩, but never one |0⟩ and the other |1⟩).

These quantum properties offer great potential for computational advantage over classical

computers and thus could lead to significant advancements in many areas of chemistry, and
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beyond.

Quantum algorithms can achieve significant speed up compared to their classical counter-

parts. For example, the Quantum Fourier Transform (QFT)1 can enable exponential speedup

when compared to the best-known classical Fourier transform algorithms. Algorithms like

Quantum Phase Estimation2 and the Shor’s algorithm3,4 can also enable factorization of large

numbers with exponential quantum advantage. Amplitude amplification techniques, such as

those used in Grover’s algorithm, provide a quadratic speed up for unstructured search prob-

lems, while the Harrow-Hassidim-Lloyd (HHL) algorithm5 offers logarithmic speed up for

solving linear systems within bounded error, highlighting the potential of quantum comput-

ing to outperform classical methods in a wide range of applications. The actual implementa-

tion of these quantum algorithms, however, would require fault-tolerant quantum computers

that are not currently available to achieve quantum advantage over classical algorithms.

Due to the current limitations of quantum hardware, including noise and limited qubit

counts, significant efforts have been focused on near-term calculations based on hybrid

quantum-classical approaches where only part of the calculation is performed on the quantum

computer while the rest of the computation is delegated to conventional high-performance

computers. For example, variational algorithms, such as the Variational Quantum Eigen-

solver (VQE)6 and Quantum Imaginary Time Evolution (QITE),7–16 implement hybrid

quantum-classical approaches. These algorithms generate quantum states and employ clas-

sical computations to combine the results of the measurements performed on the quantum

states. This synergy leverages the strengths of both quantum and classical resources, making

it feasible to solve problems with current noisy intermediate-scale quantum (NISQ) devices.

Despite significant advances in the field, an outstanding challenge is to achieve advantage

over classical high performance computing. One promising direction is the use of quantum

computers to implement machine learning algorithms. Harnessing the speed-up of quantum

algorithms could address complex problems in data analysis and pattern recognition. Given

that quantum computing has many potential applications in chemistry and biological science,
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there is a great deal of hope that quantum machine learning (QML) can be extended to these

areas of research.

1.2 Machine Learning

Machine learning (ML) algorithms are able to learn from data, where learning in this context

can be defined according to “a program is said to learn from experience E with respect to

some other class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E”.17 In practice, machine learning can be used

to approximate a function of the input data to predict some variable (e.g., predict chemical

toxicity from molecular features),18,19 or can be used to learn the distribution of the input

data to generate synthetic data akin to the training distribution (e.g., generating virtual

compounds with specific drug-like properties).20

There are now many machine learning methods that have demonstrated exceptional,

unprecedented abilities in many areas of research pertaining to drug development, with

AlphaFold 2 and its later iterations being particularly recognizable.21,22 AlphaFold is able

to predict protein structures from their input sequences with high accuracy, although it

is less capable in cases where the input sequence corresponds to a structure that is not

well represented in the training distribution. Nonetheless, there is a lot of excitement and

anticipation that AlphaFold will enable a lot of innovation within the domains of studying

protein dynamics and hit identification in drug discovery.23

Machine learning has become pervasive in cheminformatics, and there have been many

tools developed to predict molecular properties, generate compounds with prespecified prop-

erties, and ultimately reduce an incredible vast chemical search space to something tractable

given the specific task at hand.24 Specifically, there are a lot of efforts leveraging machine

learning to reveal molecular mechanisms,25 analyze complex biochemical data,26 process

and optimize chemical data,27 predict protein structure,21,22 virtual screening and drug de-

sign,28,29 protein-ligand docking,30 as well as many other tasks.31
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1.3 Quantum Neural Networks

Machine learning has had a transformative effect on all facets of modern life and has led

to increasing computational demands, thus motivating the development of QML methods.

The promising capabilities of quantum computing have already motivated the development

of quantum analogs for a wide range of classical machine learning methods. Bayesian in-

ference,32 least-squares fitting,33 principal component analysis,34 and support vector ma-

chines35 are some of the algorithms for which quantum counterparts have already been

developed. While quantum analogs for these traditional ML methods have a demonstrable

quantum speed-up,36 some of the most awe-inspiring advances are due to artificial neural

networks (ANNs).

Perhaps the earliest discussions of quantum neural networks (QNNs) were motivated by

studies of neural function through the lens of quantum mechanics.37 Since then, the field

has evolved to exploiting the computational parallelization enabled by superposition states

and entanglement.38 In the early stages of research for QNNs, much effort was dedicated

towards developing quantum systems that preserved the mechanisms of classical ANNs.39–41

However, those efforts have largely failed to reconcile the linear dynamics of a quantum state

evolving through a circuit and the non-linear behavior of classical neural networks.42 Increas-

ingly, the field has consolidated around the use of variational quantum circuits to learn data

representations43 rather than directly creating a quantum analog of a neural network. Ac-

cordingly, quantum versions of the most popular classical neural network architectures, such

as convolutional neural networks (QCNNs), graph neural networks (QGNNs), variational

autoencoders (QVAEs), and generative adversarial networks (QGANs) have been realized

and centered around variational quantum circuits.

QNNs require data encoding, variational quantum gates with learnable parameters θ,

and measurements, as depicted in Figure 1. Data encoding converts classical data into a

quantum state. The choice of strategy for data encoding can be of paramount importance

7



Encoding U(θ)
...

...
...

Figure 1: Structure of a typical quantum neural network. The input is encoded into a
quantum state, followed by a variational quantum circuit and measurements.

in QNNs, as it can significantly affect performance and impact the underlying computa-

tional complexity. While other data encoding strategies exist,44,45 three of the most popular

methods are discussed in the following subsections.

1.3.1 Basis Encoding

Basis encoding is a straightforward and inexpensive method to encode binary data into a

quantum system. Explicitly, let D be a classical binary dataset such that each element

xm ∈ D is an N -bit binary string of the form xm = (bm1 , b
m
2 , · · · , bmN), with bmj = 0 or 1. Then

the classical dataset can be represented by the quantum state |D⟩ of N qubits, where M is

the total number of basis states used for the encoding:

|D⟩ = 1√
M

M∑

m=1

|xm⟩ . (6)

where xm corresponds to the m-th element of the data set. For encoding a specific element

(e.g., the binary string [1, 0, 1]) we simply place a Pauli X gate on the qubits that should be

one (e.g., on the first and third qubits, as shown in Figure 2a).

1.3.2 Angle Encoding

Unlike basis encoding where the data is restricted to binary values, angle encoding allows

data to take the form of real, floating point numbers. This encoding method entails rotating
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|0⟩ X

|0⟩
|0⟩ X

(a) basis encoding

|0⟩ Rx(0)

|0⟩ Rx(π)

|0⟩ Rx
(
2
5π

)

(b) angle encoding

|0⟩
State

Preparation
|0⟩

|0⟩
(c) amplitude encoding

Figure 2: Data encoding methods. (a) Quantum circuit to prepare the [1,0,1] vector with
basis encoding. (b) Quantum circuit to prepare the pre-scaled [0, π, 2π

5
] vector with angle

encoding, choosing the x-rotation axis. (c) Amplitude encoding is equivalent to quantum
state preparation.

the state of a qubit around an axis of the Bloch sphere by an angle corresponding to the

classical data. Explicitly, for an element xm of a classical dataset D where xm ∈ [0, 2π], then

the value of xm may be encoded into a single qubit by a rotation operator:

x→ Rk(x) |0⟩ = e−ixσk/2 |0⟩ , (7)

where k indicates the rotation axis (e.g., k = y).

Classical datasets seldom satisfy the 2π-periodicity requirement of rotation gates. Never-

theless, the data can always be normalized such that xm ∈ [0, 2π], or commonly xm ∈ [0, π].

For example, suppose the task is to encode the vector x = [0, 5, 2] into a quantum state via

angle encoding with a maximum rotation angle of π. The vector is first normalized to the

range [0,π]:

xangles = π · x−min(x)

max (x)−min(x)
= [0, π,

2π

5
]. (8)

After scaling, the angles can be encoded with the Rx or Ry gates, as shown in Figure 2b.

