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ABSTRACT: Quantum systems in excited states are attracting significant interest
with the advent of noisy intermediate-scale quantum (NISQ) devices. While
ground states of small molecular systems are typically explored using hybrid
variational algorithms like the variational quantum eigensolver (VQE), the study of
excited states has received much less attention, partly due to the absence of
efficient algorithms. In this work, we introduce the subspace search quantum
imaginary time evolution (SSQITE) method, which calculates excited states using
quantum devices by integrating key elements of the subspace search variational
quantum eigensolver (SSVQE) and the variational quantum imaginary time
evolution (VarQITE) method. The effectiveness of SSQITE is demonstrated
through calculations of low-lying excited states of benchmark model systems including H2 and LiH molecules. A toy Hamiltonian is
also employed to demonstrate that the robustness of VarQITE in avoiding local minima extends to its use in excited state algorithms.
With this robustness in avoiding local minima, SSQITE shows promise for advancing quantum computations of excited states across
a wide range of applications.

1. INTRODUCTION
Computational and theoretical studies of excited states are
essential for understanding the photophysics of molecules,
particularly in ultraviolet-visible (UV-vis) and X-ray absorption
spectroscopy of photochemical reactions.1,2 With the advent of
quantum computing, new methodologies promise to signifi-
cantly enhance these studies, potentially offering a quantum
advantage in chemistry.3,4 Traditional computational methods,
despite their powerful capabilities, face limitations in modeling
complex excited state phenomena due to the exponential
scaling of resources required. Quantum computing, however,
opens new frontiers for exploring a wide range of problems,5,6

including the crucial excited states in the photochemistry of
organic molecules.7

In the near-term intermediate-scale quantum (NISQ) era,
quantum advantage of some specialized applications have
already been put forward,8,9 such as the calculation of ground
state energy in quantum chemistry.10−12 Widespread ap-
proaches for calculating ground state energies in quantum
computers include the hybrid variational quantum eigensolver
(VQE) algorithm10,12,13 or the variational quantum imaginary
time evolution (VarQITE) method.13−15 Beyond ground state
energies, excited states are equally important for numerous
applications,16−21 such as charge and energy transfer in
photovoltaic materials, photodissociation,22 luminescence,7

intermediate states in chemical reactions,23 and mechanistic
studies of catalytic systems.24 This has driven significant
interest in generalizing ground state algorithms, such as VQE
and VarQITE, to excited states of quantum systems. Notable

algorithms designed for this purpose include the subspace-
search variational quantum eigensolver (SSVQE)25 and the
variational quantum deflation (VQD)22 algorithm. The VQD
approach22 has been applied to calculations at Frank−Condon
and the conical intersection geometries,26 and has been
adapted to VarQITE27,28 for determining excited states.
Quantum algorithms for the imaginary time evolution have

proven useful in the determination of both ground and excited
states. There are two quantum algorithms that can perform
imaginary time evolution in quantum computers, variational
quantum imaginary time evolution (VarQITE),13,29,30 and
trotterized quantum imaginary time evolution (Trotter-
QITE).31 VarQITE uses a variational circuit to approximate
the evolution of the input state through imaginary time,
whereas TrotterQITE implements a nonunitary imaginary time
step e d by applying a normalized unitary time step e−iAdτ

with ancilla qubits. Due to the ancilla qubits, TrotterQITE
requires many more qubits and a larger gate depth than
VarQITE. Due to the fixed gate depth and therefore greater
noise resilience of VarQITE, this algorithm is used in the
excited state algorithm presented.
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Imaginary time algorithms have been applied to determine
excited states through other methods, such as subspace
expansion methods.32 Subspace expansion methods define a
subspace of the system using nonorthogonal states, with the
exception of multistate contracted VQE,33 and classically
diagonalize this subspace using the generalized eigenvalue
equation,33−36 rather than minimizing the entire Lagrangian as
is performed in VQE or VarQITE. These subspace expansion
methods perform well when the input states have a large
overlap with the low-energy states of interest. For this reason,
TrotterQITE has been used in conjunction with subspace
expansion, referred to as Krylov subspace methods.31,32,37,38

