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Abstract
Kerr parametric oscillators are potential building blocks for fault-tolerant quantum computers.
They can stabilize Kerr-cat qubits, which offer advantages toward the encoding and manipulation
of error-protected quantum information. The recent realization of Kerr-cat qubits made use of the
nonlinearity of transmon superconducting circuits and a squeezing drive. Increasing nonlinearities
can enable faster gate times, but, as shown here, can also induce chaos and melt the qubit away. We
determine the region of validity of the Kerr-cat qubit and discuss how its disintegration could be
experimentally detected. The danger zone for parametric quantum computation is also a potential
playground for investigating quantum chaos with driven superconducting circuits.

1. Introduction

Decoherence is a familiar threat to quantum technologies. A resourceful way to protect quantum
information against decoherence processes that act locally is to encode it nonlocally in the form of
superpositions of coherent states [1]. These Schrödinger cat states [2–4] are the logical states of the so-called
Kerr-cat qubit, which can be generated with driven Kerr parametric oscillators [5–12], as those
experimentally realized in superconducting circuits [13]. The present work warns against an additional
problem: the potential development of chaos if the parameters of the oscillators are pushed beyond a
threshold. As explained here, the onset of local chaos can disintegrate the Kerr-cat qubit.

To stabilize Schrödinger cat states, the experiments combine Kerr nonlinearity and a squeezing
(two-photon) drive. The nonlinear oscillator is achieved with an arrangement of a few Josephson junctions,
known as superconducting nonlinear asymmetric inductive element (SNAIL) transmon [14], which is then
sinusoidally driven at nearly twice the natural frequency of the oscillator. As a result, the system develops a
double-well structure and a consequent twofold degenerate ground state that gives rise to the cat states [5–7,
9, 11, 13]. A significant increase of the relaxation time has been achieved with this setup.

Driven nonlinear quantum oscillators have also been employed in theoretical studies of quantum
activation [15, 16], quantum tunneling [12, 17–20], and photon-blockade phenomena [21]. A better
understanding of these systems can be achieved with the derivation of static effective Hamiltonians [22–24],
as those used in the analysis of quantum tunneling [19, 20] and the coalescence of pairs of energy levels [25]
that result in excited state quantum phase transitions (‘spectral kissing’) [26–28].

Despite the various applications and the advances brought by Kerr parametric oscillators to quantum
computation and quantum error correction [29], chaos can become a source of concern. The problem that
the onset of chaos due to qubit-qubit interactions could cause to quantum computers was first raised
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in [30–33] and reverberates in more recent studies about the scrambling of quantum information [34–37]
and the emergence of chaos in coupled Kerr parametric oscillators [38–40].

Instead of interacting systems, our focus lies on the most basic element of the quantum computer, the
qubit itself. The onset of global chaos in the high energy spectrum of transmon qubits was studied in [41]
and ways to suppress chaos in a general Hamiltonian for superconducting qubits was analyzed in [42]. Our
concern is with the onset of local chaos that can develop at the core of the Kerr-cat qubit and melt it away. As
the SNAIL transmons’ nonlinearities are pushed to larger values [14, 43], required for faster gates [5, 44, 45],
we show that the Kerr-cat qubit dangerously approaches its disintegration.

Driven nonlinear oscillators experimentally realized with the SNAIL transmon have so far been properly
described by low-order static effective Hamiltonians. As the nonlinear effects increase, the static and driven
pictures may still agree [46] if one considers higher orders terms in the expansion for the effective
Hamiltonian [23, 47], but this process eventually breaks down. When the drive and nonlinearities become
sufficiently strong, chaos sets in and the oscillator can no longer be described by a time-independent
Hamiltonian. In systems with one degree of freedom, such as the Kerr oscillator, chaos can only emerge in
time-dependent Hamiltonians. The source of chaos in Kerr parametric oscillators is the interplay between
nonlinearity and drive.

If on the one hand, chaos puts limits on the Kerr-cat qubit, on the other hand it opens a new direction of
research for superconducting circuits [48]. Quantum chaos has received increasing attention in fields that
range from quantum gravity and black holes to condensed matter and atomic physics due to its relationship
with quantum dynamics, absence of localization, and thermalization. Examples of quantum chaotic systems
that have been experimentally realized include the kicked rotor [49], the baker’s map [50], the kicked
top [51], the kicked harmonic oscillator [52], and the driven pendulum [53, 54]. Superconducting circuits
offer unmatched advantages for the study of quantum chaos and its consequences, because both spectrum
and dynamics can be measured simultaneously. The spectrum can be measured as a function of the control
parameters, potentially allowing for the analysis of level statistics, and dynamics can be studied in phase
space, which enables the evolution of out-of-time ordered correlators [27] and Wigner functions.
Furthermore, the classical limit is experimentally realizable.

In this work, we identify the border between regularity and chaos in the driven Kerr parametric oscillator,
and estimate the parameter values for which the Kerr-cat qubit melts away. We also discuss how the qubit
disintegration could be experimentally captured. The analysis is based on the quasienergies and Floquet
states of the driven nonlinear quantum oscillator implemented with the SNAIL transmon and is
complemented with classical tools that include Poincaré sections and Lyapunov exponents.