1.3.3 Amplitude Encoding

Amplitude encoding allows one to encode complex valued floats into the amplitudes of a

quantum state. Thus, for a given classical dataset D, an L2-normalized complex vector

x ∈ D of length N can be encoded into log(N) qubits. Namely,
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x→ Ux |0⟩⊗log(N) = |x⟩ =
2N−1∑

k=0

αk |k⟩ . (9)

Many quantum neural networks rely on this encoding strategy, as it enables an exponen-

tial reduction in the number of required bits to represent data, and thus has the potential

to allow for a speed-up that is not possible on classical computers. Despite this, the unitary

operator Ux shown in Equation 9 may demand a significant number of gates - a challenge

discussed further in section 6.2.

1.3.4 Variational Quantum Circuits and Readout

Variational quantum circuits (VQCs), also commonly known as parameterized quantum

circuits (PQCs), are typically used to introduce learnable parameters θ of unitary gates

(Fig. 3). After the VQC, measurements are performed. Measurements typically undergo

Figure 3: Generic three qubit quantum neural network using x-axis angle encoding (blue),
variational quantum circuit (orange), and measurements (pink).

classical post-processing to obtain averages. The set of parameters θ are iteratively adjusted

by a classical computer to minimize a cost function C(θ) defined by the average expectation

values ⟨ϕ|U †(θ)ÔU(θ)|ϕ⟩, as follows:

C(θ) = f
(
⟨ϕ|U †(θ)ÔU(θ)|ϕ⟩

)
, (10)

where |ϕ⟩ are the encoded states and U(θ) is the ansatz of choice with learnable parameters

and the function f is any classical post-processing function. The overall hybrid quantum-
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classical machine learning scheme is depicted in Figure 4.

Encoding VQC
...

...
...

Output

Cost

Update

Figure 4: Training a general variational quantum circuit (blue) via classical post-processing
and optimization (orange).

2 Predictive Quantum Machine Learning

2.1 Quantum Graph Neural Networks

Graph neural networks (GNNs) are popular models in applications of machine learning

methods to chemistry because molecules can be intuitively represented as graphs where

nodes are atoms and edges are bonds (Figure 5). In a typical GNN, messages (i.e., features

used to describe each node) are passed between neighboring nodes, ultimately resulting in

an aggregated graph-level encoding which can subsequently be processed to predict some

value (e.g., protein-ligand binding affinity, hERG activity, etc.)46
G

ra
ph

 fe
at

ur
e 

ve
ct

or

Graph-based representation

Zoom in on subgraph
Representative central 
node of subgraph

2

1

0

3 2

1

0

3

Concatenate
0

Concatenate

Aggregate individual node 
embeddings across the 
graph to generate a singular 
global feature vector

Figure 5: A classical graph neural network for extracting features from a molecule.

QGNNs were first introduced with the Networked Quantum System.47 In this system,

a graph G = {V , E} with the set of nodes V and edges E is defined as tensor products
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of Hilbert subspaces representing nodes and edges. The Hilbert space representing nodes,

HV =
⊗

v∈V Hv and the space representing edges HE =
⊗

e∈E He are joined to create the

full networked Hilbert space HG = HV ⊗HE that comprise the space for the complete graph.

Since then, various quantum theoretical formulations of QGNNs have been introduced.48–51

Alongside quantum graph convolutional networks, quantum learning on equivariant graphs

has also been demonstrated,52,53 which has been of increasing interest in classical ML for

drug discovery.54–56

Equivariant QGNNs and hybrid quantum-classical QGNNs have been used to predict the

HOMO-LUMO gap in the QM9 dataset, which can provide insights on molecular stability.57

An interesting observation from this work is that comparisons of their QGNN models to

their corresponding classical models with the same number of parameters shows that the

quantum models typically outperform the classical counterparts. Additionally, training of the

quantum model is generally more efficient. These are exciting results that suggest favorable

scalability and generalization of QGNNs, as previously suggested.58 Another study,59 has

implemented a hybrid QGNN to predict the formation energy of perovskite materials. While

their method underperforms compared to the fully classical GNN, it has been pointed out

that advantages will emerge once state preparation techniques improve due to their usage of

amplitude encoding.

Quantum isomorphic graph networks and quantum graph convolutional networks have

been used to predict protein ligand binding affinities, showing that hybrid models already

perform on par with state-of-the-art models.60 In this work, features are amplitude encoded

into a quantum state and a PQC replaces the classical multi-layer perceptron (MLP) to

perform convolutions. The models provide a good balance between number of parameters

and generalization.

QGNNs are truly promising methods. For example, Liao et al.51 has analyzed quan-

tum implementations of the Simple Graph Convolutional network61 and the linear graph

convolutional network62 that exhibit quantum advantage in terms of both space and time
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complexity. As the utility of graph networks is extended to both small molecules and large

protein structures alike, solutions with complexity advantages are expected to be the domi-

nant driver of the success of QGNNs.

2.2 Quantum Convolutional Neural Networks

Convolutional neural networks (CNNs) gained initial popularity for their success in image

detection and classification.63 They have been applied in chemistry to predict molecular

properties, interaction strengths, and other chemically significant tasks.64 The most funda-

mental architectural components of CNNs are the kernels of convolutional layers.65 Each

kernel creates a linear combination of the values in the spatial neighborhood of a given voxel

(i.e., a pixel in the 2D case or a point in a 3D grid) of the input data and then propagates

the resulting scalar to a corresponding spatial index in the output array. The coefficients

for this linear combination are learned throughout training and constitute the weights of the

kernel, which are applied uniformly across the input voxels.

QCNNs were first introduced for quantum phase recognition,66 outperforming existing ap-

proaches with a significantly reduced number of variational parameters, scaling as O(log(N))

with N the number of qubits. This initial success sparked significant interest, leading to the

development of many QCNN variants,67–71 tutorials,72–75 and applications to a large range of

complex tasks in many fields of science and technology. For example, in high energy physics,

QCNNs have been used to classify particles with a level of accuracy and speed of convergence

that surpasses classical Convolutional Neural Networks (CNNs) with the same number of

learnable parameters.76 In the field of biochemistry, they have shown the ability to generate

protein distance matrices77 and predict protein-ligand binding affinities,60,78 demonstrating

their potential to contribute to our understanding of complex biological systems.

The appeal of QCNNs over many quantum counterparts of classical neural networks is

multi-faceted. In a QCNN, the classical convolutional filters are replaced by quantum circuits

(Figure 6). In CNNs, the computation involves the discrete convolution between a relatively

13



Conv
•

Pool

Conv

•

Conv
•

Pool Pool

Conv

•

Conv
•

Pool

Conv

•

Conv

•

Pool Pool Pool

Figure 6: QCNN architecture introduced by Cong et al.66 with log(N) parameters, where
N is the number of qubits.

small kernel and the input data. This is attractive, as it allows the quantum approach to

load only a small amount of information at a time onto quantum devices, as determined

by the kernel size, which is of paramount importance during the NISQ era. This feature of

QCNNs can be particularly useful in a biological context, as full-size feature maps would be

too demanding.

Broadly speaking, there are two classes of QCNNs that could offer quantum advantage.

This first class is akin to the general structure shown in Figure 6.66 QCNNs with that struc-

ture incorporate pooling layers that halve the number of active qubits with each successive

layer. This architectural choice involves only O(log(N)) parameters and effectively circum-

vents the issue of barren plateaus —a significant challenge discussed further in Section 6.2.

The second class can be termed Hybrid-QCNNs (HQCNNs). HQCNN models replace the

forward pass of a convolutional filter with a quantum circuit, but perform pooling layers

classically after a measurement. HQCNNs are popular choices since they allow for more

classical control over the network, with the mixing of quantum and classical components

potentially offering performance gains at the expense of trainability and complexity brought
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by the original QCNN architecture.

