
PHYSICAL REVIEW RESEARCH 7, 013181 (2025)
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In this work, the term “quantum chaos” refers to spectral correlations similar to those found in the random
matrix theory. Quantum chaos can be diagnosed through the analysis of level statistics using, e.g., the spectral
form factor, which detects both short- and long-range level correlations. The spectral form factor corresponds
to the Fourier transform of the two-point spectral correlation function and exhibits a typical slope-dip-ramp-
plateau structure (aka correlation hole) when the system is chaotic. We discuss how this structure could be
detected through the quench dynamics of two physical quantities accessible to experimental many-body quantum
systems: the survival probability and the spin autocorrelation function. The survival probability is equivalent to
the spectral form factor with an additional filter. When the system is small, the dip of the correlation hole reaches
sufficiently large values at times which are short enough to be detected with current experimental platforms. As
the system is pushed away from chaos, the correlation hole disappears, signaling integrability or localization.
We also provide a relatively shallow circuit with which the correlation hole could be detected with commercially
available quantum computers.
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I. INTRODUCTION

The main mechanism for the onset of quantum chaos in
many-body quantum systems is the interaction between par-
ticles. Similar to what one finds in random matrix theory,
realistic many-body quantum systems in the chaotic regime
are characterized by correlated energy levels [1,2] and middle-
spectrum eigenstates that approach random vectors by filling
the energy shell [3]. When these systems are taken far from
equilibrium, quantum chaos underlies the spread and scram-
bling of quantum information, hindering the reconstruction
of the initial state through local measurements. Such re-
distribution of quantum information is intertwined with the
thermalization of subsystems [3,4] and the difficulty in reach-
ing a localized phase [5–7]. Understanding and quantifying
many-body quantum chaos is thus essential for describing and
controlling many-body quantum dynamics and for the devel-
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opment of quantum technologies. In this work, we discuss
how spectral correlations indicative of quantum chaos can
be experimentally detected via the dynamics of many-body
quantum systems.

The spectral form factor provides direct access to short-
and long-range correlations among the eigenvalues of a sys-
tem Hamiltonian. Mathematically, it is defined as the Fourier
transform of the two-point function of the energy spectrum
[8]. In chaotic systems, it presents a slope-dip-ramp-plateau
structure analogous to the one found in random matrix theory,
therefore signaling a rigid spectrum. This structure can persist
even in the presence of environmental noise [9–16]. The ramp
only appears when the levels are correlated and the plateau
represents the saturation value of the spectral form factor.
The ramp reaches the plateau at the Heisenberg time, which
is inversely proportional to the mean level spacing and thus
depends on the dimension of the Hilbert space.

The analysis of level statistics through the spectral form
factor is an excellent way to detect many-body quantum chaos
in experiments with access to the spectrum, as in nuclear
physics. Level statistics is a less efficient diagnostic tool
of chaos in experiments with cold atoms [17–22], ion traps
[23–26], and available quantum computers [27,28], where the
spectrum is not easily accessible and the focus is instead on
many-body quantum dynamics. To detect the slope-dip-ramp-
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structure through dynamics, recent works have proposed to
monitor the fidelity of thermofield double states evolved under
the Sachdev-Ye-Kitaev model [10] and to use measurement
protocols on evolved random product states [29,30] that are
amenable to spin models realizable in platforms of Rydberg
atoms [31], superconducting qubits [32], and stroboscopically
driven cold atoms in optical lattices [33].

Our approach to detect many-body quantum chaos is suit-
able to different platforms which study dynamics, including
digital and analog quantum computers. We propose the use of
two dynamical quantities that can be experimentally measured
and that, like the spectral form factor, exhibit the characteristic
slope-dip-ramp-plateau structure when the system is chaotic.
They are the survival probability and the spin autocorrelation
function.

The survival probability is defined as the squared absolute
value of the overlap between the initial state and its evolved
counterpart. It is equivalent to the spectral form factor with
an additional filter associated with an initial state. We in-
vestigate the survival probability of experimentally accessible
initial states.