2. Quantum and classical Hamiltonians

The SNAIL transmon is an arrangement of Josephson junctions with a threaded magnetic flux that allows for
tuning the nonlinearity of the system. Its Hamiltonian has a potential given by a sinusoidal function. As
justified in appendix A, to determine the onset of chaos in this system, it suffices to consider the Taylor
expansion of the SNAIL potential up to fourth order, so the undriven part of the Hamiltonian is [20, 28]

Ĥ0
h̄

= ω0â
†â+

g3
3

(
â+ â†

)3
+

g4
4

(
â+ â†

)4
. (1)

In the equations above, ω0 is the bare frequency of the oscillator, â† and â are the bosonic creation and
annihilation operators, and g3,g4 ≪ ω0 are the coefficients of the third and fourth-rank nonlinearities
[20, 28]. To create the Kerr-cat qubit, the system is periodically driven, so the total quantum Hamiltonian is
given by [20, 28]

Ĥ(t)

h̄
=

Ĥ0
h̄

− iΩd

(
â− â†

)
cosωdt, (2)

where Ωd is the amplitude of the sinusoidal drive, and ωd is the driving frequency. We set h̄= 1.
As explained in [10], the effective nonlinearity of the system, K, is determined by half the difference

between the frequencies of the lowest energies of the undriven Hamiltonian, that is,

K= (ω1,0−ω2,1)/2, (3)

where ωi,j = (E(0)i − E(0)j ) and E(0)i are the eigenvalues of Ĥ0. In the analysis below, we refer to K as the Kerr
nonlinearity and choose the control parameters g3 and g4 within ranges that are experimentally accessible.
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We stress that what we call K here is an exact quantity, not the perturbative parameter used in effective
Hamiltonians.

We use Floquet techniques [55] (see also [56, 57]) to analyze the periodically driven system in
equation (2), where Ĥ(t) = Ĥ(t+Td) and Td = 2π/ωd is the period of the drive. Following the Floquet
theorem, the solutions for the Schrödinger equation are the Floquet states,

|Fj (t)⟩= e−iϵjt|ϕj (t)⟩, (4)

where |ϕj(t)⟩= |ϕj(t+Td)⟩ are the Floquet modes, with j ∈ [0,N− 1] and N being the truncated Hilbert
space dimension, and ϵj are the quasienergies with ϵjTd ∈ [−π,π]. The Floquet states are eigenstates of the
Floquet operator over one period,

U (Td) |Fj⟩= exp
(
−iϵjTd

)
|Fj⟩. (5)

The derivation of the classical limit of the quantum Hamiltonian in equation (2) is shown in appendix A.
Using the canonical coordinates (q, p), the classical Hamiltonian is written as

hcl (t) = h0+
√
2Ωdpcos(ωdt) , (6)

where

h0 =
ω0
2

(
q2+ p2

)
+

√
23

3
g3q

3+ g4q
4. (7)

To solve the classical dynamics, the Hamilton equations of motion are used.

3. Regularity to Chaos

We start our analysis by setting the frequency of the drive at nearly twice the natural frequency of the
oscillator, ωd ≈ 2ω0. For this choice and the parameters used in the experiments [20, 28], the system can be
described by a double-well metapotential, as illustrated in figure 1(a). The parameters are given in the first
line of table 1, which defines the point A.

Black dots in figure 1(a) designate Poincaré sections. These points are obtained by evolving many
different classical initial conditions according to equation (6) and collecting the values of q and p at each time
Td. The curves that are formed with these points coincide with the energy contours of the classical limit of
the static effective Hamiltonian investigated in [20, 27, 28, 46] (see equation (C.2) in appendix C). The red
curve in figure 1(a) matches the Bernoulli lemniscate of the classical static effective Hamiltonian and
corresponds to the separatrix associated with the unstable point in the center of the phase space (see
appendix B.1). This curve delineates the boundary of the double well and is characterized by the following
two parameters: Π =Ωdωd/

(
ω2d −ω20

)
, where

√
2Π is the distance from the center of the phase space to the

center of the double well, and
√
2Γ, which is half the distance between the two minima of the wells, with

Γ = g3Π/K. The symmetric ellipses within the lemniscate in figure 1(a) are centered at the minima of the
metapotential, at (±qmin=±

√
2Γ, pmin = 0), and the area within the lemniscate is equal to 4Γ (see

appendix B). Using the Bohr quantization rule and dimensionless coordinates q and p, we thus have¸
pdq= 2πnin, and the integer number of levels inside the lemniscate is given by [28]

nin = 2Γ/π , (8)

which can be measured experimentally.
We color figure 1(a) according to the value of the participation ratio,

P(α)
R =

1∑
j

∣∣⟨α|Fj⟩
∣∣4 = 1∑

j

(
πQα

Fj

)2 , (9)

for coherent states |α⟩ projected in the Floquet states, where â|α⟩= α|α⟩, with α= (q+ ip)/
√
2, and

Qα
Fj

=
∣∣⟨α|Fj⟩

∣∣2 /π is the Husimi function of each Floquet state. The participation ratio in equation (9)
measures the level of delocalization of a coherent state in the basis defined by |Fj⟩. The most localized
coherent states are those centered at the minima of the double-well metapotential, | ±αmin⟩, and at its center
(p,q)≃ (0,0) [27]. They have the smallest values of P(α)

