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Site-specific template generative approach
for retrosynthetic planning

Yu Shee 1,3, Haote Li1,3, Pengpeng Zhang1, Andrea M. Nikolic 1, Wenxin Lu 1,
H. Ray Kelly 2, Vidhyadhar Manee2, Sanil Sreekumar2, Frederic G. Buono2,
Jinhua J. Song2, Timothy R. Newhouse 1 & Victor S. Batista 1

Retrosynthesis, the strategy of devising laboratory pathways by working
backwards from the target compound, is crucial yet challenging. Enhancing
retrosynthetic efficiency requires overcoming the vast complexity of chemical
space, the limited known interconversions between molecules, and the chal-
lenges posed by limited experimental datasets. This study introduces gen-
erative machine learning methods for retrosynthetic planning. The approach
features three innovations: generating reaction templates instead of reactants
or synthons to create novel chemical transformations, allowing user selection
of specific bonds to change for human-influenced synthesis, and employing a
conditional kernel-elastic autoencoder (CKAE) to measure the similarity
between generated and known reactions for chemical viability insights. These
features form a coherent retrosynthetic framework, validated experimentally
by designing a 3-step synthetic pathway for a challenging small molecule,
demonstrating a significant improvement over previous 5-9 step approaches.
This work highlights the utility and robustness of generative machine learning
in addressing complex challenges in chemical synthesis.

Retrosynthesis is the design of deconstructing complex molecules
into simpler building blocks, a concept originally developed by
Corey as a means to educate students to conduct multistep
synthesis1. This intellectual framework laid the foundation for the
development of ComputerAided Synthesis Planning (CASP), a field
that emerged to assist chemists in navigating various paths of
synthesis, playing a pivotal role in augmenting human capabilities for
refining a synthetic approach2,3. In the earlier stages, systems based
on expert rules provided valuable insights for chemists4–7. As organic
chemistry advanced, encompassing broader chemical space and
synthetic methodologies, recent advancements in CASP have shifted
from rule-based to precedent-based approaches8. This shift was
facilitated by large-scale extraction of reaction rules9. The process
progressed from manual creation to automated extraction from
extensive chemical datasets. Several extraordinary software packa-
ges have emerged due to this transition which empowered CASP
tools to tap into repositories of historical reaction data8,10,11.

Grzybowski and others12,13 further introduced user-purpose-driven
tools for route optimization, demonstrating remarkable success
through experimental validations14–18. Furthermore, the integration
of machine learning (ML) methods has marked the latest chapter in
the ongoing evolution of CASP19,20. ML models offer promising
alternatives and can be broadly categorized as selection-based, semi-
template, or generation-based methods21 (see Fig. 1a).

Selection-basedmethods, such as reactant selection and template
selection methods, aim to choose appropriate molecules or reaction
rules from the given sets. Reactant selection methods22,23 involve
ranking molecules from a collection of candidates based on the target
compounds. While reactant selection methods have the advantage of
ensuring the chosen molecules are valid, their effectiveness relies on
the availability of reactants in the candidate sets. Template selection
methods24–30 rank the reaction templates in terms of their applicability
to the target molecules. These templates capture subgraph patterns
representing the change in atoms and bonds during a reaction.

Received: 20 March 2024

Accepted: 26 August 2024

Check for updates

1Department of Chemistry, Yale University, New Haven, CT, USA. 2Chemical Development, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA.
3These authors contributed equally: Yu Shee, Haote Li. e-mail: timothy.newhouse@yale.edu; victor.batista@yale.edu