The idea of detecting quantum chaos through the sur-
vival probability was first proposed in Ref. [34], where the
slope-dip-ramp-plateau structure was originally known as the
“correlation hole” [10,12,34–44,46–53]. It was later shown
that the correlation hole emerges also in the spin autocor-
relation function [44,46], which, contrary to the survival
probability, is a local quantity in real space. As the parameters
of the system are changed and it moves from the chaotic
regime toward an integrable point or a localized phase, the
correlation hole gradually disappears [42–44,46]. In this pro-
cess, the correlation hole gets shallower and the ramp is
postponed to longer times, as first described in Ref. [46] and
then in Ref. [6].

In the present work, we study the evolution of the sur-
vival probability and the spin autocorrelation function in
two different many-body spin-1/2 models that can be re-
alized in current experiments with cold atoms [17–22], ion
traps [23–26], nuclear magnetic resonance (NMR) platforms
[54,55], and in quantum computers. They are the one-
dimensional (1D) disordered spin-1/2 Heisenberg model and
the 1D disordered long-range Ising model in a transverse
field. When the disorder strength is comparable to the in-
teraction strength, these systems are chaotic and present a
correlation hole. When the disorder strength is large, the
spectrum of finite systems ceases to be rigid and the corre-
lation hole disappears. In this case, the dynamics present only
oscillations.

The main challenges of our proposal lie on the minimum
value of the correlation hole and the timescale for its ap-
pearance. The lowest value (timescale) decreases (increases)
with the dimension of the Hilbert space, which in turn grows
exponentially with the size of our many-body quantum sys-
tems. Nevertheless, we show that the correlation hole can
emerge even when the systems have only six or eight sites. For
such small chains, the dip of the correlation hole happens at
sufficiently large values and at sufficiently short times for the
potential detection of many-body quantum chaos with current
experimental capabilities. For example, in trapped ions setups,
a chain of 10 spins can be reliably evolved up to times ≈60

in the unit of the hopping strength J [25] and our results
demonstrate that the entire correlation hole can be observed
for Jt � O(102) for a chain of eight spins and even less for
six spins.

We also provide a quantum circuit and compare its results
for the survival probability with those for the numerical simu-
lation of the Heisenberg model with six sites. Due to the small
chain size and the conservation of excitations in this model,
the quantum circuit is relatively shallow, allowing for the
implementation in current commercial quantum computers.
We run our circuit in a fake provider that mimics the behavior
of a real IBM quantum system with noise. The results indicate
the presence of a correlation hole.

In addition to the many-body spin models, we present
results for a disordered spin-1/2 chain with a single excitation
and nearest-neighbor coupling. This system is analogous to
the one-particle Anderson model, thus being localized in the
thermodynamic limit for an infinitesimal disorder strength.
However, when the chain is finite, it can present level cor-
relations that get manifested in the dynamics and could be
experimentally detected.

We append that after the online appearance of our work,
an experimental paper [56] confirmed the viability of our
proposal. Using a superconducting quantum processor, the
group was able to detect the correlation hole for a disordered
spin-1/2 model and a Floquet system with five spins.

The paper is organized as follows. In Sec. II, we review
the definition and properties of the spectral form factor, sur-
vival probability, and spin autocorrelation function. In Sec. III,
we analyze the dynamics of the survival probability and the
spin autocorrelation function for the 1D disordered isotropic
Heisenberg spin-1/2 model with nearest-neighbor couplings
and the 1D disordered long-range Ising model in a transverse
field. In Sec. IV, we compare the exact diagonalization result
for the survival probability evolving under the Heisenberg
model with that obtained with our quantum circuit run in an
IBM fake provider. In Sec. V, the analysis is extended to the
1D spin-1/2 model with a single excitation. Conclusions are
presented in Sec. VI.