R , which correspond to the darkest tones of blue in
figure 1(a).
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Figure 1. Quantum and classical analysis in phase space and the quasienergy spectrum for ωd/ω0 = 1.999866. (a)–(f) Phase
space analysis of the parameters indicated in table 1. The black dots give the classical Poincaré sections for many different initial
conditions, the red line in (a) marks the separatrix that defines the Bernoulli lemniscate, colors from blue to orange indicate the
values of the participation ratio of coherent states projected in the Floquet states. (g) Measure of quantum chaos given by the
average ratio r of consecutive quasienergies spacings as a function of K/ω0 and Γ. The six points A–F marked in (g) are the same
ones chosen for the phase spaces in (a)–(f). They were selected to illustrate the behavior in the regular, mixing, and chaotic
regimes. The solid black curve in (g) corresponds to equation (13) and indicates the parametric case, where the classical Lyapunov
exponent becomes positive in the vicinity of the center of the lemniscate, while the black dashed line corresponds to equation (14)
and indicates the parameters for which chaos sets in both inside and outside the original lemniscate, which by then has
disappeared. (h)–(i) Lyapunov exponents for the same parameters used in (d)–(e). Zero Lyapunov exponent (dark blue) indicates
regularity.

Table 1. Parameters for the points A–F marked in figure 1(g), whose phase diagrams are depicted in figures 1(a)–(f), and the
corresponding values of nmin obtained with equation (10).

Point 104K/ω0 Γ nmin

A 0.53 8.5 8.079
B 5.02 8.5 7.249
C 0.53 80 77.007
D 2.91 80 66.134
E 8.33 80 197.924
F 25 80 336.598

There are two quasidegenerate Floquet states, |Fmin⟩, that are highly localized at the minima of the
double wells and correspond to superpositions of the two opposite-phase coherent states, |Fmin⟩ ∝
|+αmin⟩± |−αmin⟩ [1, 58]. These states define the Schrödinger cat states of the Kerr-cat qubit [13]. The
expectation value of the number operator for these states is

nmin = ⟨Fmin|n̂|Fmin⟩ ≈ |αmin|2 = Γ, (10)

which can be measured experimentally. This value is directly related with the number of states inside the
lemniscate, nin, given in equation (8).

3.1. Kerr-cat qubit disintegration
The portion of the phase space presented in figure 1(a) is characterized by periodic orbits, being therefore
regular. However, a chaotic sea exists far away from the lemniscate, as shown in appendix B. The analysis of
global chaos would classify the system with the parameters of figure 1(a) as being in a mixed regime, but this
is not our focus. We are concerned with local chaos, which can emerge around the phase space center [59]
and destroy the Kerr-cat qubit.

To analyze the transition to chaos in the vicinity of the phase space center, we vary Γ and K/ω0. This is
done so that the Kerr amplitude remains within values that are experimentally accessible in the present or
near future, K/ω0 ∈ 33× [10−6,10−4] (see appendix C). The parameter Γ is varied by changing Π, while
keeping ωd ≈ 2ω0.
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To determine the onset of quantum chaos, we use the average ratio of consecutive quasienergy
spacings [60, 61],

r̃=
1

N

N∑
j

min

(
rj,
1

rj

)
, where rj =

sj
sj−1

(11)

and sj = ϵj+1− ϵj. The spectra of chaotic systems are rigid and their levels are correlated, which results in
Wigner–Dyson distributions for the spacings of neighboring levels. When the symmetries of the chaotic
system comply with the circular orthogonal ensemble, r̃COE ≈ 0.53. Levels of regular systems are
uncorrelated and follow Poisson statistics, r̃P ≈ 0.39. We compute the renormalized quantity,

r̄=
r̃− r̃P

r̃COE− r̃P
, (12)

so that chaos entails r̄= 1 and regularity r̄= 0. To perform this study, we consider a truncated Hilbert space
of dimension 2000 and select the first N = 800 Floquet states ordered according to the expectation value of
the number operator.

In figure 1(g), we construct a map of regularity and chaos for the quantum system in equation (2). The
region in red indicates that r̄≈ 1, so the system is chaotic. This region emerges for large values of the Kerr
amplitude, K/ω0, and Γ. The region in blue indicates regularity.

The six points, A–F, marked in figure 1(g) are chosen for a more detailed analysis in figures 1(a)–(f) of
their corresponding phase space structures (classical analysis) and of the level of delocalization of coherent
states written in the basis of Floquet states (quantum analysis). Just as in figure 1(a), described above, the
black dots in figures 1(b)–(f) are associated with the Poincaré sections and the colors give the values of the
participation ratio of coherent states projected in the Floquet states.

Points A, B, and C are in the regular regime. The lemniscate in figure 1(a) persists in figures 1(b) and (c),
although it becomes more asymmetric. Notice that the scales in figure 1(a) are not the same as in figures 1(b)
and (c).

Point B corresponds to a large value of the Kerr amplitude. As seen at the edges of figure 1(b), the
periodic orbits disappear, giving space to black dots. In the classical limit, this region of phase space gives
positive Lyapunov exponents, which implies chaos. In spite of that, the structure of the Kerr-cat qubit
survives and the value of nmin remains close to Γ, as seen in table 1. The resilience of the Kerr-cat qubit to a
range of values of the the Kerr nonlinearity should be reassuring to the parametric quantum computation
community (see also appendix C).

Point C shows what happens to point B as one approaches the classical limit, which is done by
broadening the wells. By increasing Γ while keeping ΓK/ω0 constant, we enlarge the wells without changing
their shape and increase the number of levels within (cf the values of nmin for B and C in table 1), thus
approaching the classical picture.