Nature Communications |         (2024) 15:7818 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-3728-0021
http://orcid.org/0000-0002-3728-0021
http://orcid.org/0000-0002-3728-0021
http://orcid.org/0000-0002-3728-0021
http://orcid.org/0000-0002-3728-0021
http://orcid.org/0000-0003-1907-1565
http://orcid.org/0000-0003-1907-1565
http://orcid.org/0000-0003-1907-1565
http://orcid.org/0000-0003-1907-1565
http://orcid.org/0000-0003-1907-1565
http://orcid.org/0000-0001-6388-7743
http://orcid.org/0000-0001-6388-7743
http://orcid.org/0000-0001-6388-7743
http://orcid.org/0000-0001-6388-7743
http://orcid.org/0000-0001-6388-7743
http://orcid.org/0000-0003-3811-0662
http://orcid.org/0000-0003-3811-0662
http://orcid.org/0000-0003-3811-0662
http://orcid.org/0000-0003-3811-0662
http://orcid.org/0000-0003-3811-0662
http://orcid.org/0000-0001-8741-7236
http://orcid.org/0000-0001-8741-7236
http://orcid.org/0000-0001-8741-7236
http://orcid.org/0000-0001-8741-7236
http://orcid.org/0000-0001-8741-7236
http://orcid.org/0000-0002-3262-1237
http://orcid.org/0000-0002-3262-1237
http://orcid.org/0000-0002-3262-1237
http://orcid.org/0000-0002-3262-1237
http://orcid.org/0000-0002-3262-1237
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52048-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52048-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52048-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52048-4&domain=pdf
mailto:timothy.newhouse@yale.edu
mailto:victor.batista@yale.edu
www.nature.com/naturecommunications


Notably, the RDChiral repository by Coley et al.31 offers template
extraction methods and a collection of reaction templates in the form
of SMARTS strings. Template selection methods simplify the reaction
representation to a single template instead of multiple reactants. In
addition, the same template can be applied to different target com-
pounds instead of having multiple sets of reactants for the target
compounds, thereby providing a higher coverage of reaction space.
However, like reactant selectionmethods, template selectionmethods
are dependent on the coverage and diversity of available templates
within predefined reaction rules.

Semi-template methods32–37 involve the identification of reaction
centers, synthons, or leaving groups, followed by the prediction of
corresponding reactants based on these rules. Some semi-template
methods34,36,37 are akin to selection-based methods, where reactants
are obtained by predicting reaction centers and selecting from a col-
lection of leaving groups, or by selecting necessary edits onmolecular
graphs. Other semi-template methods adopt generation components,
in which reactants are generated from products and identified syn-
thons or rules.

Generation-based methods are not bound by the sets of available
reactants or templates and hold promise to map wider areas of che-
mical space. These include template-free methods38–53 that treat reac-
tant generation as a translation task, aiming to predict the reactants
directly from the given products without having in-dataset reaction
rules. They therefore bear the potential to explore a wider range of
possible reactions.

In this study, we introduce template generation which represents
a new distinct category of generation-based methods for retro-
synthetic planning. Template generation models employ the
Sequence-to-Sequence (S2S) architecture trained to translate product
information into reaction templates, as opposed to generating reac-
tants. The capability of template generation thus extends beyond the
available templates or predefined reaction rules of template selection-
based approaches, enabling the discovery of novel reaction templates
that expand the scope of retrosynthetic planning. The combination of
generated reaction templates and the “RunReactants” function from
RDKit, offer an efficient means to swiftly identify templates that yield
grammatically coherent reactants from given products. This facilitates
the exploration of previously uncharted chemical reactions and
pathways.

One of themajor benefits of using template generation is the ease
of checking the reaction validity. During the transformation of a
reaction template, the product is guaranteed to be converted to the
reactant with exact matching of atoms indices and relevant functional
groups from the description of the template. In comparison to reac-
tant generative models, this feature greatly reduces the uncertainty in
the produced reactants which might not correspond to any known
reactions or have key atom mismatches due to problems during
decoding.

Our template generation method introduces a design where site-
specific templates (SST) are generated along with target compounds
with labeled reaction centers (i.e., center-labeled products, CLP) that

Fig. 1 | Common machine learning methods for retrosynthesis and our
approach. a Reactants and templates can be selected or generated based on a
target compound using differentmachine learningmodels. Template generation is
used in this work. b A structured latent space is incorporated in one of the models

in this work. Sampling in the latent space can give different reaction templates for
given products. c Reduction of synthetic steps for a key intermediate for active
pharmaceutical ingredients (API). OPRD 2024 refers to ref. 62.
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specify the reaction centers. This results in the generation of concise
and informative sets of templates that are different from the templates
available in the RDChiral repository31. Through benchmarking with a
public dataset, the performance of our approach is demonstrated.