II. DYNAMICAL INDICATORS OF MANY-BODY
QUANTUM CHAOS

The two-point spectral form factor captures both short- and
long-range correlations in the energy spectrum, thus providing
a complete diagnostic of quantum chaos. This quantity has
also been used to question the existence of a many-body
localized phase [6] and in recent studies of scale-invariant
critical dynamics [57]. The two-point spectral form factor is
defined as [8]

SFF(t ) = 1

D2

〈∑
m,n

ei(Em−En )t

〉
, (1)

where h̄ = 1, D is the dimension of the Hilbert space, En

represents the eigenvalues of the system, and 〈·〉 indicates
an ensemble average. For large random matrices from the
Gaussian orthogonal ensemble (GOE), we have [44,46]

SFF(t ) � J 2
1 (2�t )

(�t )2 − 1

D
b2

(
2�t

πD

)
+ 1

D
, (2)
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FIG. 1. Slope-dip-ramp-plateau structure (correlation hole) of
the spectral form factor obtained with an ensemble of 100 GOE
random matrices of dimension D = 200. The elements of the ma-
trices have 〈Hi j〉 = 0, 〈H2

i j〉 = 1/2 for i �= j, and 〈H2
ii 〉 = 1, so that

� ∼ √
D/2. The dark solid line is the analytical expression in Eq. (2)

and the shaded curve is the average over the ensemble. Vertical
dashed lines mark the beginning and the end of the ramp.

where J1(t ) is the Bessel function of the first kind, � is the
width of the semicircular density of states, and b2(t ) is the
two-level form factor [8],

b2(t ) =
{

1 − 2t + t ln (1 + 2t ), t � 1

t ln
(

2t+1
2t−1

) − 1, t > 1.
(3)

In Fig. 1, we show the spectral form factor averaged over an
ensemble of GOE random matrices. The first term in Eq. (2)
represents the slope in the slope-dip-ramp-plateau structure.
The slope exhibits oscillations characteristic of the Bessel
function, whose envelope decays as a power law ∝ t−3, as seen
in Fig. 1.

The dip in Fig. 1 happens at tdip = 31/4 and corresponds
to the minimum value of the spectral form factor, SFF(tdip) ≈
(4/π )

√
2/D3 (see Refs. [45,46]). The dip is followed by the

ramp, which is the region below the saturation value (plateau)
at 1/D. The beginning of the ramp and its end at the Heisen-
berg time, tH, are marked with vertical lines in Fig. 1. The
interval where SFF(t ) is below the plateau corresponds to the
correlation hole.

The ramp is described by the two-level form factor in
Eq. (3) and it emerges due to spectral correlations. Unless
averages are performed, the dip-ramp structure is hidden by
fluctuations, because the spectral form factor is non-self-
averaging [14,58–61].

It is usual to add a filter to the spectral form factor, a
common choice being the Boltzmann factors [62],

f (En) = e−βEn∑
m e−βEm

, (4)

where β is the inverse temperature. The case in Eq. (1) is
recovered for infinite temperature, β = 0.

A. Survival probability

The spectral form factor is closely related to the survival
probability, which is defined as

SP(t ) = |〈�(0)|�(t )〉|2 =
∑
m,n

|cm|2|cn|2ei(Em−En )t , (5)

where cn = 〈En|�(0)〉 is the nth component of the initial
state |�(0)〉 written in the energy eigenbasis {|En〉} of the
Hamiltonian Ĥ that describes the system. If one equates the
components |cn|2 with the Boltzmann factors f (En) in Eq. (4),
then the spectral form factor can be interpreted as the sur-
vival probability of an initial Gibbs state [62]. However, this
is not an easy state to prepare experimentally, so we focus
instead on experimentally accessible initial states evolving
under physical many-body quantum systems, as specified in
Sec. III.

We study quench dynamics, where the initial state is an
eigenstate of the unperturbed Hamiltonian Ĥ0 and it evolves
according to the total Hamiltonian

Ĥ = Ĥ0 + λV̂ , (6)

where V̂ is the perturbation and λ is the strength of the
perturbation. In many-body quantum systems with two-body
couplings, as considered in this work, the density of states of
Ĥ is Gaussian [1].

When the system is perturbed far from equilibrium
(λ ≈ 1), the energy distribution of the initial state, which is
often referred to as local density of states (LDOS),

ρ0(E ) =
D∑

n=1

|cn|2δ(E − En), (7)

is also Gaussian [63,64]. The width � of the LDOS is obtained
as [65]

�2 = 〈�(0)|Ĥ2|�(0)〉 − 〈�(0)|Ĥ |�(0)〉2

=
D∑

n �=n0

|〈εn|Ĥ |�(0)〉|2, (8)

where |εn〉 are the eigenstates of Ĥ0 and n0 corresponds to
the index of the initial state, |�(0)〉 = |εn0〉. Notice that the
calculation of � only requires knowledge of the off-diagonal
elements, 〈εn|Ĥ |εn0〉, of the total Hamiltonian Ĥ written in the
basis of eigenstates of Ĥ0.