QCNNs and HQCNNs offer distinct advantages that are attractive for chemical and

pharmaceutical applications. While QCNNs require only O(log(N)) parameters and avoid

barren plateaus, this by itself does not deem them to be advantageous over classical CNNs.

In a rigorous analysis of QCNNs (to which they later extend to all QML models), the

generalization bounds of these models were investigated.58 The reported analysis offers a

guide to determine whether a QML model can exhibit better performance on unseen (test)

data when compared to their classical counterpart. It is shown that when a QML model

achieves a small training error on a given task, while the classical model with the same

training error is significantly more complex, then the QML model will most likely outperform

the classical model on unseen data.

This simple guide is particularly useful for drug discovery applications where datasets can

often be limited but good generalization is paramount for discovery of life-saving compounds.

Given that in the NISQ era QML models can only include a limited number of parameters,

it is commonplace and intuitive when designing QML models to compare their performance

to a classical network of equal parameters. Therefore, it is important to temper claims of

advantage in the event of comparing a quantum and classical models, wherein the classical

model might be heavily restricted for the sole purpose of fair comparisons with equal number

of parameters. Instead, it is more significant to identify tasks which satisfy the criteria

which guarantee good generalization bounds.58 Shifting focus to this task identification,

we anticipate that applications that are more likely to benefit from demonstrable quantum

advantage are those for which the training data is scarce.

HQCNNs operate differently and more flexibly than QCNNs. So, the ways in which

quantum advantage might be demonstrated is likely different from QCNNs. While the

above criteria to identify potential generalization quantum advantage would still apply to

HQCNNs, this becomes less straightforward as HQCNNs do not necessarily operate with

O(log(N)) parameters like their fully quantum counterparts. HQCNNs have been proposed
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to enable quantum speed-up in the CNN architecture (and neural network architectures in

general) by directly calculating the inner product of the filter and input data (Fig. 7).18,79,80

These approaches are attractive when searching for quantum advantage, as they are task-

Max 
Pool

fl
at

te
n

Quantum Convolution

Max Pool

Classical Convolution

Max Pool Linear Layer

Max 
Pool

Prediction

Featurized
SMILES String

Figure 7: Hybrid Quantum-Convolutional Neural Network (HQCNN), adapted from Smal-
done and Batista.18 The full architecture contains both a quantum VQC layer, followed by
classical pooling and classical convolutional layers.

agnostic and the potential for realization on quantum hardware is dictated almost exclusively

by data representation - a much more straightforward litmus test of advantage compared to

that required for a generalizability advantage.

The success of classical CNNs in drug discovery has prompted the exploration of QCNNs,

as in the domain of biophysics where the relatively large input data can be broken up into

tractable quantum circuits using the HQCNN methodology. An early biophysical applica-

tion of HQCNNs has involved a model capable of predicting protein structure,77 where the

sequence lengths of the protein chains range from 50 to 500 residues and 50 to 266 residues

in the training and testing sets, respectively. The reported results indicate commensurate

performance to predictions by the popular classical model DeepCov81 for protein contact

maps while offering faster training convergence. Both Domingo et al.78 and Dong et al.60

trained HQCNNs to predict protein-ligand binding affinities. Domingo et al. demonstrated

that their HQCNN architecture is able to reduce the number of parameters by 20% while

maintaining performance. They noted that depending on the hardware, this translates to a

20% to 40% reduction in training times. Similarly, Dong et al. demonstrated competitive
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results with force field-based MM/GBSA and MM/PBSA calculations while reducing the

overall number of parameters to their classical counterparts.

In the work by Smaldone and Batista,18 a HQCNN has been trained to predict drug tox-

icity (Figure 8). This work has demonstrated a method where the weights of a convolutional

H • • H

Uψ U†
ψ

Uϕ

Figure 8: Quantum CNN Summary: (Top) Quantum circuit by Smaldone and Batista18

employed to train a QCNN that predicts drug toxicities with a quadratic quantum speed-up
for matrix multiplication. (Bottom) Learning curve for prediction of drug activity to the
androgen receptor. The yellow region indicates epochs where the model was trained with
reduced complexity using quantum circuits, and the green region shows where the weights
derived and training was continued using a classical CNN.

layer are learned via quantum circuits while performing the underlying matrix multiplica-

tion of discrete dot products with quadratic quantum speed-up. This strategy performs at

the level of classical models with equal number of parameters and can be transferred to a

classical CNN mid-training to allow for noiseless training convergence.
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2.3 Looking Ahead: QuantumMachine Learning for Large Molecules

mRNA and antibody-based biotherapeutics are critical for the development of next-generation

therapies, yet both pose complex challenges, such as determining mRNA structures and un-

derstanding antibody-antigen interactions. Quantum computing has already shown promise

by predicting mRNA secondary structures (see Figure 9),82 and quantum neural networks

are now being applied to tackle antibody-antigen interactions. Notably, Paquet et al.83 in-

troduced QuantumBound, a hybrid quantum neural network designed to predict the physic-

ochemical properties of ligands within receptor-ligand complexes. Furthermore, Jin et al.84

developed a QNN model to predict potential COVID-19 variant strains using available SARS-

CoV-2 RNA sequences. These early successes highlight the potential of quantum neural

networks to address key challenges in biotherapeutics.

Figure 9: Optimal folded mRNA structure of the 42-nucleotide sequence computed using
the VQE algorithm with 80 physical qubits on the IBM quantum processor Heron.
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3 Generative Quantum Machine Learning

3.1 Quantum Autoencoders

The primary motivation behind the development of autoencoders is to compress data into a

latent space, reducing dimensionality while preserving essential information of the training

data. Similarly, the original motivation for development of quantum autoencoders (QAEs) is

to compress quantum data (Figure 10). Variational Autoencoders (VAEs), a specific type of

Encoder Decoder

(a) QAE.

Encoder
Latent
Vector

Decoder
(ANN)

Decoder
(Quantum)

// // //

(b) HQA.

Data
Encoding Encoder Decoder
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Figure 10: Different types of Quantum Autoencoder (QAE). (a) QAE utilizing a fully quan-
tum circuit as the model architecture. (b) Hybrid Quantum Autoencoder (HQA) with
classical latent representation. (c) QAE with classical data as input and output.

autoencoders, have gained popularity for molecular generation due to their ability to learn

compact representations of molecular structures and generate new molecules with similar

properties. QVAEs can compress quantum states and could therefore enable new avenues

for molecular generation, though the exact benefits of QVAEs in this domain require further

investigation.

19



There are two primary types of QAE, both utilizing hybrid quantum-classical schemes

where classical computers are used for parameter optimization. The first type employs

a quantum circuit as the model architecture,85–91 aiming to leverage quantum gates and

operations to encode and decode quantum states (see Fig. 10a). The second type, known as

the Hybrid Quantum Autoencoder (HQA),92 employs measurement outcomes as the latent

representations. This approach combines classical networks with QNNs in a hybrid model

architecture, where classical vectors derived from quantum measurements are accessible for

further analysis and processing (see Fig. 10b). Note that the compression is effective (with

no loss of information) only if the set of states to be compressed has support on a subspace

(lower dimension) of its Hilbert space.93 For example, the success of the Hubbard model

example from Romero et al.85 is due to the fact that these physical states exhibit certain

symmetries.

A proposal for QVAE94 involves the model architecture of the first type of QAE shown

in Fig.10a and a latent representation regularized as in classical VAE. The regularized latent

space can enhance classification performance compared to QAE. However, the regularization

process requires mid-circuit quantum state tomography, which may represent a practical

challenge for fully characterizing the state and scaling up.

Despite the promising aspects of QAE, several challenges remain. First, training re-

lies on classical optimization algorithms, which can obscure statements about the overall

computational complexity. Second, these models assume that input states can be efficiently

prepared, a relatively straightforward task for quantum data but challenging for classical data

(see Fig. 10c). The encoding of classical data into quantum states might negate the com-

putational benefits offered by quantum computers. Consequently, no immediate advantage

can be claimed for QAE on classical data over classical methods at present. However, ad-

vancements in quantum computing hardware and more efficient optimization schemes could

lead to significant improvements, making QAE a more viable and efficient tool in the future,

particularly as the training optimization and data encoding complexity becomes comparable
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to the quantum components of the models.