The second design is a sampling generative model (sampling
model) for template generation conditioned by target compounds.
S2S models, such as those employed in the template-free methods,
predict pathways deterministically and donot have a sampling process
or definition of latent space. In contrast, our sampling model has a
latent space, enabling the generation, interpolation, extrapolation, and
distance measurement of various templates (Fig. 1b). Deterministic
models that take target compounds as inputs and generate templates
are also developed in this work. Importantly, the encoder of themodel
can incorporate positional embedding for reaction centers, enabling
users to specify specific reacting sites during prediction. Results are
benchmarked on the USPTO-FULL dataset.

Our sampling model, based on the conditional kernel elastic
autoencoder (CKAE)54, is the first of its kind in the field of retro-
synthesis. This model conditions on corresponding products during
training, allowing interpolation and extrapolation of reaction tem-
plates in latent space to generate new reaction templates during the
sampling process. The latent space also provides a measure of dis-
tances between reaction templates, allowing us to identify the closest
reaction reference within the dataset, or determine the similarity
between two chemical reactions. Previous works on assessing
reaction similarity and reaction classification use physicochemical
properties55–57, molecularfingerprints58,59, or reaction SMILES strings as
input60. In this work, SSTs and CLPs are used to evaluate the similarity
of reactions. Schwaller et al.60 include reaction conditions such as
catalysts and solvents in the reaction SMILES strings, while the fin-
gerprint methods from Schneider et al.58 and Ghiandoni et al.59 require
that reactants are separated from reagents. Our method is similar to
Schwaller et al.60 in terms of using strings as input, but SSTs and CLPs
provide a more concise way to represent reactions (without reagents)
and carry additional information about atom mapping, like the
method from ref. 59.

With SSTs and generation methods in place, our approach is
validated through the practical application of synthesis. A library of
potent anti-cancer agents was recently reported by Boehringer
Ingelheim61. One of the key intermediates for the synthesis of these
anti-cancer compounds is compound 1, a cyclohexanone with a qua-
ternary stereogenic center in the α-position containing an alkyne
moiety (Fig. 1c)62,63. Our objective was to develop a more step-efficient
route to synthesize compound 1. The route proceeds over 3 steps,
compared to prior approaches that required 5–9 steps, including a
recent process involving Grignard-mediated epoxide opening as a key
step in a 5-step route starting from commercial starting materials62,63.
Reducing the number of steps in a synthetic process is enabling to
develop scalable and more sustainable approaches, while also redu-
cing the amount of time necessary for each batch64,65. Our experi-
mental validation demonstrates the practicality and reliability of the
retrosynthetic predictions, suggesting their underlying promise to
address a wide spectrum of synthetic challenges.

Results
Site-specific templates and center-labeled products
Reaction templates that only apply to reaction centers within the tar-
get compounds are referred to as site-specific templates (SST). These
are different from RDChiral templates which involve a broader struc-
tural context31 since SSTs do not differentiate neighboring atoms or
special functional groups when matching substructures within the
target compounds. The presence of center-labeled products (CLP) is a
pre-requisite for the effective use of SSTs. Such labeling is essential to
avoid ambiguity when a SST can be applied to multiple sites within a
target compound. Examples of SST andCLP are shown in Fig. 2a where

the “*” symbol represents the reaction centers. To prepare SSTs, the
radius parameter in RDChiral is set to 0 (while RDChiral normally sets
radius to 1 which captures 1 bond away from the reaction centers) and
special functional groups are removed. Therefore, neighboring atoms
and distal functional groups are not included in SSTs. Also, explicit
degrees and explicit numbers of hydrogens are not included in the
SSTs. To prepare CLPs, RDChiral also has implementations to capture
the changed atoms, so the centers can be labeled for target com-
pounds. Further explanations and examples are provided in the Sup-
plementary Information (Sec. 1 and Sec. 2).