Point D provides the main message of this work. The center of the double well, which is a hyperbolic
point in figures 1(a)–(c), is no longer a single point in figure 1(d). Chaos now exists not only far away from
the double-well structure, but right at the center of the lemniscate, indicating the beginning of its
disintegration. At this stage, any activation between wells [15, 28] will happen through the chaotic region.
We now have chaos and islands of stability around the structure of the asymmetric double well and chaos at
its center.

To make the onset of local chaos in figure 1(d) even more evident, we replicate this panel in figure 1(h),
but now color it with the values of the Lyapunov exponent, λ, obtained with the classical system in
equation (6). There are two distinct Lyapunov exponents, the one beyond the double well, associated with
global chaos, and the one right at its center, responsible for melting the qubit away.

The values of Γ and K/ω0 beyond which the intermediate regime between regularity and local chaos
emerges follows the black solid line in figure 1(g) given by

ΓK/ω0 =
g3Ωdωd

ω0
(
ω2d −ω20

) ≃ 0.0187. (13)

This line marks the parameters’ values, where the Lyapunov exponent first gets positive in the vicinity of the
phase-space center, remaining separated from the region of global chaos. This is a theoretical line, that can be
refined according to the particularities of each experimental setup. It indicates that, despite the transition to
chaos, there is still ample space for the stabilization of Schrödinger cat states and for reaching large values of
K, which are needed for fast gates.
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Figure 2. (a) Expectation value of the number operator, nmin, and (b) Shannon entropy, Smin, for the Floquet state |Fmin⟩. The
two quantities are shown as a function of the Kerr amplitude K/ω0 for Γ = 30 (triangles) and Γ = 80 (squares). In (a): the blue
background indicates regular region and the orange background indicates chaotic region; they are separated by the same black
dashed line shown in figure 1(g). Panels (I), (II), (III), and (IV) depict the Husimi functions for the Floquet state |Fmin⟩ indicated
in (a) and (b) as points (I), (II), (III), and (IV) with K/ω0 = {0.33,3.66,8.66,12}× 10−4.

By increasing the strength of the nonlinearities and drive, the chaotic sea, which was once far away from
the double well, expands and eventually merges together with the chaotic region of the phase-space center.
This is illustrated with points E–F in figures 1(e) and (f). In figure 1(e), two small islands of regularity
reminiscent of the double well persist. They are also visible in the corresponding figure 1(i), which depicts
the Lyapunov exponent for the parameters of point E. In contrast to figure 1(h), there is now a single positive

Lyapunov exponent. In figure 1(f), the values of P(α)
R indicate near ergodicity.

In figure 1(g), we draw a dashed black line to indicate the parameters’ values for which chaos close to the
phase-space center and around the double well merge together. Similarly to equation (13), the analysis is
based on the values of the Lyapunov exponents and the equation for the dashed line is given by

ΓK/ω0 =
g3Ωdωd

ω0
(
ω2d −ω20

) ≃ 0.03347. (14)

We notice, however, that the Taylor expansion used in equation (1) works well for values of the nonlinearities
and drive up to equation (13). Beyond that, the full sinusoidal SNAIL potential should offer a better picture
of the chaotic system.

The analysis in figure 1 was performed using a relation between g3 and g4 that ensures that the
parameters in figure 1(a) reproduce the physics in [28], where the second-order static effective Hamiltonian
describes very well the experiment. There are numerous other possibilities for varying the parameters, many
within experimental capabilities. Nevertheless, as discussed in appendix C, they should lead to results
comparable to those in figure 1. The transition to chaos is unavoidable, although one may be able to shift the
values for the threshold between regularity and chaos in equation (13).

3.2. Chaos detection
The experiment with the superconducting circuit performed in [28] measured the energy levels of the driven
nonlinear oscillator as a function of the control parameter. However, the number of levels currently accessible
to the experiment is not sufficient for the analysis of level statistics, as done in figure 1(g). To circumvent this
issue, we propose a way to detect the transition to chaos that avoids the analysis of the quasienergy spectrum
and focuses instead on the properties of the Floquet state |Fmin⟩. When the system is in the regular regime,
this state coincides with the Schrödinger cat state and is highly localized at the minima of the wells. As the
nonlinearities increase and |Fmin⟩ spreads in phase space, we can be sure that chaos has already set in.

In figure 2(a), we show nmin = ⟨Fmin|n̂|Fmin⟩ as a function of K/ω0 for Γ = 30 (triangles) and Γ = 80
(squares). In the presence of the double well, nmin ∼ Γ, as given by equation (10). The background of the
figure is colored according to the results in figure 1(g), so the region in blue is regular and the orange one
indicates chaos. The dashed black line separating the two regions is the same as in figure 1(g). The analysis is
complemented with figure 2(b), which shows the behavior of the Shannon entropy for the Floquet state

6
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|Fmin⟩ projected in the coherent states,

Smin =− 1
π

ˆ
Qα

Fmin
ln
(
Qα

Fmin

)
d2α, (15)

as function of K/ω0 for Γ = 30 (triangles) and Γ = 80 (squares).
We start by describing the results for Γ = 80 (squares) in figure 2(a). In the regular regime, nmin decays

linearly with the Kerr amplitude. To better explain this behavior, we select points (I) and (II) and depict their
respective Husimi functions on the left panels (I) and (II). As expected, the Husimi functions for these two
Floquet states |Fmin⟩ are localized at the minima of the double well, at q=±

√
2Γ≈±13. Comparing panel

(I) and panel (II), we see that as K/ω0 increases, the structure of the Husimi function becomes more
asymmetric and the area of the lemniscate decreases, which reduces the value of nmin. Since the Husimi
functions remain localized in panels (I) and (II), the values of the Shannon entropy for these two cases in
figure 2(b) are comparable.