These algorithms have accuracy guarantees but can require
deep quantum circuits to perform TrotterQITE. Comparing
subspace expansion to subspace search, the subspace expansion
does not yield an orthonormal set of states, whereas subspace
search ensures orthogonality of the output states.
In this article, we introduce a novel algorithm called

subspace search quantum imaginary time evolution (SSQITE).
The SSQITE algorithm augments VarQITE with a subspace
search to compute excited states to enable the simultaneous
calculation of ground and multiple excited states. Its efficiency
is successfully demonstrated with the calculation of the low-
lying states of H2 and LiH molecules. The paper is organized as
follows. First, we introduce the SSVQE and VarQITE methods
in Sections 2 and 3, respectively. Then, we describe the
SSQITE algorithm in Section 4 and illustrate its application to
calculations of excited states of H2 and LiH, as well as
introduce a toy Hamiltonian to demonstrate SSQITE’s
robustness to local minima in Section 5. Conclusions are
presented in Section 6.

2. SUBSPACE-SEARCH VARIATIONAL QUANTUM
EIGENSOLVER

The subspace-search variational quantum eigensolver
(SSVQE) algorithm extends the variational quantum ei-
gensolver (VQE) hybrid method.10,12 The VQE is a hybrid
quantum-classical algorithm designed to find the ground state
of a quantum system described by the 2n × 2n Hamiltonian, H,
expressed as a sum of tensor products of Pauli matrices σk(j) =
{X, Y, Z, I},

=
=

H c
j

j
k

n

k
j

1

( )

(1)

where cj = 2−nTr[H × ⊗k = 1
n σk(j)]. VQE generates a trial state

|ψ(θ⃗)⟩ = U(θ⃗) |ψ0⟩ by applying a quantum circuit U(θ⃗) with
variational parameters θ⃗ to an initial vacuum state |ψ0⟩. These
parameters are adjusted by a classical computer to minimize
t h e e x p e c t a t i o n v a l u e o f t h e H am i l t o n i a n ,
E(θ⃗) = ⟨ψ(θ⃗)|Ĥ|ψ(θ⃗)⟩. This expectation value is computed
by summing the expectation values of the tensor products of
Pauli matrices, ⟨ψ(θ⃗)| ⊗k = 1

n σk(j)|ψ(θ⃗)⟩, measured on the
quantum computer. The process iteratively refines θ⃗ to
minimize E(θ⃗), thereby approximating the lowest eigenvalue
of H.
SSVQE extends the VQE algorithm to simultaneously find

the k lowest eigenstates of H.25 First, the k orthogonal states
|ϕj⟩ are initialized with ⟨ϕk |ϕj⟩ = δkj. These states are then
evolved using the same circuit U(θ⃗) with variational
parameters θ⃗. Orthogonality is thus preserved among the
evolved states since U(θ⃗)† U(θ⃗) = I, so ⟨ϕk |U(θ⃗)†U(θ⃗) |ϕj⟩ =
δkj. The ansatz defining the circuit U(θ⃗) can be chosen to

preserve the symmetry, such as the “ASWAP” ansatz which is
constructed using gates that preserve the number of excitations
in a state.39

The parameters θ⃗ are optimized by minimizing the sum of
the expectation values using the following loss function

= | |
=

†U( ) ( )HU( )
j

k

j j j
0 (2)

Therefore, SSVQE finds the k orthogonal minimum energy
states simultaneously. The coefficients ωi, introduced by eq 2,
with ωi > ωj for i < j, are used to weight each energy level,
effectively arranging the energy expectation values of all
orthogonal states in ascending order.
In this paper, we introduce the subspace search quantum

imaginary time evolution (SSQITE) algorithm by integrating
this SSVQE methodology of orthogonal states with the
VarQITE algorithm.13,14 The resulting SSQITE method thus
enables the simultaneous calculation of multiple excited states
by applying the same imaginary time evolution to an initial set
of orthogonal states.

3. VARIATIONAL QUANTUM IMAGINARY TIME
EVOLUTION

The variational quantum imaginary time evolution (VarQITE)
algorithm is a hybrid quantum-classical method used to
determine the ground state energy of a quantum system by
propagating an initial state |ψ(0)⟩ in imaginary time toward
|ψ(τ)⟩, where τ = it/ℏ is the imaginary time.13,14 This
technique effectively implements the Wick-rotated Schrödinger
equation,

| = |E
d

d
( ) ( ) ( )