a

O O
Br

Product to Template Translation

O
S

O O
Br

O:2

S:1

O:2

S:1 Cl

[ O : 2 ] - [ S : 1 ] >> Cl - [ S : 1 ] . [ OH : 2 ] _ C C * ( = O ) ( = O ) * C C Br

* *

S ( = O ) ( = O ) O C C BrCC

site-specific template center-labeled product
in Model A and B output only in Model A output

b

*

Product to Template Translation

O
S

O O
Br

O:2

S:1

O:2

S:1 Cl

*

[ O : 2 ] - [ S : 1 ] >> Cl - [ S : 1 ] . [ OH : 2 ]

S ( = O ) ( = O ) O C C BrCC

site-specific template
in Model A and B output

Model A

Model B

+

Fig. 2 | Schematic retrosynthetic workflow for Models A and B. a Workflow of
Model A. b Workflow of Model B. Model B has reaction center embeddings and
does not have center-labeled products in the output. Detailed descriptions of the
models are provided in the Supplementary Information (Sec. 3 and Sec. 4).
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Deterministic model performance
Figure 2 shows a schematic representation of the deterministic mod-
els, Model A and Model B. Model A takes a target compound as an
input and translates it into SSTs and CLPs. CLPs specify how the SSTs
should be applied to the target compound. Model B takes the target
and the specific reaction centers and generates templates corre-
sponding to those specific sites (see Supplementary Information Sec. 3
for more information and Supplementary Fig. 3 for a comparison of
the models).

Figure 3 shows the comparative analysis of the performance for
Models A and B (highlighted in red), in terms of Top-K accuracy, as
compared to state-of-the-art methods.

Top-K accuracy measures the percentage of top-K predictions
containing reactants thatpreciselymatch the ground truth reactants in
the testing set. The Top-K results are derived from the beam search
method, where the product of the next token probabilities is used to
rank the output templates and their corresponding precursors. This
ranking is referred to as the beam score in this work. Figure 3 includes
results for the original USPTO-Full testing dataset as well as for a
cleaned testing set to address errors related to atommappings such as
solvent and reagent atoms erroneously considered as part of the
reactions. The cleaned testing set is prepared by removing reactions
containing reactants that are the 50 most frequently observed spec-
tators in the USPTO-FULL dataset. The size of the cleaned testing set is
90.7% of the original set of 95k reactions.

Model A, which does not use reaction centers, performs com-
parably well to other methods. The cleaned set allows for higher
accuracy although it may inadvertently exclude some reactions where
the common spectators actually participate as reactants. Model B
leverages reaction center information. On the cleaned set, Model B
reaches aperformancemilestone, achieving anaccuracy rate ashigh as
80% for Top-10 predictions (see Supplementary Information Sec. 9 for
details).

RetroExplainer36, with semi-template components, demonstrates
remarkable prediction accuracy owing to its data modeling approach
and the utilization of a set of leaving groups. However, this approach

may experience variations in performance when handling uncommon
scenarios or leaving groups not explicitly represented in the dataset.
R-SMILES52, a template-free generation-based method, introduced the
root-aligned SMILES representation to ensure minimal edit distances
betweenproduct and reactant SMILES. Through this customized string
representation and data augmentation, they achieved the highest
accuracy among template-free methods. Nonetheless, data augmen-
tation is not utilized in this work, leaving room for potential
improvements in accuracy for future endeavors.

Top-K accuracy is not the sole criterion for evaluating retro-
synthetic methods; explainability and inference time are equally
important factors. The explainability of the template generation
approach is facilitated by atommappings from templates. Neuralsym24

is widely used for benchmarkingmultistep tree searchmethods due to
its fast inference time. Our template generative approach has a similar
order of magnitude of inference time as Neuralsym (101 s), while other
methods operate at an order of 102 s or above, as shown in ref. 21. In
this reference21, batch size optimization or multi-process multi-GPU
acceleration are not implemented, so a batch size of 1 is used for
comparison. R-SMILES, for instance, has an inference time at the order
of 103 s. Although both R-SMILES and our approach are generation
methods, the template generation approach using SSTs has a much
shorter string representation than reactants and does not require
augmented SMILES inputs to reach high accuracy, resulting in sig-
nificantly shorter inference times.