As we enter the chaotic region for Γ = 80, nmin in figure 2(a) and Smin in figure 2(b) grow with K/ω0.
This can be understood from the Husimi functions for the points (III) and (IV), shown on the panels to the
right of figures 2(a)–(b). The parameters for point (III) are equivalent to those in figure 1(e), where there are
two islands of instability close to the original minima of the double well. This explains why |Fmin⟩ in panel
(III) shows some level of confinement around the islands, although the state is visibly more delocalized than
those in panels (I) and (II). The parameters for point (IV) are equivalent to those in figure 1(f), where the
system approaches ergodicity, so the Husimi function in panel (IV) is spread out.

The behavior of nmin and Smin as a function of the Kerr amplitude for Γ = 30 (triangles) in
figures 2(a)–(b) is similar to that for Γ = 80. The difference lies in the values of the Kerr amplitude required
for the onset of chaos and the consequent growth of nmin and Smin, which are larger than for Γ = 80.

The disintegration of the double well can then be detected from the analysis of the spread of the
Schrödinger cat states in phase space. This can be done by directly investigating the Husimi or Wigner
functions of these states in phase space for different values of the system, or by quantifying their spread with
the occupation number nmin or an entropy, such as Smin. The growth of nmin and Smin signals the system’s
departure from the regular to the chaotic regime.

Our proposal is within reach of existing experiments. It requires the preparation of the state closest to the
bottom of the double-well structure, as done in [13, 28]. The occupation number nmin could then be
indirectly obtained through the measurement of the well occupations [28]. The Wigner and the Husimi
functions for this state can be measured experimentally using the method described in [62]. Another
proposal to prepare quasienergy states was suggested in [63] and may also be experimentally implemented.
All of these methods have been developed for the regular regime, whether they will require improvements in
the vicinity of the chaotic regime is an interesting open question.

4. Conclusion

Our work brings to light the risk posed by the onset of chaos for Kerr parametric oscillators, which puts a
limit on the ranges of parameters that can be employed for qubit implementation. Combining quantum and
classical analysis, we determined the threshold for the rupture of the Kerr-cat qubit, which happens when
chaos first sets in around the center of the qubit double-well structure. Important extensions to this work
include the role of dissipation [64, 65], which will be the subject of a forthcoming work, and the analysis of
the limitations that chaos may impose to parametric gates in transmon and fluxonium arrays.

By increasing the nonlinearities and driving amplitude, we showed that the Schrödinger cat states of the
Kerr-cat qubit, which are initially confined at the bottom of the wells, spread and eventually disintegrate.
Once these states are lost, chaos is certain to have spread throughout the phase space. The process of
disintegration could be experimentally observed with the currently available technology by measuring the
Wigner functions of the cat states.

The results in this work indicate that the platform of superconducting circuits allows either to engineer
bosonic qubits for quantum technologies or to induce chaos to address fundamental questions. This opens
up a new avenue of research for superconducting circuits. They could be used, for example, to investigate
how chaos affects the spread of quantum information in phase space and whether chaos can enhance the
tunneling rate between islands of stability.

Despite our focus on the Kerr-cat qubit generated with the SNAIL transmon, any driven parametric
oscillator could, in principle, be used to explore the transition from regularity to chaos. The threshold for the
onset of chaos depends on the specific system considered, but the physics is analogous to the one described in
this work.
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Appendix A. Driven SNAIL transmon

The Hamiltonian of the experimental driven circuit withM SNAILs is given by

Ĥ(t)

h̄
= 4ECn̂

2+UM (φ̂)+
√
2Ω̃dn̂cos(ωdt) . (A.1)

The inductive energy of a single SNAIL is

USNAIL (φ̂s) = EJ

[
−αcos(φ̂s)−mcos

(
φext− φ̂s

m

)]
, (A.2)

EC = e2/2C is the Coulomb charging energy of the junction with capacitance C, e is the electron charge, EJ is
the Josephson energy, φext = 2πΦext/Φ0 is the reduced applied magnetic flux, Φ0 = h/2e is the magnetic flux
quantum, φ̂s is the phase drop across the single SNAIL, and the drive is defined by its amplitude Ω̃ and its
frequency ωd. The operators n̂ and φ̂ describe the reduced charge on the capacitance and its conjugate, the
reduced flux operator, where [φ̂, n̂] = i. The single SNAIL consists of a superconducting loop ofm large
Josephson junctions and a single smaller junction (tunneling energies EJ and αEJ, respectively), which is
threaded with a DC magnetic flux Φext. For an array ofM SNAILs, the effective potential reads as

UM (φ̂) =MUSNAIL (φ̂s [φ̂])+
1

2
EL (φ̂−Mφ̂s [φ̂])

2
, (A.3)

where EL is the energy of the linear inductance (or stray inductance) in the system and φs[φ] is defined by the
equation

α sinφs − sin
(
φext−φs

m

)
+ ξJ (Mφs −φ) = 0, (A.4)

where ξJ = LJ/L is the ratio between the inductance of the big junction in the SNAIL and the linear
inductance L.