(3)

with = | |E ( ) ( ) . Propagating that initial state for a
sufficiently long imaginary time, we obtain the ground state
|E0⟩, provided that ⟨E0|ψ(0)⟩ ≠ 0. This is expressed as follows

| = |A Elim ( )e (0)H
0 (4)

where A(τ) = ⟨ψ(0)|e−2Hτ |ψ(0)⟩−1/2 is the normalization factor
obtained after imaginary time propagation. To apply this
procedure to a given parametrized ansatz |ψ(τ)⟩ = U(θ(τ)) |0⟩,
McLachlan’s variational principle can be leveraged, which
states

+ | =i
k
jjj y

{
zzzd

d
E ( ) 0

(5)

Applying this principle to the optimization of the variational
parameters θ⃗ that define U(θ⃗(τ)) results in the following linear
system of ordinary differential equations:13,14

=A C
j

ij j i
(6)

where

= | |i
k
jjjjjj

y
{
zzzzzzA

( ( )) ( ( ))
ij

i j (7)

and
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The values of Aij and Ci are obtained using the Hadamard test
on a quantum circuit by simply averaging the measurements on
the ancilla qubit.13

Having obtained Aij and Ci by measurements of the ancilla in
the quantum circuit, the values of θ⃗ are updated in a classical
computer by integrating the Euler equation introduced by eq 6
using the fourth-order Runge−Kutta method.40 The process is
iterated until the values of θ⃗ converge to optimum values, as
determined by McLachlan’s variational principle introduced by
eq 5.

4. SUBSPACE-SEARCH QUANTUM IMAGINARY TIME
EVOLUTION

The subspace-search quantum imaginary time evolution
(SSQITE) method, proposed in this paper, combines subspace
search optimization with variational quantum imaginary time
evolution to maintain orthogonality among states evolving in
imaginary time. This approach allows for the simultaneous
variational computation of both ground and excited energy
states by using variational quantum imaginary time evolution.
The main difficulty in combining the subspace search

optimization with variational quantum imaginary time
evolution is that the imaginary time propagation only implicitly
optimizes the loss function defined by McLachlan’s variational
principle in eq 5. Instead of defining a joint loss function, as in
SSVQE, the SSQITE algorithm tunes the step size dτj of each
level j individually, such that lower energy states have larger
integration time steps (pseudo-core, Algorithm 1). Intuitively,
this allows for lower energy states to overpower the higher
energy states, ordering the output energy spectrum. The tuning
of time steps plays a role similar to that of the tuning of the
weights ωi in the SSVQE algorithm. In this way, after a
sufficient number of iterations, the SSQITE algorithm returns
the k-lowest-energy eigenstates.
The choice of weights ωi can greatly impact the convergence

of the algorithm, and has been previously chosen to take
advantage of the choice of input states and ansatz, system size,
or symmetries.19,41 For example, the weight selection for the
fastest convergence of CQE on H2 was found to be ωi = [9, 9,
1, 1],19 as it takes advantage of the block-diagonal nature of the
Hamiltonian. Here, we will instead demonstrate a weight
setting scheme that utilizes the nature of orthogonal states
evolving under VarQITE to prevent the evolution of higher
energy states from overpowering lower energy states while
retaining an efficient runtime.
In this weight setting scheme, the integration time steps are

defined as follows

=d
b
2i i (9)

with b a tunable parameter. This choice of integration time
steps prevents higher energy levels from overpowering lower
energy eigenstates, since

= +

1
2

1
2i

j i

k

j
1 (10)

However, this approach requires a number of steps that scales
exponentially as (2 )k , where k is the size of the subspace. This

exponential scaling can be overcome by leveraging the
convergence of the lower energy levels. The integration time
steps used for obtaining higher energy levels can be increased
upon convergence of lower energy states since all remaining
states must be orthogonal to the manifold of lower energy
states ⟨Ej |ψi⟩ ≈ δji for i > j. Therefore, the imaginary time
evolution of higher excited states is restricted to an orthogonal
subspace.
Due to the time evolution of excited states being restricted,

the integration time step of these states can be doubled,
mitigating the exponential scaling without significantly
affecting the lower energy states. However, the imaginary
time evolution of the ground state makes the overlap with
excited states exponentially small, although not exactly zero,
⟨E0 |ψi⟩ ≈ e−τ. Therefore, in practice, some excited states can
still evolve into the ground state if they are not fully
orthogonalized. So, it is always necessary to confirm
orthogonality with lower energy states during each round of
SSQITE.