The survival probability in Eq. (5) can be equivalently
expressed in terms of the Fourier transform of the LDOS,

SP(t ) =
∣∣∣∣
∫ Emax

Emin

ρ0(E )e−iEt dE

∣∣∣∣
2

, (9)

where Emin and Emax are the lower and upper energy bounds
of the LDOS. In terms of Eq. (9), it becomes clear that the
initial decay of the survival probability is Gaussian, e−�2t2

,
followed by a power-law decay that presents oscillations
[66–68]. This is the slope part of the slope-dip-ramp-plateau
structure.

Since SP(t ) is non-self-averaging [59,60], we work with
the averaged survival probability, 〈SP(t )〉 to capture the
subsequent features of the slope-dip-ramp-plateau structure,
namely, the dip and the ramp. In physical chaotic many-
body quantum systems with time-reversal symmetry, 〈SP(t )〉
reaches a minimum value at a time tdip ∝ D2/3/� [46], after
which the ramp emerges. The ramp is closely described by
the b2(t ) function in Eq. (3), and it persists up to the Heisen-
berg time, tH ∝ D/� [46]. This is the largest timescale of the
system. Beyond tH , the averaged survival probability exhibits
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small fluctuations around its infinite-time average,

SP =
〈

D∑
n=1

|cn|4
〉
. (10)

In chaotic many-body systems, tdip 
 tH, while for sys-
tems that approach a localized phase, tdip/tH → 1. The use
of this ratio to describe the delocalized-localized transition
was discussed for disordered many-body quantum systems in
Ref. [46] and then in Ref. [6].

B. Spin autocorrelation function

The spin autocorrelation function is another observable
that detects the correlation hole [44,46] and it is also non-self-
averaging at long times [59–61]. This quantity is defined as

Iz(t ) = 1

L

L∑
k=1

〈�(0)|σ̂ z
k eiĤt σ̂ z

k e−iĤt |�(0)〉, (11)

where L is the number of sites of the spin-1/2 chains that we
consider and σ̂ z

k is the Pauli z-operator acting on site k. We
denote the asymptotic value of the average 〈Iz(t )〉 as Iz.

Like the survival probability, the spin autocorrelation
function is nonlocal in time, but contrary to the survival
probability, it is local in real space. Another difference
between the two quantities is that the correlation hole fades
away for the spin autocorrelation function as the system size
increases [49]. Upon choosing a Néel state as the initial state,
Iz(t ) is comparable to the density imbalance experimentally
probed in cold atoms [19,21]. In NMR platforms, the spin
autocorrelation function can be directly measured for initially
mixed states [55].

For both quantities, 〈SP(t )〉 and 〈Iz(t )〉, the dynamics need
to resolve the discreteness of the spectrum for the emergence
of the correlation hole. This explains why tdip and tH grow
exponentially with the system size, which makes the detection
of the correlation hole experimentally challenging. To handle
this problem, we deal with small system sizes. The other issue
for both quantities is the lack of self-averaging [59–61], which
requires the use of ensemble averages for any system size.
To avoid being too demanding for the experiments, we use
ensembles that are relatively small, although large enough for
revealing the ramp.

III. DYNAMICAL MANIFESTATIONS
OF MANY-BODY QUANTUM CHAOS

We start the analysis of the correlation hole with the
spin-1/2 Heisenberg model and show that dynamical mani-
festations of many-body quantum chaos can be detected in
a chain with only six sites. Moving next to the long-range
interacting Ising model, we verify that the correlation hole
is not as clearly discernible for small system sizes as in the
Heisenberg model.

A. Disordered spin-1/2 Heisenberg model

Spin-1/2 Heisenberg models and related models can be ex-
perimentally realized with NMR platforms [54,55], inelastic
neutron scattering [69], cold atoms [20], Rydberg atoms [70],

ion traps [26], and quantum dots [71]. In the presence of onsite
disorder, this model has been extensively used in studies of
many-body localization [72–74].