A.1. Taylor expansion of the SNAIL potential
By Taylor expanding the potential of the single SNAIL in equation (A.2) around the minimum
φs[φ̄min] = φmin, we have

USNAIL (φ̂+φmin)≈ EJ
( c2
2
φ̂2+

c3
3!
φ̂3+

c2
4!
φ̂4 · · ·

)
,

cn =
∂nU(φmin)

∂φn
, (A.5)
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where

c0 =−αcos(φmin)−mcos

(
φext−φmin

m

)
,

c1 = α sin(φmin)− sin
(
φext−φmin

m

)
,

c2 = αcos(φmin)+
1

m
cos

(
φext−φmin

m

)
,

c3 =−α sin(φmin)+
1

m2
sin

(
φext−φmin

m

)
,

c4 =−αcos(φmin)−
1

m3
cos

(
φext−φmin

m

)
(A.6)

and φmin obeys the transcendental equation

c1 = α sin(φmin)− sin
(
φext−φmin

m

)
= 0. (A.7)

For an array ofM SNAILs, the potential energy of the SNAIL in equation (A.3) can also be expanded,
leading to the following time-independent part of the total Hamiltonian in equation (A.1),

Ĥ0
h̄

= 4ECn̂
2+ EJ

(
c̄2
2!
φ̂2+

c̄3
3!
φ̂3+

c̄4
4!
φ̂4+ · · ·

)
, (A.8)

where the coefficients c̄n can be replaced with the coefficients cn introduced in [66] as

c̄2 =
p

M
c2,

c̄3 =
p3

M2
c3,

c̄4 =
p4

M3

[
c4−

3c23
c2

(1− p)

]
, (A.9)

where p= MξJ
c2+MξJ

. Only the third and fourth-rank nonlinearities were relevant in the experiments in [20, 28,
66, 67], as also discussed theoretically in [44]. We show below the relevance of this expansion over the local
dynamics in phase space.

Introducing the dimensionless operators

X̂=
φ̂√
2h̄eff

, P̂=
√
2h̄eff n̂, (A.10)

with [X̂, P̂] = i, and truncating equation (A.8) at fourth order in φ̂, we arrive at the following total
time-dependent Hamiltonian

Ĥ(t)

h̄
= ω0

(
P̂2

2
+

X̂2

2

)
+
2
√
2g3
3

X̂3+ g4X̂
4+

√
2Ωd cos(ωdt) P̂, (A.11)

where

ω0 =
√
8c̄2ECEJ = 2h̄

2
effc̄2EJ,

g3 =
h̄3effc̄3EJ
2

,

g4 =
h̄4effc̄4EJ
6

,

Ωd =
Ω̃d√
2h̄eff

, (A.12)

and

h̄eff =

(
2EC
c̄2EJ

)1/4
. (A.13)
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Figure A1. (a) Poincaré sections from the classical Hamiltonian with the full SNAIL potential. (b) Poincaré sections from classical
Hamiltonian with the SNAIL potential expanded to fourth order. Both plots have the parameters corresponding to the point D in
the table 1. Black points are used for regular orbits and red points are used for chaotic orbits. The blue solid line represents the
separatrix for the non-expanded potential (a) and the potential expanded to fourth order (b).

Using the classical limit described in appendix A.3, we compare the Poincaré section obtained for the full
potential (figure A1(a)) with the Poincaré section obtained for the Taylor expanded potential (figure A1(b))
for the parameters used in the case of point D in figure 1. This is the point at the transition region between
integrability and chaos, which is the focus of this work. We see that the results in the region of the double
well structure are equivalent. This means that for the analysis of the transition to chaos, it suffices to consider
the Taylor expanded potential as done in equation (1).

A.2. Phase-space volume rescaling
Using the following relation

X̂= q̂/
√

h̄eff, P̂= p̂/
√

h̄eff (A.14)

in [X̂, P̂] = i, we get [q̂, p̂] = ih̄eff. The quantum Hamiltonian in terms of q̂ and p̂ becomes

Ĥ(t)

h̄
=

ω0
h̄eff

(
q̂2+ p̂2

2

)
+
2
√
2g3

3
√

h̄3eff

q̂3+
g4
h̄2eff

q̂4+

√
2

h̄eff
Ωdp̂cos(ωdt) . (A.15)

By decreasing h̄eff, the double-well structure grows and the number of states within increases, thus bringing
the system closer to the classical limit. An example of this scenario is given in figure 1, as we move from point
B to point C (see figures 1(b) and (c)).

Defining â= 1√
2h̄eff

(q̂+ ip̂), we can write the Hamiltonian as

Ĥ(t)

h̄
= ω0â

†â+
g3
3

(
â+ â†

)3
+

g4
4

(
â+ â†

)4− iΩd

(
â− â†

)
cos(ωdt) . (A.16)
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A.3. Classical Hamiltonian
The classical limit is reached by taking h̄eff → 0, since q̂→ q and p̂→ p. This way, the quantum Hamiltonian,

Ĥ(t)

h̄
=

ω0
2h̄eff

(q̂− ip̂)(q̂+ ip̂)+
4∑

m=3

gm
m

(√
2

h̄eff
q̂

)m

+Ωd

√
2

h̄eff
p̂ cosωdt, (A.17)

leads to the classical Hamiltonian,

hcl (t) =
ωcl0
2

(
q2+ p2

)
+ 2

√
2
3 gcl3 q

3+ gcl4 q
4+

√
2Ωcld pcos(ωdt) , (A.18)

where

ω0 = ωcl0 h̄eff, g3 = gcl3
√

h̄eff,

g4 = gcl4 h̄
2
eff, and Ωd =Ωcld

√
h̄eff.