Figure 1. Simultaneous evolution of the energy expectation values for
the three lower energy states of H2 (with fixed bond length R = 0.95
Å) during the first 70 integration steps of SSQITE optimization. Final
energy values are highlighted on the right, and corresponding
statistical errors are on the order of 10−5 Ha.
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5. RESULTS: GROUND AND EXCITED STATES OF H2
AND LIH

SSQITE is implemented on H2 by using a two-qubit
Hamiltonian. This H2 Hamiltonian is created by beginning
with the STO-3G basis and selecting for the spin-zero subspace
to provide four states, which can be directly mapped to two-
qubit states.35 This Hamiltonian has previously been used in
conjunction with quantum subspace expansion, achieving an
error far exceeding chemical accuracy for a range of
interatomic distances.35

Figure 1 illustrates the energy expectation values for the
three lowest energy states of H2 during joint SSQITE
optimization (with a fixed H−H bond length of 0.95 Å).

The imaginary time propagation causes these states to interfere
with their contributions to θ⃗̇. As shown in Figure 1, the
evolution of the ground state for τ ∈ [0, 20] leads to an
increase in the energy of the first excited state, as it is forced
into a subspace orthogonal to the ground state. This effect is
also reciprocal, since the evolution of the first excited state
likely slows the evolution of the ground state, as evidenced by
the linear slope of the ground state from τ = 0 to τ = 15.
Figure 2(a,c) shows the three lowest energy eigenvalues of

H2 determined through SSQITE optimization. These calcu-
lations use a general two-qubit ansatz depicted in Figure 3, as a
function of the interatomic H−H distance.35 These results
demonstrate excellent agreement with exact results for both
noiseless (Figure 2(a)) and noisy (Figure 2(c)) quantum

Figure 2. Comparison of the three lowest energy eigenvalues of H2 determined through (a, b) noiseless and (c, d) noisy SSQITE optimization to
numerically exact calculations (dashed lines) as a function of the interatomic HH distance. Boxed values correspond to the final values shown in
Figure 1. The ground, first, and second excited states correspond to the X1Σg

+, b3Σu
+, and B1Σu

+ states of H2, respectively. Deviations of (b) noiseless
and (d) noisy SSQITE calculations from the ground truth energy levels of the H2 molecule. All noisy simulations are performed by using the qiskit
FakeSherbrooke backend.

Figure 3. Variational quantum circuit ansatz with two qubits used for the SSQITE H2 calculations shown in Figure 2. The TwoLocal ansatz
involves one layer of parametrized RX and RY gates, followed by a CNOT gate. This ansatz is general, in the sense that it can realize any two-qubit
operation.
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simulators. In fact, the comparison to numerically exact
calculations shown in Figure 2(a,c) demonstrates the accuracy
and capabilities of the SSQITE algorithm over the entire range
of bond lengths.
Figure 2(b) [Figure 2(d)] shows the errors of the noiseless

[noisy] SSQITE calculations for the H2 molecule, which
remain within 9.8 × 10−6 Ha (1.0 × 10−5 Ha), i.e., within
chemical accuracy of 1.6 × 10−3 Ha.22

For comparison, we also apply the SSQITE algorithm to the
LiH molecule,42 using a custom excitation preserving ansatz
with 16 adjustable parameters shown in Figure 4. This
excitation preserving ansatz ensures that the occupation
number symmetry is preserved by SSQITE. The three-qubit
LiH Hamiltonian is obtained by beginning with the STO-6G
basis. Reducing the size of the active space down to three
orbitals based on the natural orbital occupation number
(NOON) and averaging the qubits, we are left with a three-

Figure 4. Top: Variational quantum circuit ansatz with three qubits used for the SSQITE LiH calculations shown in Figure 5 is based on a custom
excitation preserving ansatz. Bottom: Excitation preserving subcircuit with two tunable parameters.

Figure 5. Comparison of the three lowest energy eigenvalues of LiH determined through (a, b) noiseless and (c, d) noisy simulation of SSQITE
optimization to numerically exact calculations (dashed lines). The ground, first, and second excited states correspond to X1Σ+, a3Σ+, and A1Σ+,
respectively. Note that the results from LiH differ from experimental data due to the truncated atomic orbital basis set used. Depicted are the
deviations of the (b) noiseless and (d) noisy SSQITE calculations from the ground truth energy levels of the LiH molecule. All noisy simulations
are performed using the qiskit FakeSherbrooke backend.
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qubit LiH Hamiltonian under the STO-6G basis.42,43 We note
that the model Hamiltonian studied here involves a
representation of the LiH based on a truncated atomic orbital
basis set that includes only s orbitals.44 To match the
experimental values for the LiH molecule, extended basis
sets need to be incorporated into its Hartree−Fock
calculations,45,46 which is outside the scope of this paper.
Figure 5(a,c) shows the three lowest energy eigenvalues of