3.2 Quantum Generative Adversarial Networks

Generative Adversarial Networks (GANs) are machine learning models designed to gen-

erate new data samples that mimic samples from a given distribution. GANs consist of

three primary components: the prior distribution/noise sampling, the generator, and the

discriminator. The generator creates data samples from random noise sampling, while the

discriminator evaluates the authenticity of the generated samples by comparison against

real data. This adversarial training process helps the generator improve over time, creat-

ing increasingly realistic samples. GANs have found applications in molecular generation,

much like VAEs, and have been shown to generate novel molecular structures that adhere

to desired properties.95–98

A QGAN was proposed by Dallaire-Demers and Killoran.99 This work introduced the con-

cept of using quantum circuits within the GAN framework, specifically leveraging quantum

circuits to measure gradients. Romero and Aspuru-Guzik100 extended the concept of QGANs

by modeling continuous classical probability distributions using a hybrid quantum–classical

approach. While their results were promising, they noted that further theoretical investi-

gations were necessary to determine whether their methodology offers practical advantages

over classical approaches.

QGANs have been applied to generation of small molecules,101 in a study that applied

QGANs to the QM9 dataset.102 That study reported better learning behavior due to the

claimed superior expressive power and fewer parameters required by the quantum models.

However, these QGANs struggled to generate valid molecules, and subsequent tests by other

researchers indicated that these QGANs struggled to generate train-like molecules.103

Kao et al.103 explored the advantages of QGANs in generative chemistry by testing dif-

ferent components of the GAN framework with quantum counterparts. They demonstrated

that using a quantum noise generator (prior distribution sampling) could yield compounds
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with better drug properties. However, they found that quantum generators struggled to

generate molecules that resembled those in the training set and encountered computational

restrictions during further training. Additionally, they showed that a quantum discriminator

with just 50 parameters could achieve a better KL score than a classical discriminator with

22000 parameters, indicating that quantum components can enhance expressive power even

with a much fewer number of parameters. Nevertheless, these advancements often compro-

mised the validity and uniqueness of the generated molecules, potentially undermining the

efficiency of the sampling and generation processes.

Anoshin et al.104 introduced a hybrid quantum cycle generative adversarial network for

small molecule generation, utilizing the cycle-consistent framework from prior research.105,106

Their approach featured a hybrid generator where a quantum circuit processed the noise vec-

tor (prior distribution) and connected to a MLP to generate molecular graphs. This method

demonstrated comparable, or even improved, performance across various metrics, includ-

ing uniqueness, validity, diversity, drug-likeness, as well as synthesizability and solubility,

highlighting the potential of hybrid quantum-classical architectures in enhancing generative

models. However, the study did not provide a detailed comparison of the total number of

parameters used, limiting claims about its expressive power.

While QGANs show some promising results in molecular generation, particularly in areas

like enhanced drug properties and the potential for better expressive power in discriminators,

significant challenges persist. The expressive power derived from full quantum discrimina-

tors may come at the cost of compromising other crucial metrics in molecular generation.

Additionally, when hybrid networks achieve improvements in drug properties and other met-

rics, the exact contribution of expressive power offered by the quantum component becomes

less clear. Thus, an outstanding challenge is to achieve enhanced expressive power without

sacrificing performance across other critical metrics.
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3.3 Looking Ahead: Quantum Transformers

Much of the AI revolution is due to the transformer architecture introduced in the “Atten-

tion is All You Need” paper out of Google DeepMind.107 This architecture was originally

developed for language translation, and consisted of encoder and decoder components which

are connected via a cross-attention mechanism. The encoder alone is useful for learning a

context-rich representation for a given input sequence by masking some of the sequence and

learning to predict the masked parts. The decoder is useful for generating new sequences by

learning to predict the next parts of some sequence given a context. Within the realm of bio-

chemistry and drug discovery, transformer encoders have been developed to extract feature

vectors from SMILES strings to be used for downstream predictive tasks, and transformer

decoders have been used to generate SMILES strings with prespecified characteristics.108–112

The fundamental capabilities of the transformer architecture are due to the self-attention

mechanism where query, key, and value vectors are computed for each input token (e.g., a

sub-word in text or a character in a SMILES strings), attention scores are derived via a

scaled dot product of query and key vectors, and softmax normalizes these scores to ob-

tain weights that modulate the aggregation of the value vector, effectively capturing the

magnitude with which each token will attend to every other token in the sequence. The

self-attention mechanism is executed multiple times in parallel through what is referred to

as multi-head attention.

The overwhelming success of the classical transformer in ML has naturally piqued the

interest of QML researchers. Most implementations of quantum transformers have been

adapted as Vision Transformers (ViTs) rather than for Natural Language Processing (NLP).113–116

While classical ViT models have been utilized in predictive tasks in chemistry and bio-

physics,117–119 the primary role of transformers in the context of drug discovery has remained

with transformer-based generative models.

Quantum-based attention for generative pre-trained transformers are still in their infancy,
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Figure 11: Classical architecture of a transformer decoder layer alongside the corresponding
quantum analogs, adapted from Guo et al. (2024).120

and while many of the results presented thus far have been largely theoretical, the field is

rapidly advancing. In 2022, DiSipio et al.121 discuss the beginnings of quantum NLP, and

highlighted that the underlying mathematical operations of the transformer’s self-attention

mechanism all have implementable quantum formulations. In 2023, both Gao et al.122 and Li

et al.123 show implementations for a quantum self-attention mechanism. Most recently, Guo

et al.120 and Liao et al.124 independently present full end-to-end GPT quantum algorithms.

Notably, the work from Guo et al. presents a rigorous complexity analysis and demonstrates

a theoretical quantum advantage for numerous normalization operations throughout the

architecture. The structure of a classical transformer decoder layer and the corresponding

quantum implementation by Guo et al. is shown in Figure 11.

The motivation for creating a quantum transformer is to reduce the complexity of the

self-attention mechanism, which is the bottleneck of the architecture. The traditional classi-

cal self-attention mechanism scales O(n2d) for sequence length n and embedding dimension
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d. This arises from multiplying the query and key matrices QK⊤ as well as applying the

resulting pairwise attention matrix to the value matrix V . Unfortunately, the current quan-

tum implementations that potentially achieve a complexity advantage rely on assumptions

that are seldom true in ML, such as matrix sparsity. Some classical techniques try to avoid

the O(n2d) complexity of scaled dot-product attention through alternative methods.125–127

Similarly - instead of scaled dot-product attention - Quantinuum released an open-source

model, Quixer,128 that proposes a quantum analog of the k-skip-n-gram NLP technique

for learning relationships between tokens. Quixer mixes embedded tokens by using linear

combination of unitaries (LCU),129 and further computes skip-bigrams between words using

quantum singular value transformations (QSVT).130 Quixer’s model scales O(log(nd)) in

the number of qubits and O(n log(d)) in the number of gates. In contemporary transformer

applications, sequence length n is often much larger than the embedding d which makes the

logarithmic scaling in the number of qubits with respect to n a promising look into the future

of transformers.

While the present models largely do not claim an explicit complexity quantum advan-

tage, this should not dissuade future researchers from utilizing the available methods for

their pharmacological applications. The nascency of the field presents an opportunity for

researchers in academia and pharmaceutical industry alike to hunt for advantages elsewhere.

Presently with no current works in the literature applying quantum transformers to chemi-

cal, biological, or pharmaceutical tasks, this should inspire researchers to investigate if these

quantum transformers can learn hidden features inaccessible to classical learning styles as

indicated by Li et al.123 In this event, combining features extracted from both a quantum

transformer component and a classical transformer component could present a model with

a richer understanding of chemical and biological function, leading to exciting downstream

effects in drug design.
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4 Potential of Bosonic Quantum Processors for Quan-

tum Machine Learning

4.1 Basics of bosonic quantum computing

Hybrid qubit-qumode devices131–133 have the potential to augment the power of qubit ar-

chitectures by allowing for data encoding in a much larger Hilbert space with hardware

efficiency. For example, qumodes could amplify the impact of VQCs in applications to QML

beyond the implementations discussed in Section 1.3.4.