The classical static Hamiltonian

h0 =
ω0
2

(
q2+ p2

)
+

√
23

3
g3q

3+ g4q
4 (A.19)

describes a quartic asymmetric oscillator, that presents three stationary (critical) points (more details in
appendix B).

The Hamilton equations of motion are obtained using hcl(t) in equation (A.18). The system has one
degree of freedom, so chaos can only be generated in the presence of an external drive. Since the drive in our
system is continuous in time, nonlinearity is also needed for the onset chaos [68]. The source of chaos in the
system considered is then the interplay between nonlinearity and drive.

According to the Bohigas-Giannoni-Schmit conjecture, the presence of chaos in the classical system is
reflected in properties of the spectrum of the quantum counterpart [69]. This connection is supported by a
semiclassical approximation [70].

Appendix B. Emergence of the Bernoulli lemniscate

To better understand the origin of the lemniscate in figure 1(a) and where it emerges in phase space, let us
start by analyzing the classical static Hamiltonian in equation (7), which is the same as equation (A.19). This
Hamiltonian describes a quartic asymmetric oscillator that presents three stationary (critical) points with
p= 0. They are the minima

(q0,p0) = (0,0) ,

(q1,p1) = (d−,0) ,

and the hyperbolic point

(q2,p2) = (d+,0) ,

where d± =
√
2
(
−g3±

√
g23− 2g4ω0

)
/(4g4). The condition g23− 2g4ω0 > 0 ensures that d± is real.

The linearized Hamilton equations around a critical point {qc,pc} of h0 satisfy the following linear
differential equations,

q̇= ω0 (p− pc)

ṗ=
(
−ω0−4

√
2g3qc−12g4q2c

)
(q− qc) . (B.1)

The stability or instability around {qc,pc} is determined by the eigenvalues λm of the matrix constructed
in equation (B.1). If the eigenvalues are complex numbers, λm = i ω̃m, the orbits in the neighborhood of the
critical point are periodic and have frequencies ω̃m. If the eigenvalues of the matrix are real, then the critical
point is unstable and its Lyapunov exponent is equal to max(λm).

In figure B1(a), we show the Poincaré sections (black lines) for the driven system described by hcl(t) in
equation (A.18) with a frequency ωd that is nearly twice ω0 and with the parameters used in the experiment
in [28] and in figure 1(a). The stationary points of h0, (q0,p0) = (0,0) and (q2,p2) = (d+,0) are marked with
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Figure B1. (a) Phase space metapotential of the classical Hamiltonian hcl(t) in equation (A.18) representing a large asymmetric
double well. Black points are used for regular orbits. The red points indicate orbits with positive Lyapunov exponents (chaos).
The two green symbols indicate the critical points: circle for (q0,p0) = (0,0), and cross for (q2,p2) = (d+,0). The blue line is the
separatrix of the asymmetric double well. (b) Enlarged image of panel [(a)] close to the point (0, 0), providing a view of the
additional symmetric double well that emerges at the phase space center. The red line is the Bernoulli lemniscate. The distance
between the two minima is 2

√
2Γ. (c) Enlarged image of panel [(b)] close to the point (0, 0). The distance between the phase

space center (0, 0) and the hyperbolic point of the Bernoulli lemniscate is
√
2Π.

green symbols: circle for (0, 0) and cross for (q2,p2). The blue line crossing at the hyperbolic point (q2,p2) is
the separatrix of the big asymmetric double well. The red points indicate a chaotic sea that appears in the
vicinity of the separatrix. Around the minimum at (0, 0), the orbits are periodic and have frequencies
ω̃0 = ω0.

B.1. Double well at the phase space center
Close to the stationary point (q0,p0) = (0,0) at the center of the phase space, there is a bifurcation caused by
the chosen driving frequency, ωd ≃ 2ω0, that gives rise to another double-well structure. This is better seen in
figure B1(b), where we enlarge the area around (q0,p0). The entire analysis developed in the main text
concerns this region of the phase space.

The double-well structure in figure B1(b) also exhibits three critical points: two minima and a hyperbolic
point. Notice that the hyperbolic point of this double well is very close to the phase space center (0, 0). The
line that crosses the hyperbolic point, also known as homoclinic orbit, is the separatrix. It is indicated with
the red line, which corresponds to the Bernoulli lemniscate given by(

q2+ p2
)2

= 4Γ
(
q2− p2

)
,

and in polar coordinates

r2 (θ) = 4Γcos(2θ) ,

where the focal distance is
√
2Γ. The surface area corresponds to

4

ˆ π/4

0

ˆ r(θ)

0
rdrdθ = 4Γ, (B.2)

which is the result used to obtain equation (8).
In figure B1(c),

√
2Π is the distance between the phase space center (0, 0) and the center (hyperbolic

point) of the Bernoulli lemniscate. The separation between the two points can be understood as follows. The
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Table B1. This table is the same as table 1. It gives the parameters for the points A–F marked in figure 1(g), but now the values of√
2Γ/|d+| and

√
2Π/|d+| are also given.