We consider a 1D isotropic spin-1/2 Heisenberg (XXX)
model with nearest-neighbor couplings and open boundary
conditions described by the Hamiltonian

ĤXXX = 1

2

L∑
k=1

hk σ̂
z
k + J

4

L−1∑
k=1

�σk · �σk+1, (12)

where L is the chain size, �σk ≡ {σ̂ x
k , σ̂

y
k , σ̂ z

k } are the Pauli
operators on the kth site, the random Zeeman splittings hk

are uniformly distributed within [−W,W ], and the coupling
strength J = 1. The Hamiltonian conserves the total spin in
the z direction, Sz = ∑

k σ̂ z
k /2, so the Hamiltonian matrix

consists of L + 1 mutually decoupled diagonal blocks. We
choose L to be even and work in the largest subspace, where
Sz = 0 and the Hilbert-space dimension is D = L!/(L/2)!2.

In the absence of disorder, W = 0, the XXX model is
integrable and solvable via the Bethe ansatz [75]. When the
disorder strength W ≈ J , the system is chaotic, thus present-
ing correlated eigenvalues [76–78]. For W � J , the spectra
of finite systems show Poisson statistics [78] suggesting
localization.

To study the dynamics, the system is initially far
from equilibrium. It is prepared in an eigenstate of Ĥz =∑L

k=1 hk σ̂
z
k /2 + J

∑L−1
k=1 σ̂ z

k σ̂ z
k+1/4, which represents the un-

perturbed part of the total Hamiltonian ĤXXX. These initial
states have on each site a spin pointing up or down in the
z direction, such as the Néel state, | ↑↓↑↓ . . .〉, and they
can be experimentally prepared. We choose initial states with
energy in the middle of the spectrum, 〈�(0)|ĤXXX|�(0)〉 ≈
0, where strong hybridization of neighboring eigenstates
allows chaos to develop for sufficiently small disorder
strength.

1. Survival probability

In Figs. 2(a) and 2(b) we show the evolution of the aver-
aged survival probability for the XXX model in Eq. (12) in the
chaotic (W = 0.5) and localized (W = 3) phase, respectively.
The horizontal dot-dashed lines indicate the saturation value,
SP. Our goal is to identify a ramp below SP for the system in
the chaotic regime.

In Fig. 2(a), we observe that the averaged survival prob-
ability exhibits the slope-dip-ramp-plateau structure even for
system sizes as small as L = 6 and L = 8. The structure is
particularly visible for L = 6, because the system size is so
small that the dynamics does not develop a power-law de-
cay. In this case, the Gaussian decay, e−�2t2

, is followed by
the ramp, which makes the correlation hole rather evident.
For L = 6, the minimum value of 〈SP(t )〉 at tdip is large
enough, 〈SP(tdip)〉min ≈ O(10−1), and tdip is small enough,
tdip ≈ O(10), to be within the grasp of current experimental
setups. Even the saturation time, tH � 102, is at the limit of
what can be experimentally reached. Notice, however, that it
is not essential to run the experiment up to tH. To convince
oneself that chaos has been dynamically captured, it should
suffice to detect the ramp; that is, to measure values of 〈SP(t )〉
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FIG. 2. Evolution of the survival probability under the Heisenberg spin-1/2 model in Eq. (12) in the (a) chaotic (W = 0.5) and (b) localized
(W = 3) regime for system sizes L increasing from top to bottom, as indicated in the legend in panel (a). Average over 10 initial states and
50 (500) disordered realizations for W = 0.5 (W = 3). All data are further smoothed with a running time-averaged through 10 consecutive
points resulting in the solid lines. The shaded area around the lines denotes the 95% confidence interval of the ensemble averaged survival
probability. The horizontal dot-dashed lines mark the asymptotic values, SP. Time is in the unit of J = 1. (c)–(f) Shot noise experiment for
the survival probability with M = 100 measurements for each initial state (10 samples) and disorder realization (50 samples). Distributions P
of S for different system sizes, disorder strengths, and times as indicated in the panels. The shaded distribution is obtained for a time in the
saturation region. Vertical lines mark the average values 〈S〉 for the chosen times.

that consistently increase as time passes, following the ramp
described by the b2(t ) function in Eq. (3).