An arbitrary qumode state |ψ⟩, corresponding to the state of a quantum harmonic oscilla-

tor, can be expanded in its Fock basis state representation as a superposition of a countably

infinite set of orthonormal photon-number states {|n⟩}. In practice, however, the expansion

is truncated with a Fock cutoff d, as follows:

|ψ⟩ =
d−1∑

n=0

cn |n⟩ . (11)

According to Eq. (11), a qumode generalizes the two-level qubit into a d-level state (also

known as qudit 134–136), thus offering an expanded basis set. Beyond the expanded basis, the

hardware of bosonic modes are relatively weakly affected by amplitude damping errors,133

which leads to extended lifetimes, and the possibility of implementing efficient error correc-

tion codes.137–139

Recent advancements in bosonic quantum hardware have significantly progressed, en-

hancing the implementation of qumodes across various architectures131 However, achieving

universal quantum computing remains challenging when relying solely on native qumode

operations. This is where hybrid qubit-qumode hardware have made notable strides. For

example, in the circuit quantum electrodynamics (cQED) framework, a microwave cavity

coupled to a transmon qubit has demonstrated considerable potential (Figure 12).140 The
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Superconducting cavity

Transmon qubit

Figure 12: (Top) Schematic representation of a superconducting cavity resonator coupled to a
qubit transmon. (Bottom Left) Visual schematic of a two level qubit (transmon) coupled to a
multi-level oscillator (superconducting cavity). (Bottom Right) Example of a qubit-qumode
circuit that allows for universal control, where the qubit rotation gate R(θ, φ) is defined in
Eq. (13) and the echoed-conditional displacement (ECD) gate is defined in Eq. (14).

interplay between qubit and qumode dynamics enables the development of hybrid qubit-

oscillator gate sets, which are efficient in achieving universality.133,141,142

Additionally, photonic processors offer programmability that facilitates the simulation of

bosonic systems.143,144 In contrast, qubit based hardware is inherently suited for simulat-

ing fermions through the Jordan-Wigner transformation.145–147 Therefore, a hybrid qubit-

qumode architecture is particularly attractive, particularly since qubit-only or bosonic-only

native gates might require deeper circuits for specific applications, although methods have

been developed to represent bosons using qubits and vice versa.148–150 .

Incorporating efficient bosonic representation could enable practical simulations beyond

the capabilities of conventional qubit-based quantum computers, as already shown for ex-
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ample in calculations of vibrational spectra of small polyatomic molecules.151 This can be

achieved with photonic quantum processors,152–154 cQED devices,151 and even hybrid qudit-

boson simulators.155

Another unique feature of qumodes is that they can also be represented by continu-

ous variable (CV) bases corresponding to position and momentum operators of a quantum

harmonic oscillator,156 with no counterpart for qubits. For example, in the position repre-

sentation, an arbitrary qumode state |ψ⟩ can be expressed, as follows:

|ψ⟩ =
∫ +∞

−∞
dx ψ(x) |x⟩ , (12)

where ψ(x) = ⟨x|ψ⟩ is the oscillator complex valued amplitude at x. As state and process

tomography are necessary to calibrate and model hardware noise, hybrid processors offer

simple protocols to determine the Wigner function of qumode states,157–161 allowing further

development of abstract machine models.133

4.2 Potential Advantages of Qubit-Qumode Circuits in QML

Hybrid qubit-qumode circuits, such as the one shown in Figure 12, can be parameterized

with universal ansatzes to approximate any unitary transformation of the qubit-qumode

system. An attractive choice of a universal ansatz142 applies repeating modules of a qubit

rotation gate,

R(θ, φ) = e−i θ
2
(σx cosφ+σy sinφ) (13)

where σx and σy are Pauli X and Y matrices, followed by an echoed conditional displacement

(ECD) gate,

ECD(β) = |1⟩ ⟨0| ⊗D(β/2) + |0⟩ ⟨1| ⊗D(−β/2), (14a)

D(α) = eαâ
†−α∗â , (14b)
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where â† and â are bosonic creation and annihilation operators, respectively.

The qumode Hilbert space may offer advantages over qubit-based registers since it allows

for more efficient representations for predictive and generative tasks.134–136 For example,

a system with 8 qubits involves a Hilbert space with 28 = 256 basis states, which could

be represented by two qumodes with control over d = 16 Fock states (each mode offering

a Hilbert space equivalent to the space expanded by 4 qubits).151 Therefore, encoding of

complex molecular information that typically requires many qubits would potentially benefit

from hybrid qubit-qumode circuits, as these systems offer significant hardware efficiency

compared to qubit circuits with a similarly sized Hilbert space. Additionally, the circuits of

qumode states can be based on efficient ansatzes or shallow circuits that bypass the need of

deep circuits based on elementary logic gates.134,151

4.3 Encoding Classical Information in Qubit-Qumode Circuits

We introduce two possible methods for encoding classical (or quantum) data in the form of

quantum states of a qumode coupled to a qubit. Similar to amplitude encoding for qubit

systems, we can adapt the method discussed in Section 1.3.3 for qumodes. We simply modify

Eq. (9) to encode a vector of length d into the amplitudes αk of a d-level qudit, as follows:

x→ Ux |0⟩d = |x⟩ =
d−1∑

k=0

αk |k⟩ , (15)

where Ux is the unitary transformation that encodes the data provided by the amplitudes

in the form of the qumode state |x⟩. Here, |0⟩d is the initial vacuum state of the qumode

corresponding to an empty cavity without photons. Preparing Ux requires parameterization

of an ansatz with universal qumode control such as the one with blocks of a qubit rotation

gate followed by an ECD gate (R-ECD ansatz) outlined in Figure 12 and Section 4.2.142

Other ansatzes are also available which can be parameterized to encode any arbitrary data

set by amplitude encoding in the form of a qumode state.133,141
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Another practical method for encoding molecular information (e.g., a list of tokens defin-

ing a specific molecule) in a qubit-qumode state involves a generalization of phase encoding.

A dictionary is used to correlate the input tokens to the values of parameters used in the

ansatz. When using the R-ECD ansatz defined by Eq. (13) and Eq. (14)), specific parameters

θ, φ, and β of each module are assigned to each specific token of the input. So, the sequence

of tokens defining the input molecule is encoded as a specific parameterization of the R-

ECD ansatz. This generalization of phase encoding is not limited to molecular encodings,

or the specific choice of ansatz, and can be applied for a wide range of studies, including the

implementation of large language models (LLMs) in qubit-qumode devices.

(a) General encoder architecture with the R-ECD circuit.

(b) An example showing the encoding circuit of NCC, the SMILES representation of
ethylamine.

Figure 13: Circuit diagrams for the R-ECD encoding method. (a) General encoder archi-
tecture with a set of θ, φ, and β assigned to each unique token in the dictionary, encoding
a string of length L. (b) Specific circuit for the encoding of ethylamine, where the R-ECD
block corresponding to N is applied, followed by two blocks of R-ECD corresponding to C.

One technical challenge of these generalized phase encoding methods is that the encoded

states for different states could partially overlap with each other, unless an orthogonalization

procedure is enforced. The partial overlap could lead to some level of confusion due to
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ambiguity of the encoding. To address this challenge, the parameters assigned to each token

can be made learnable parameters such that the encodings are optimized to be as different

as possible.