LiH as a function of the interatomic Li−H distance for the
noiseless [Figure 5(a)] and noisy [Figure 5(c)] SSQITE
optimization. The results show excellent agreement with
benchmark calculations for the entire range of interatomic
distances.
Figure 5(b,d) shows the errors of SSQITE calculations for

the LiH model, which remain within chemical accuracy.
Similarly to the performance for the H2 molecule, SSQITE
performs well in calculations of ground and excited state
energies of LiH. In fact, as shown in Figure 5, the noiseless
(noisy) algorithm exhibits a maximum deviation of
1.30 × 10−3 Ha (1.32 × 10−3 Ha), below the benchmark of
1.6 × 10−3 Ha. The noisy results perform remarkably similarly
to the noiseless results for both H2 and LiH for two reasons.
First, the circuits employed have limited gate depth and are
therefore resistant to noise. Second, the added gate noise
delays convergence of the algorithm, reducing the effect of the
noise at the cost of a small number of extra iterations.
Lastly, the SSQITE algorithm is compared to SSVQE on a

simple toy Hamiltonian in Figure 6. This comparison is done
across the lowest three states in the toy two-qubit Hamiltonian,
with ansatz shown in Figure 6b. Using this toy model, it is
shown that SSVQE can become trapped in local minima,
whereas SSQITE can escape to the global minimum. In Figure
6, SSVQE becomes trapped in the local minimum located at θ1
= θ2 = ± π, while SSQITE instead finds the global minimum at
θ1 = θ2 = 0. As VarQITE applied to ground states has
previously been demonstrated to have a resistance to local
minima as compared to VQE with a gradient descent
optimizer,13 this toy model demonstrates that this resistance
holds even when VarQITE is extended to excited state
algorithms such as SSQITE.

6. CONCLUSIONS

We have introduced the SSQITE method for the computation
of excited states using quantum devices. This method
combines key aspects of the SSVQE and VarQITE method-
ologies. We demonstrated the capabilities of SSQITE by
calculating the low-lying excited states of H2 and LiH
molecules. The results showed robustness in avoiding local
minima and excellent agreement with numerically exact
calculations. We also demonstrated the resistance of SSQITE
to local minima through a simple toy model. Additionally,
SSQITE is not sensitive to degenerate states, unlike folded-
spectrum VQE or folded-spectrum VarQITE, which calculate
excited states by altering the Hamiltonian to E( )2,28,44

where E is the energy of interest.
We have shown that using VarQITE as a foundation for

excited state algorithms offers potential benefits relative to
VQE, since some local minima typically found during VQE
gradient descent are absent in VarQITE.13 We have
demonstrated that this advantage persists when applied to
excited state algorithms. Additionally, we anticipate that the
subspace-search methodology implemented in SSQITE could
also be applied to exploit the advantages in other algorithms
such as the Quantum Iterative Power Algorithm (QIPA).
QIPA uses an oracle which double-exponentiates the

Hamiltonian = e( ) e in order to amplify the global
minimum of any input state. This has been shown to require
fewer iterations than VarQITE for quantum optimization of
ground states.14 This suggests that the combination of
subspace-search and imaginary time quantum evolution
methodologies could outperform other currently available
algorithms for the computations of excited states.

■ ASSOCIATED CONTENT

Data Availability Statement
The Python code for the SSQITE simulations is available at
this link.

Figure 6. Comparison of SSVQE and SSQITE on a toy model with local minima. (a) The 2-qubit toy Hamiltonian with local minima. (b) The
two-parameter ansatz used. (c) SSVQE and (d) SSQITE applied to the three lowest states of this Toy Hamiltonian and ansatz pair. The orthogonal
input states are |11⟩, |00⟩, and |01⟩, respectively. The background coloring represents the weighted loss of the three lowest energy levels. SSVQE is
unable to escape the local minima labeled with yellow arrows, while SSQITE is easily able to escape this minima. The black arrows represent a
single run of SSVQE and SSQITE from the starting point θ1 = θ2 = 2.3, on the edge of the local minima.
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