In addition, an analysis of the Top-K accuracy considering differ-
ent numbers of reaction centers for Model B is shown. Over half of the
test reactions possess one or two reaction centers, following the same
distribution of reaction center counts of the training set. Conse-
quently, for test reactions with a maximum of two reaction centers,
Model B achieved the highest Top-K accuracy compared to other
center counts, with the Top-10 accuracy reached 90% (see last row of
Fig. 3 and Supplementary Information Sec. 9), showcasing exceptional
predictive capabilities in scenarios characterized by a limited number
of reaction centers. This also aligns with the precursor selection pro-
cess illustrated in “Experimental validation”, where two reaction cen-
ters are consistently utilized for Model B. The high Top-K accuracy
achieved by Model B for reactions with few reaction centers is parti-
cularly significant, as it corresponds to real-world applications where a
majority of reactions feature a low number of reaction centers. For
instance, 90% of the dataset comprises reactions with no more than
four reaction centers (see Supplementary Information Sec. 9).

Sampling model with latent space
A sampling generativemodel, which exploits a sampling processwith a
latent space, is different from the deterministic approach. To the best
of our knowledge, the application of a sampling model for retro-
synthetic planning has not been explored. Model C is built upon the
architecture of Conditional Kernel-Elastic Autoencoder (CKAE)54. In
Model C, both the input and output consist of combinations of SSTs
and CLPs. The goal of Model C, akin to a variational autoencoder, is to
reconstruct the input with latent space compression. Comparing to
previous CKAE molecular generation models where conditions are
represented by specific values or molecular properties, the CKAE
model as applied to Model C utilizes the SMILES representation of
target molecules as conditions. During the sampling process, a target
compound is provided as the condition and latent vectors are sam-
pled, different SSTs and CLPs, which correspond to the same target
compound condition, can then be generated for different latent
vectors.

In addition to generative sampling, the encoder of Model C offers
a valuable referencing feature. It maps the input into a latent space
with a distance regularized by amodifiedmaximummean discrepancy
loss (m-MMD)54. This distance furnishes a quantifiable metric for
assessing the similarity between reactions, aiding in evaluating and

Fig. 3 | USPTO-Full Top-K accuracy of retrosynthesis models. GLN28,
LocalRetro29, and Neuralsym24 in black are template-based selection methods.
GraphRetro34, RetroPrime35, and RetroExplainer36 in yellow are semi-template
methods. GTA45, Tied-Transformer50, MEGAN47, Transformer44, and R-SMILES52 in
green are template-free generation methods. This work (in red) uses a template
generationmethod. Reactant-based selectionmethods are not includeddue to out-
of-memory for the USPTO-FULL dataset21. 1Indicates that if the correct reactants
contain one of the 50 most commonly seen spectators in the USPTO-Full dataset,
the reaction is removed from the test set. 2Indicates that reaction centers are
provided. 3Indicates that the maximum number of reaction centers is two.
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understanding the differences between chemical transformations.
Such capability enables the identification of similar reactions within
the dataset.

The distance between various chemical transformations in latent
space can be used to interpolate between chemical reactions. This can

be useful when searching for a reaction that could be an intermediate
between two known chemical reactions. In Fig. 4a, an interpolation
process is visualized. Initially, two reaction templates are selected,
represented by the top and bottom templates and the latent vectors in
the latent space. These templates serve as the starting points to

Fig. 4 | Interpolation of templates in the latent space ofModel C and reactants fromModel A andModel C outputs. aThe intermediates of the top and bottom latent
representations are decoded. b Selected reactants for 2-, 3-, 4-substituted cyclohexanone derivatives as target compounds.
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explore the intermediates. This interpolation allowed the discovery of
the templates corresponding to each of the latent vectors along the
path between the two originals. It can be observed that the middle
templates and reactants form a blending of the starting templates and
reactants. This observation provides evidence that the latent space
captures chemical information, showing the distance measure
between various chemical transformations.