5 Efficient Circuit Simulation for Near-Term Research

and Computing Unit Integration

Despite recent progress, current Quantum Processing Units (QPUs) remain limited in size

and computational capabilities due to noise and scaling challenges, which impedes progress

in algorithmic research. To address this challenge, circuit simulation techniques are meeting

the critical need to advance research boundaries. An open-source platform for seamlessly

integrating and programming QPUs, GPUs, and CPUs within a single system is provided

by NVIDIA’s CUDA-Q162 (see Figure 14). Various quantum computing frameworks, includ-

ing Cirq, Qiskit, TorchQuantum, and Pennylane,163–166 utilize GPU-accelerated simulation

through the cuQuantum libraries167 featured in the CUDA-Q simulation backend. By em-

ploying the CUDA-Q compiler alongside cuQuantum APIs as simulation backends, users can

achieve near-optimal GPU acceleration and exceptional performance at scale.

In this section, we demonstrate how CUDA-Q can be utilized to accelerate and scale up

quantum circuit simulations. This is applicable to various fields including quantum machine

learning for chemistry. We use CUDA-Q v0.8 for simulations and show how the compute

resources scale with the size of the simulation. Examples used to reproduce the results

presented in this section are available in GitHub.168

5.1 Circuit simulator with state vector and GPU acceleration.

Desktop CPUs can handle the simulation of small numbers of qubits; for instance, on a

laptop with at least 8 GB of memory, noiseless simulations can reach up to 24 qubits, while

noisy simulations are feasible with up to 18 qubits.169 However, as the memory required to
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Figure 14: The CUDA-Q software stack. CUDA-Q builds off of a core MLIR-based in-
termediate representation for representing hybrid quantum-classical code with control flow.
The compiler workflow lowers to target specific code for backend QPU execution. This
state-of-the-art compiler stack is exposed to programmers via a library-based C++ language
extension and a JIT compiled language representation in Python.

store the full state vector grows exponentially with the number of qubits, GPUs are needed

for larger simulations. For example, an NVIDIA DGX A100 can simulate 20 qubits with

exceptional speed, while a CPU would be very slow at performing the state vector simulation

of similar size, as shown in Figure 15.

Figure 15 compares the logarithmic (log10) runtime for computing the expectation value

of a quantum circuit similar to the one shown in Figure 16 using a state vector simulator on

one CPU (AMD EPYC 7742 64-Core Processor) as compared to one NVIDIA A100 GPU.

The quantum circuit in Figure 16 is a standard parameterized quantum circuit employed in

QNNs for different applications such as QGANs applied for drug discovery and molecular

generation.103,170 Specifically, Figure 15 shows the comparison of the runtime on a single CPU

as compared to a single GPU for data-points of ten thousand (i.e., ten thousand expectation

values) as a function of the number of qubits. It is shown that the runtime on the CPU

significantly increases as we increase the number of qubits while increases only modestly on

the NVIDIA A100 GPU. For example, for the 18 qubit circuit, there is a ≈150× speed up on
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the single GPU. When increasing the number of qubits to 20, the speed up is ≈530×. These

results emphasize the need for GPU supercomputing to accelerate simulations of quantum

algorithms and applications to research and development. Such simulations would enable

studies beyond small-scale proof-of-concept calculations in application studies to real-world

scenarios.

Figure 15: Logarithmic (log10) execution time for one ‘observe’ call (i.e., measure the observ-
able operator applied to the state vector/ wave-function, also known as expectation value)
for each data-point (10 thousand data-points), i.e., in total there are ten thousand expec-
tation values, on a single CPU versus a single GPU for a one layer of the parameterized
quantum circuit (PQC) similar to the PQC shown in Figure 16. The code used to generate
the data in this figure is available on GitHub.171
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Figure 16: An example of a parameterized quantum circuit employed in QNNs.

Another example demonstrating the capabilities of CUDA-Q are the implementations of

the VQE-Quantum approximate optimization algorithm (VQE-QAOA) algorithm for sim-
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ulations of molecular docking.172 and protein folding173 For example, the VQE-QAOA al-

gorithm has been applied to find the optimal configuration of a ligand bound to a protein,

implementing the molecular docking simulation as a weighted maximum clique problem.172

Simulations were performed with up to 12 qubits. The CUDA-Q tutorial174 reproduces the

results using DC-QAOA and compares the CPU and GPU runtimes (Table 1). For 12 qubits,

a 16.6× speed up is observed on a single GPU when compared to a single CPU.

Table 1: Execution time of one ‘observe’ call (i.e., expectation value) using DC-QAOA
ansatz. Simulations were run with 3, 8, and 13 layers for 6, 8, and 12 qubits, respectively.

Qubits CPU time (s) GPU time (s)
6 0.322 0.160
8 1.398 0.390
12 6.863 0.412

CUDA-Q also allows for gate fusion to enhance state vector simulations with deep cir-

cuits, thereby improving performance.175,176 Gate fusion is an optimization technique that

combines consecutive quantum gates into a single gate (see Figure 17), which reduces the

overall computational cost and increases the circuit efficiency.177,178 By grouping small gate

matrices into a single multi-qubit gate matrix, the fused gate can be applied in one operation,

eliminating the need for multiple applications of small gate matrices. This optimization re-

duces memory bandwidth usage, as applying a gate matrix G to a state |Ψ⟩ = G|ϕ⟩ involves

reading and writing the state vector. The memory bandwidth (in bytes, including reads and

writes) can be calculated, as follows:

memory bandwidth = 2 × svSizeBytes

2ncontrols
, (16)

where ‘svSizeBytes’ represents the state vector size in bytes and ‘ncontrols’ is the number of

control qubits (e.g., a CNOT gate has one control). Applying two gates, G2G1|ϕ⟩, requires

two reads and two writes, whereas applying the combined gate (G1G2)|ϕ⟩ only needs one

read and one write.

Gate fusion can significantly enhance simulation performance for deep circuits which are
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crucial for quantum applications in chemistry. A notable example is the unitary coupled

cluster singles and doubles (UCCSD) ansatz, widely used in quantum computational chem-

istry calculations. For instance, when running a single observation call (i.e., computing one

expectation value) for the C2H4 molecule using the UCCSD ansatz with 24 qubits on an

NVIDIA A100, the total elapsed time is 30.02 second without gate fusion. In contrast, with

gate fusion, the elapsed time is reduced to 12.44 second, demonstrating a 2.4× speedup. The

code for this comparison is available on GitHub.179

Figure 17: Gate fusion fuses multiple gates into one larger gate.

5.2 Parallelization and Scaling

NVIDIA’s CUDA-Q platform provides a clear overview of the various devices in a quantum-

classical compute node, including GPUs, CPUs, and QPUs. Researchers and application

developers can work with a diverse array of these devices. Although the integration of

multiple QPUs into a single supercomputer is still in progress, the current availability of

GPU-based circuit simulators on NVIDIA multi-GPU architectures enables the programming

of multi-QPU systems today.

5.2.1 Enabling Multi-QPU Workflows

CUDA-Q enables application developers to design workflows for multi-QPU architectures

that utilize multiple GPUs. This can be achieved using either the ‘NVIDIA-mQPU’ back-

end180 or the ‘remote-mQPU’ backend, which we discuss further in Sec. 5.2.3. The ‘NVIDIA-
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mQPU’ backend simulates a QPU for each available NVIDIA GPU on the system, allowing

researchers to run quantum circuits in parallel and thus accelerating simulations. This capa-

bility is crucial for applications such as quantum machine learning algorithms. For example,

in training QNNs, computing expectation values for numerous data-points is often required

to train the model. By batching these data-points, they can be processed simultaneously

across multiple GPUs.

Figure 18 compares results obtained by running a QNN workflow running on a single

GPU versus those obtain by distributing the workflow across four GPUs (in a single CPU

node with 4 GPUs). The code for this comparison is available in GitHub.181 For an appli-

cation using 20 qubits, we find that the runtime with four-GPUs is approximately 3.3 times

faster than using a single GPU. Although parallelization requires some synchronization and

communication across the GPUs, which slightly limits the speedup to being less than 4x,

this still demonstrates strong scaling performance. It highlights the efficient utilization of

GPU resources when available.