Point 104K/ω0 Γ nmin
√
2Γ/|d+|

√
2Π/|d+|

A 0.53 8.5 8.079 0.041 22 0.001 484 92
B 5.02 8.5 7.249 0.141 397 0.015 7244
C 0.53 80 77.007 0.126 47 0.0140 573
D 2.91 80 66.134 0.295 77 0.076 9191
E 8.33 80 197.924 0.499 95 0.219 769
F 25 80 336.598 0.865 94 0.659 321

dynamics around the critical point (0, 0) is given by

q(t) = q0 (t)+ qr (t) ,

where q0(t) is the homogeneous solution obtained with the undriven classical Hamiltonian h0 and qr(t) is
obtained from the linear terms of the Hamilton equations for the driven case, so that

q̈r +ω20qr =−
√
2ωdΩd sinωdt,

and

qr (t) =
√
2Π sin(ωdt) ,

where

Π =Ωdωd/
(
ω2d −ω20

)
.

The linear response associated with qr(t) causes a translation of the center of the lemniscate by the amplitude√
2Π. Therefore, as one can see from figures 1(a)–(c), the condition for the existence of a well-defined inner

double-well structure centered close to (0, 0) is

|
√
2Π|+ |

√
2Γ|< |d+|. (B.3)

In table B1, we complement table 1 by providing the values of
√
2Γ/|d+| and

√
2Π/|d+|. All points,

except for point F, satisfy the inequality in equation (B.3). For point F, the lemniscate is already destroyed by
chaos.

Appendix C. Control parameters

In the main text, the values of K/ω0 are varied parametrically by varying g3/ω0 and g4/ω0 according to the
equation

g4 =
20g23
69ω0

. (C.1)

This choice is made to guarantee that we reproduce the scenario in [28], where the second-order effective
Hamiltonian describes very well the experiment. The second-order effective Hamiltonian is given by [28],

Ĥ(2)
eff

h̄
=−K(2)â†2â2+ ϵ

(2)
2

(
â†2+ â2

)
, (C.2)

where

K(2) =−3g4
2

+
10g23
3ω0

, (C.3)

and ϵ(2)2 = 2g3Ωd/(3ω0). Equation (C.1) is the same as equation (C.3) when K(2) = 10g4. In this section, we
show what happens to the analysis in figure 1(g) for other choices of C in K(2) = C g4.

In figure C1(a), we show in color the values of K(2) as a function of g3/ω0 and g4/ω0. Blue gradient is used
when K(2) < 0 and red gradient for K(2) > 0. The green, cyan, purple, and orange lines indicate the examples
where C = {1,10,100,−0.6976}, respectively. In figure C1(b), we use the difference δK = |K−K(2)| to
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Figure C1. (a) Kerr amplitude K(2) of the second-order effective Hamiltonian (in color) as a function of g3/ω0 and g4/ω0. Red is
used for K(2) > 0 and blue for K(2) < 0; the solid black lines mark constant values of K(2); the green line marked as (c) is for
K(2) = g4, the cyan line (d) is for K(2) = 10g4, the purple line (e) is for K(2) = 100g4, and the orange line (f) is for
K(2) =−0.6976g4. (b) Absolute difference between K(2) and K as a function of |K/ω0| for different choices of K(2) = Cg4, as
indicated. (c)–(f) Measure of quantum chaos given by the average ratio r of consecutive quasienergies spacings as a function of
K/ω0 and Γ, for ωd/ω0 = 1.999866 and [(c)] K(2)/g4 = 1, [(d)] K(2)/g4 = 10, [(e)] K(2)/g4 = 100, and [(f)]
K(2)/g4 =−0.6976. The black solid curve indicates the parametric case, where the classical Lyapunov exponent becomes positive
in the vicinity of the center of the lemniscate, and the black dashed curve indicates the parameters for which chaos sets in both
inside and outside the original lemniscate.

compare K(2) and K. The behavior of δK with C is non-monotonic. The best match between K and K(2)

happens for K(2) = 10g4 (cyan line), which justifies the use of this choice for the analysis in the main text.
We notice that for the experimental parameter K/ω0 = 0.32/6000 used in [28], our choice of K(2) = 10g4

implies that g3/ω0 = 25.7371/6000, which is very close to the experimental value g3/ω0 = 30/6000 used in
that same work. The example C =−0.6976 is selected also using the parameters g3/ω0 = 25.7371/6000 and
K(2)/ω0 =−0.32/6000, with the difference that K(2) is now negative. We investigate C =−0.6976, because
negative Kerr amplitudes are also experimentally available.

Figure C1(d) is exactly the same as figure 1(g). It shows the average value of the quantum chaos indicator
r̄ as a function of Γ and K/ω0. To complement the analysis of the regular to chaos transition performed in the
main text, we show in figures C1(c), (e) and (f) the results for r̄ as a function of Γ and K/ω0 for K(2) = g4,
K(2) = 100g4, and K(2) =−0.6976g4, respectively. The results are comparable, although for K(2) = g4 in
figure C1(c), we see that the transition to chaos gets shifted to larger values of Γ and K/ω0.

There are numerous ways in which the parameters of the Hamiltonian may be varied. There are various
paths that can be taken to change g3 and g4 that are not necessarily linear, as those in figure C1, but the
relationship in the equation (13) is general.
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