To illustrate the differences between Model A (deterministic) and
Model C (generative sampling), the single-step predictions of 2-, 3-,
and 4-substituted cyclohexanone derivatives are examined. Model A
andModel C are compared because, unlikeModel B, they both do not
take reaction center information as input, and this comparison high-
lights the effects of latent sampling on model outputs. Based on the
acquired results, representative precursors are selected for all three
target molecules. As shown in Fig. 4b, Model A suggestions are pri-
marily based on functional group interconversions and protection
reactions.WhileModel C also proposes these transformations, diverse
precursors and reactions are also proposed. These examples comple-
ment the intuitive bias of many synthetic chemists and point to areas
of opportunity for the creative development of novel chemical trans-
formations. Please refer to Supplementary Information Sec. 7 to see
experiments and examples of how the models can generate reactions
that extend beyond the available templates.

Regarding the usage of eachmodel:Model A shouldbe usedwhen
high-accuracy predictions are needed without explicit reaction center
information. Model B is suitable when there are specific insights or
constraints regarding reaction centers, requiring precise control over
disconnections. Model C is ideal for seeking greater diversity and
potential for unconventional transformations, as it leverages gen-
erative sampling to explore a broader chemical space without pre-
defined reaction centers.

Experimental validation
Developing inexpensive, rapid, and robust methods for the synthesis
of bioactive molecules is one of the key goals in pharmaceutical
chemistry66. Herein, we utilized our Model B, chosen because of its
high accuracy and reaction center embedding, for establishing the
shortest route for the synthesis of a target compound. Figure 5 high-
lights how Model B can be used to navigate multiple options for ret-
rosynthesis (see Supplementary Information Sec. 8 for more
pharmaceutical examples). The top five ranked precursors, based on
beam scores or synthetic accessibility (SA) scores67 as implemented in
RDKit68, are shown. Each level corresponds to a new prediction by the
single-step model to reach an intermediate. This tool highlights the
interactive nature of the model with a human expert who selects
intermediates for further analysis. Both ketone and aldehyde
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precursors for the target compound are highly ranked. Several inter-
mediates and subsequent retrosynthetic steps were examined. The
aldehyde was chosen due to subsequent retrosynthetic evaluation
showing it to be a highly enabling retron. The next retrosynthetic step
from the aldehyde included the alpha-allyl cyclohexanone, which
facilitates the application of the highly robust Tsuji–Trost allylation.

Figure 6a serves as a reference point derived from Model C. The
left-hand side illustrates the allylation step that we employed in our
synthesis. On the right-hand side, the reference is obtained by
encoding the allylation template and the product labeled with the
reaction center into Model C’s latent space. This process allows us to
identify the closest latent vectors from the training dataset, and that
closest reference corresponds to the reaction shown on the right-hand
side of Fig. 6a. Interestingly, the exact chemical transformation that
was suggested had previously been conducted, but is not in the
USPTO-FULL dataset. This highlights how our approach compliments
other synthetic planning tools, such as Reaxys and SciFinder.

In order to synthesize the enantiomerically enriched target
molecule, we applied the enantioselective Pd-catalyzed Tsuji–Trost
allylation of a ketone and applied conditions recently reported by
Pupo et al.69. The prior literature protocol for this substrate reported
an enantiomeric ratio of 95.5:4.5. The allylated intermediate was trea-
ted with ozone in order to obtain the ketoaldehyde derivative in good
yield (Fig. 6b). For the final step, a modified procedure by Boltukhina
et al70. was applied to form the alkyne in 78% yield. The overall yield of
our 3-step route is 33%, despite our route not having undergone pro-
cess optimization. It should be stated that further process optimiza-
tion is expected to improve the efficiency of this approach, although
this proof-of-concept demonstrates the ability to develop step-
efficient routes. This experimental procedure serves as evidence that
the newly developed ML models can facilitate the development of
synthetic routes for pharmaceutically significant molecules and
enhance existing routes.

An alternative to the route presented in Fig. 6b, an even shorter
route to compound 1, could be one entailing direct α-alkynylation of
2-methylcyclohexanone. Methods for direct introduction of an alkyne
moiety next to a ketone are scarce and rely on substitution with
electrophilic alkyne species (selected examples71–76). Most commonly
used in modern organic chemistry are hypervalent iodine reagents
such asWaser’s or Ochiai’s reagent77. While this method would furnish
the target molecule in fewer synthetic steps, it would have to be

followed by the separation of two enantiomers since enantioselective
α-alkynylation of ketones has not yet been reported.