The purpose of Fig. 2(b) is to make evident that even
though one can find values of 〈SP(t )〉 below the satura-
tion line when the system in nonchaotic, these values are
not consistently below SP and they are not on a ramp de-
scribed by b2(t ), so they are not caused by the presence
of correlated eigenvalues. We chose to show the nonchaotic
case with W �= 0 instead of W = 0 (integrable point), be-
cause we could smooth the curves using averages over
disorder realizations, but the discussion is valid for both
cases.

Due to its lack of self-averaging, the survival probability
has to be averaged to display the correlation hole. In Fig. 2(a),
we average over 10 initial states and 50 disorder realizations
(we verified numerically that 10 random realizations suffice
to reveal the ramp). We use 10 initial states and 500 disorder
realizations in Fig. 2(b). A much larger number of realizations
is needed for the convergence of the results in the localized
phase. This is because in the chaotic regime, the relative
variance of the fluctuations of 〈SP(t )〉 at long times remains
constant as L increases [59], while it increases with system
size in the localized phase [60].

2. Shot-noise experiment

Experimentally, the averaged survival probability is mea-
sured as follows: One chooses a particular realization of
the onsite disorder, prepares the system in a specific ini-
tial state |�(0)〉, and after letting it evolve unitarily for a
time t , one performs a projective measurement. Each mea-
surement corresponds to a “shot” and its outcome can be
either zero or one [14]. For M number of shots, M1 is the
number of times that one gets the outcome one, where 0 �
M1 � M. According to the measurement postulate of quantum
mechanics, limM→∞ M1

M = SP(t ), where SP(t ) is the survival
probability, as defined in Eq. (5). In a real experiment, M
is finite.

We repeat the procedure above for 10 initial states and 50
random realizations to get the averaged survival probability,
〈SP(t )〉. To emulate the experiment, we define a random
variable

s =
{

1 with probability SP(t )

0 with probability 1 − SP(t ).
(13)

For each initial state and disorder realization, the sequence of
M random numbers s gives a value S̃ (t ) = M1/M. We then
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define S (t ) as the average of S̃ (t ) over 10 initial states and 50
disorder realizations. If M is very large, then S (t ) → 〈SP(t )〉.

For a finite M, every time we repeat the procedure above,
we get a value of S (t ) that fluctuates around 〈SP(t )〉. This fluc-
tuation is called shot noise and is proportional to 1/

√
M. The

distribution of the values of S (t ) has a width K/
√

M, where
K can be obtained by studying the width of the distribution of
S (t ) as a function of M.

The number of shots that are experimentally viable
depends on the experimental platform that is used. To iden-
tify the correlation hole, the uncertainty in S (t ) must be
smaller than the depth of the correlation hole, δ = 〈SP(tH)〉 −
〈SP(tdip)〉. To resolve S (tdip) from S (tH) with 99.73% cer-
tainty, we need to have δ > 3K/

√
M. Based on this reasoning,

we estimate that M ≈ 40 for the survival probability evolving
under the XXX model with L = 8 and even less for L = 6.
This means that O(102) shots per initial state and realiza-
tion should be sufficient to separate the minimum of 〈SP(t )〉
from its corresponding asymptotic value. Therefore, we use
M = 100, which should be overall accessible to current
experiments.

In Figs. 2(c)–2(f), we show distributions of the values of
S (t ) for W = 0.5 [Figs. 2(c) and 2(e)] and W = 3 [Figs. 2(d)
and 2(f)] for L = 6 [Figs. 2(c) and 2(d)] and L = 8 [Figs. 2(e)
and 2(f)]. We use 10 initial states, 50 disorder realizations,
and M = 100, and repeat the procedure 105 times to ob-
tain the density of S (t ). The distributions are depicted for
three different times. Their choices are based on the nu-
merical results for the dynamics for W = 0.5, so that the
shortest time is close to the point where the ramp starts,
the second one is an intermediate time on the ramp, and
the largest time is already in the region of the saturation
of the dynamics. The distribution for this longest time is
shaded. The choices of times also have support from the
numerical simulation for W = 3 to ensure that the selected
times would not give the wrong impression of a ramp in the
localized region.