Figure 18: Execution time for ‘observe’ call (expectation value) made for ten thousand data-
points for a one layer of the parameterized quantum circuit similar to the one shown in
Figure 16. All simulations were run on NVIDIA DGX A100 GPU device. For a single GPU,
the total ten thousand data-points are dealt within a single GPU (i.e, ten thousand ‘observe’
call in sequential on a single GPU). For the four GPU case, the data-points are split into
four batches, each containing 2500 data-points (i.e., 2500 ‘observe’ calls on each GPU).

Another example of a commonly used application primitive that benefits from paral-
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lelization using the ‘NVIDIA-mQPU’ backend is the Hadamard test. The Hadamard test is

crucial for computing the overlap between different states, as necessary to evaluate correla-

tion functions, and expectation values which involve calculating O(n2) independent circuits

in a wide range of applications, including prediction of drug toxicity18 and determining the

electronic ground state energy of molecules.182,183 By leveraging parallelism, these O(n2)

circuits can be efficiently executed across as many QPUs –whether physical or simulated–

as are available.

5.2.2 Scaling Circuit Simulations with Multi-GPUs

The conventional state-vector simulation method requires storing 2n complex amplitudes

in memory when simulating n qubits. This results in exponentially increasing memory

requirements for circuits with a large number of qubits. If each complex amplitude requires

8 bytes of memory, the total memory required for an n qubit quantum state is 8 bytes ×

2n. For instance, with n = 30 qubits, the memory requirement is approximately 8 GB,

while for n = 40 qubits, it jumps to about 8700 GB. CUDA-Q addresses this challenge by

enabling the distribution of state-vector simulation across multiple GPUs via the ‘NVIDIA-

mGPU’ backend.180 For detailed information of the algorithm, see Sec. II-C in Ref. 167.

Additionally, examples of using the ‘NVIDIA-mGPU’ backend are available on GitHub.184

The ‘NVIDIA-mGPU’ backend combines the memory of multiple GPUs within a single

DGX compute node and across multiple DGX compute nodes in a cluster. DGX compute

nodes, part of NVIDIA’s DGX platform, are high-performance computing (HPC) servers,

specifically designed for HPC and artificial intelligence (AI) workloads, leveraging NVIDIA

GPUs to accelerate intensive computations. By pooling GPU memory, this backend allows

for greater scalability and eliminate the memory limitations of individual GPUs. Conse-

quently, the capacity to simulate larger numbers of qubits is constrained only by the available

GPU resources in the system.

Intra-node NVlink185 is a powerful tool for large-scale simulations. An NVLink-based sys-
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tem enables greater performance optimization by providing direct access to the full NVLink

feature set, bypassing the CUDA-Aware MPI layer. CUDA-Q v0.8 introduces an improved

algorithm for intra-node NVLink, leveraging CUDA Peer-to-peer (P2P) communication.186

Table 2 compares the performance of CUDA-Q 0.7 (using CUDA-aware MPI) and CUDA-Q

0.8 (using P2P) on an NVlink-enabled DGX H100 system. In these simulations, the state

vector was distributed across a single node with 8 GPUs. Four large-scale quantum al-

gorithms were benchmarked using the MPI and P2P API in CUDA Runtime. As shown

in Table 2, CUDA-Q v0.8 with P2P achieves up to 2.5x speedup for H-gates compared to

CUDA-Q v0.7 with CUDA-aware MPI.

Table 2: Quantum algorithm performance improvements enabled by NVLink optimizations.
The speed up in time is reported for CUDA-Q v0.8 with CUDA P2P compared to CUDA-Q
v0.7 with CUDA-aware MPI. Simulation times accounts for a single VQE execution. H-
Gates refers to applying one Hadamard gate per qubit. All simulations were run on a DGX
H100 device.

Algorithm Qubits Speed up (in simulation time)
H-Gates 35 2.47
QAOA 32 1.28
QFT 35 1.13

UCCSD 32 1.30

Additionally, developers can now use CUDA-Q to fully exploit the performance of the

NVIDIA GH200 AI superchip,187 further enhancing the capabilities of quantum simulation

in CUDA-Q. With a combined CPU and GPU memory of 1.2TB, the GH200 AI superchip

significantly accelerates quantum simulations, reducing the number of required nodes by

75%. This reduction is particularly crucial for quantum applications research, which is often

constrained by memory limitations.

Table 3 compares the performance of the GH200 superchip and the DGX H100 for running

a quantum algorithm using a state vector simulator. In this comparison, we employed 37

qubits and distributed the state vector across 8 GPUs on four nodes in the GH200 superchip

and a single node in the DGX-H100. Our findings show that the GH200 superchip achieves

up to 2.58x speed up for the quantum Fourier transform (QFT) and a 4x speed up for
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H-Gates.

Table 3: Comparison of performance of the GH200 superchip and the DGX H100 for running
a quantum algorithm using a state vector simulation. Simulations were run with 37 qubits
and the state vector was distributed across 8 GPUs in a single node in the DGX H100 and
four nodes in the GH200 superchip. H-Gates refers to applying one Hadamard gate per
qubit.

Algorithm Qubits Speed up (in simulation time)
H-Gate 37 4.10
QFT 37 2.58

5.2.3 Combining Backends For Large Scale Simulations.

Quantum circuit simulations can be scaled up using the ‘NVIDIA-mGPU’ backend and par-

allelized with the ‘NVIDIA-mQPU’ backend, as described in the previous section. CUDA-Q

provides the capability to combine both backends through the ‘remote-mQPU’ backend,

enabling large-scale simulations (Figure 19). In this configuration, multiple GPUs com-

prise a virtual QPU. A practical example of using ‘remote-mQPU’ for QNNs is available on

GitHub.188

Figure 19: An example of multi-QPU backend with multi-GPU. Here, there are two virtual
QPUs (vQPU) and each virtual QPU is made of two GPUs.

5.3 Quantum Circuit Simulator With Tensor Networks

The state vector method is effective for simulating deep quantum circuits, however, it be-

comes impractical for simulations of circuits with large numbers of qubits due to the expo-

nential growth in computational resources required –making them unmanageable even on
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the most powerful supercomputers available today. As an alternative, the tensor network

method represents the quantum state of N qubits through a series of tensor contractions (see

Figure 20). This approach allows quantum circuit simulators to efficiently handle circuits

with many qubits.

Figure 20: Single-qubit and two-qubit gates translate to rank-2 and rank-4 tensors, respec-
tively. The initial single-qubit states |0⟩ and single-qubit measurement operations can be
viewed as vectors (projectors) of size 2. The contraction of the tensor network on the right
yields the wavefunction amplitude of the quantum circuit on the left for a particular basis
state.

Tensors (see Figure 21) generalize scalars (0D), vectors (1D), and matrices (2D) to an

arbitrary number of dimensions. A tensor network consists of a set of tensors connected

together through tensor contractions to form an output tensor. In Einstein summation no-

tation, a tensor contraction involves summing over pairs of repeated indices (see Figure 21).

For example, a rank-four tensor M can be formed by contracting two rank-three tensors C

and B, as follows: Mijlm =
∑

k Cijk Bklm. Here, the contraction is performed by summing

over the shared index k. Identifying an efficient contraction sequence is essential for mini-

mizing the computational cost of the tensor networks.167,189 The contractions between the

constituent tensors define the topology of the network.190,191

CUDA-Q offers two GPU-accelerated tensor network backends: ‘tensornet’ and ‘tensornet-

mps’.192 For a detailed explanation of tensor network algorithms and their performance, see

Refs. 167,193.

The ‘tensornet’ backend represents quantum states and circuits as tensor networks with-

out any approximations. It computes measurement samples and expectation values through

tensor network contractions.194 This backend supports the distribution of tensor operations
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Figure 21: Tensor diagram (left) and example of matrix like contractions (right).

across multiple nodes and GPUs, enabling efficient evaluation and simulation of quantum

circuits.

The ‘tensornet-mps’ backend utilizes the matrix product state (MPS) representation of

the state vector, exploiting low-rank approximations of the tensor network through decom-

position techniques such as QR and singular value decomposition. As an approximate simu-

lator, it allows truncation of the number of singular values to keep the MPS size manageable.