Discussion
In this work, a string-based approach for retrosynthesis planning is
introduced, utilizing generative models to address the challenges
posed by the vast chemical space and synthesis complexity. Specifi-
cally, this work introduces template generation as a new category in
machine learning methods for computer-aided synthesis planning.
Two types of generative models are developed, including determi-
nistic generative models (Model A and Model B) and a sampling gen-
erative model that utilizes CKAE (Model C).

Model A and Model B are benchmarked on the USPTO-FULL
dataset. Particularly, Model B can incorporate reaction center infor-
mation, enabling the generation of templates that apply to the speci-
fied reacting sites. On the other hand,Model C represents a pioneering
application of sampling method from latent space, capable of gen-
erating diverse reactions. The design of Model C defines distances
between reactions, which allows Model C to identify the closest
reference from the dataset for newly generated templates, making it a
suitable tool for generating and validating a wide range of potential
reactions.

This work presents two approaches for single-step synthetic
planning, high-accuracy deterministic models and high-diversity
sampling models. The capability of specifying reacting sites, the
availability of relevant reaction references, and the successful results
of experimental validations on an important pharmaceutically relevant
intermediatemake themodels valuable tools in guiding retrosynthetic
analysis.

Methods
Training details
In total, 10% dropout was applied to all attention matrices and
embedding vectors. ADAMoptimizer78 was usedwith a learning rate of
5 × 10−5. Gradient normalization79 was set to 1.0. During training, each
token in the input to the encoders is replaced by a mask token for
Model A and Model B with the probability of 0.15.

Model architecture
Models A, B, and C each has 6 layers of transformer encoders and
decoders as implemented in ref. 80. For Models A and B, 8 attention
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heads and an embedding size of 256 are used. For Model C, 16 atten-
tion heads and an embedding size of 512 are used.

The reaction center embeddings for Model B are achieved by
adding the embedding of the reaction center token “*” at the specific
position of the atoms similar to the concept of positional embeddings.

Model C is constructed based on the conditional kernel elastic
autoencoder model54, with a 5120-dimensional latent space. The con-
ditions are embeddings of target compounds and are also achieved by
6 layers of transformer encoders and 16 heads with an embedding size
of 51280. These embeddings are then compressed into 10 embedding
vectors by a linear layer and concatenated with the input embedding
and the latent space. See Supplementary Information Sec. 4 and Sup-
plementary Fig. 5 formoredetails and visualizationof the architecture.

Beam search
To derive multiple possible predictions, beam search44 is used across
all models. During decoding, the transformer decoder attends to the
encoder output and the sequence that had been generated. The
decoder outputs probabilities of all possible tokens for the next
position in the sequence. Beam search maintains a fixed-size set of
candidate sequences, the number that the method keeps is called the
beam sizeB. The topBmost probable sequences at eachdecoding step
are selected to proceed to the next step of decoding until the stopping
criteriaofmaximumallowed length are reachedor anEndOf Sequence
(<EOS>) token is output.

For the Top-K accuracy test, beam searchwith a beam size of 50 is
used during all decoding processes. At each decoding step, the model
outputs the 50 most probable candidate tokens and continues the
sequence until the stopping criteria are met.

The diversity of deterministic models is solely derived from the
beam search process, as this type of model lacks a latent space for
sampling. Consequently, generating novel reactions using a determi-
nistic model through beam search can be challenging. In contrast, the
sampling model, equipped with a latent space, can generate diverse
and novel reactions more effectively.

Synthesis
Details of the synthesis, such as reaction conditions, purification, and
NMR spectra, are provided in the Supplementary Information.

Data availability
The 50most commonly seen spectators are obtained from theUSPTO-
Full reaction file in RDChiral GitHub Repository31. While the train-
validation-test split of the USPTO-Full dataset is obtained from the
GitHub repository of ref. 44. Experimental data, such as the NMR
spectra, are provided in the Supplementary Information. All data are
available from the corresponding authors upon request.

Code availability
A user-friendly interface was developed, and all pre-trained models
from this work can be accessed on models.batistalab.com.
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