The ‘tensornet-mps’ backend supports only single-GPU simulations. Its approximate nature

enables it to handle a large number of qubits for certain classes of quantum circuits while

maintaining a relatively low memory footprint.

6 Challenges and Outlook

6.1 Hardware

When evaluating the physical implementation of quantum computers, it is essential to con-

sider the widely recognized five criteria proposed by DiVincenzo:195

(1) Scalable physical systems with well-characterized qubits: The system should

contain qubits that are not only distinguishable from each other but also manipula-

ble either individually or collectively. This requirement ensures that qubits can be

controlled with precision for complex quantum computations.
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(2) Ability to initialize qubits to a simple, known state: Typically referred to as

a “fiducial” state, this criterion emphasizes the importance of preparing qubits in a

well-defined, simple initial state, such as the zero state. This initialization process is

crucial for the reliability and predictability of subsequent quantum operations.

(3) Decoherence times much longer than gate operation times: Quantum systems

must exhibit long coherence times relative to the time it takes to perform quantum

gate operations. This ensures that quantum information is preserved long enough to

complete computations before being lost to decoherence.

(4) A universal set of quantum gates: The hardware must support a set of quantum

gates capable of performing any quantum computation. This typically includes a va-

riety of single-qubit gates along with a two-qubit entangling gate, such as the CNOT

gate, enabling the construction of complex quantum circuits.

(5) Qubit-specific measurement capability: The system should allow for accurate

measurement of individual qubits’ states after computation. This criterion is essential

for retrieving the final output of quantum computations.

Gate-based quantum computer designs generally adhere to these criteria, yet achieving

the most optimal performance remains a significant challenge. For QML, these hardware

requirements introduce additional complexities.

QNNs often claim superior expressive power compared to classical neural networks. This

advantage typically necessitates high connectivity among qubits, aligning with the need for

well-characterized and scalable qubit systems described in Criterion (1). Ensuring such

connectivity while maintaining system scalability and qubit fidelity is a non-trivial challenge

in current hardware implementations.

Moreover, QML algorithms frequently utilize amplitude encoding, a technique that ef-

fectively encodes classical data into quantum states. This approach, however, is equivalent

to preparing arbitrary quantum states, which goes beyond the simpler requirement of ini-
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tializing qubits to a fiducial state as outlined in Criterion (2). Consequently, specific QML

applications may require either modifications to the existing hardware criteria or the devel-

opment of more advanced state preparation algorithms to achieve the desired outcomes.

Finally, when the final output of a QNN necessitates precise amplitude measurements of

quantum states, the hardware must extend the measurement capabilities described in Crite-

rion (5). Specifically, accurate and scalable quantum state tomography becomes essential to

extract the necessary information from the quantum system. This represents another area

where current quantum hardware may need further refinement to fully support the demands

of QML.

6.2 Algorithms

Loading classical data into a quantum state is the often first step in a QNN, and is a step

that will largely dictate the performance of the model, the potential advantages the quantum

model possess over the classical, and the model’s quantum resource complexity. For example,

angle encoding 7 is inexpensive to implement on quantum hardware, but it is difficult to ex-

tract a complexity advantage. Alternatively, amplitude encoding easily enables a complexity

advantage due to the exponentially larger Hilbert space in which information can be stored,

but at the expense of quantum resources to prepare such quantum state. In particular, state

preparation techniques to prepare arbitrary state vectors scale exponentially with respect to

the number of CNOT gates required to prepare the quantum state.196,197 While this prob-

lem of state preparation may be daunting, promising data encoding workarounds are being

developed. Data re-uploading is a strategy that allows circuits to handle more complex data

by breaking the information into smaller quantum circuits.198 Shin et al. presents a method

for QML that utilizes a quantum Fourier-featured linear model to exponentially encode data

in a hardware efficient manner.199 The authors demonstrate the method achieves high ex-

pressivity and exhibits better learning performance compared to data re-uploading, notably

when learning the potential energy surface of ethanol. These promising directions should
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motivate QML researchers to identify tasks where their input data exists in or can be trans-

formed into a form that is known to be efficiently prepared200–202 or where the exact input

vector does not need to be known a priori and is learned through training. Furthermore, as

QPUs evolve to include more qubits and improved interconnected topologies, state prepara-

tion algorithms that utilize ancillary qubits will help address the challenges associated with

poor decoherence times and prolonged gate execution times, as they are capable of preparing

arbitrary states with shallower depths.203

Similar to how classical ML architectures have the potential to suffer from vanishing

gradients, VQCs have the potential to suffer from barren plateaus. Barren plateaus occur

when the loss differences used to compute quantum weight gradients exponentially vanish

with the size of the system. Larocca et al. present comprehensive review where the authors

outline strategies to avoid and mitigate the problem of barren plateaus.204 Some of these

methods the aspiring QML researcher should be aware of are shallow circuits and clever

weight initialization strategies. Notably, Ragone et al.205 present a theorem to determine

exactly if any noiseless quantum circuit will exhibit barren plateaus regardless of the circuit’s

structure. The authors note that among the implications of their work, it is possible to design

variational quantum circuits that exhibit high entanglement and use non-local measurements

while still avoiding barren plateaus, going against conventional wisdom. This lifts restrictions

and gives researchers a much deeper insight into the trainability of their circuits.

In addition to the difficulties of determining quantum gradients, updating the quantum

weights can prove difficult as well. Classical neural networks have had tremendous success us-

ing backpropagation to update the model’s weights, however methods for updating quantum

weights is still being intensely researched. QNNs most commonly employ the parameter-

shift method206,207 to estimate quantum gradients for each weight, however this can prove

expensive as it requires running at least 2M quantum circuits for M trainable parameters

during the backwards pass computation, giving a total time complexity of O(M2). New

methods for quantum backpropagation are emerging that is making the evaluation of quan-
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tum gradients more efficient, most recently the work by Abbas et al.208 that reduces the

complexity from quadratic parameter-shift method to O(Mpolylog(M)) time. The expen-

sive nature of required quantum resources to update weights encourage many to optimization

methods. Many quantum neural networks in the literature often employ the Constrained

Optimization by Linear Approximations algorithm209 for weight optimization, however this

method is only applicable for models with few trainable parameters. Work is being done to

improve gradient-free based optimization of VQC parameters that are more efficient than

the parameter-shirt method. Kulshrestha et al. devise an optimization scheme with good

scalability potential that trains at the level of classical optimizers while outperforming them

in computation time.210 Weidmann et al. present an optimization method that significantly

improves convergence of QNNs compared to the parameter-shift method.211

6.3 Outlook

In this review, we have examined the use of QNNs implemented on gate-based quantum com-

puters for applications in chemistry and pharmaceuticals. While the integration of quantum

computing into these fields holds the potential for significant advancements, it also presents

unique challenges that must be addressed.

As discussed in the previous subsections, the hardware and algorithmic challenges for

QML are substantial. The requirements for coherence, qubit connectivity, and state prepa-

ration introduce significant hurdles that have yet to be fully overcome. QNNs often require

precise qubit control and extended coherence times, which current quantum hardware strug-

gles to provide consistently. On the algorithmic front, issues such as state preparation,

barren plateaus, and efficient quantum gradient computation remain critical bottlenecks

that demand innovative solutions.

Recent progress in quantum error correction, highlighted by Google Quantum AI’s break-

through,212 marks a significant milestone. This achievement suggests that we are nearing

the development of more reliable quantum systems, which is crucial for the practical im-
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plementation of QML in real-world scenarios. However, there remains a pressing need for

improved scalability of quantum hardware and the development of more robust error correc-

tion protocols.

Looking ahead, as quantum technology continues to mature, we anticipate the emergence

of more sophisticated applications, such as the discovery of new drugs and materials, the

optimization of chemical reactions, and the exploration of molecular structures with un-

precedented accuracy. The intersection of quantum computing and machine learning offers

a unique opportunity to transform how we tackle some of the most complex challenges in

science and industry.
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