We see that in the chaotic regime [Figs. 2(c) and 2(e)],
the distributions of S (t ) are well separated, so that the val-
ues of the survival probability on the ramp can be reliably
identified against the asymptotic value, and the averages of
the distributions grow monotonically as time increases. In
contrast, the distributions of S (t ) for the localized phase
[Figs. 2(d) and 2(f)] partially overlap, which means that an
even larger number of shots (M > 100) would be required
to distinguish the different values in time. Furthermore, the
average 〈S (t )〉 does not grow monotonically with time. In
Fig. 2(d), 〈S (t )〉 for t = 20 is smaller than for t = 8, and in
Fig. 2(f), the shaded distribution, which is for a time already in
the saturation region, has 〈S (t )〉 smaller than that for the cho-
sen intermediate time. Thus, in a real experimental scenario,
the combination of knowledge from the numerical simula-
tions and a reasonable set of points in time should enable
the distinction between chaos and nonchaos in chains with
only L = 6 sites.

3. Spin autocorrelation function

In Figs. 3(a) and 3(b), we show the evolution of the av-
eraged spin-autocorrelation function for the XXX model in

FIG. 3. Evolution of the spin-autocorrelation function under the
Heisenberg spin-1/2 model in Eq. (12) in the (a) chaotic (W = 0.5)
and (b) localized (W = 3) regime for various system sizes L. Aver-
age and smoothing is as in Fig. 2. Time in the unit of J = 1. The
horizontal dot-dashed lines denote the asymptotic value Iz.

Eq. (12) in the chaotic (W = 0.5) and localized (W = 3)
phase, respectively. The data are averaged and smoothed as
in Fig. 2. Similarly to the case of the survival probability,
a correlation hole is visible in the chaotic regime [Fig. 3(a)]
even for small system sizes. However, despite the experimen-
tal advantage of the spin autocorrelation function as a local
quantity, the numerical results are noisier than for the survival
probability, because Iz(t ) can also have negative values. This
means that, compared with the survival probability, a larger
number of measurements would be required to experimentally
reproduce the results in Fig. 3 and to distinguish the ramp
from the saturation value.

B. Disordered long-range interacting Ising model

We now analyze a disordered chain of spin-1/2 par-
ticles with long-range interaction, as those experimentally
realized with ion traps [23–25]. The model has onsite dis-
order and open boundary conditions, being described by the
Hamiltonian

ĤLR = 1

2

L∑
k=1

(B + Dk )σ̂ z
k +

∑
j<k

J

(k − j)α
σ̂ x

j σ̂
x
k , (14)

where B indicates a constant magnetic field in the transverse
direction, Dk is uniformly distributed within [−W,W ], and α

controls the range of the spin-spin interaction. To link with
the experiment in Ref. [25], we choose B = 2 and α = 1.1.
As in the XXX model, we take J = 1 to fix the energy unit
and W = 0.5 to access the chaotic regime. For W = B = 0,
ĤLR describes the Sherrington-Kirkpatrick spin-glass model
[79], while the infinite-range interaction limit (α = 0) yields
the Lipkin-Meshkov-Glick model, which is an ideal test-bed
for phenomena like excited-state quantum phase transition
[80–82] and quantum scars [83].

The Hamiltonian ĤLR decomposes into two symmetry sec-
tors, one spanned by spin configurations with an odd number
of up spins in the z direction and the other with an even
number of up spins. To maximize our access to the center of
the spectrum, we use the sector with an even number of up
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FIG. 4. Evolution of the (a) survival probability and (b) spin-
autocorrelation function under the long-range interacting spin-1/2
Ising model in Eq. (14) in the chaotic regime with B = 2, W = 0.5,
and α = 1.1 for various system sizes, L. The data are averaged over
10 initial states and 50 disorder realizations, and are further smoothed
with a moving time-average (solid lines), as described in Fig. 2.
Time in the unit of J = 1. The horizontal dot-dashed lines denote
the asymptotic values.

spins when L/2 is even, and the odd sector otherwise. The
initial states are once again product states in the z direction,
which are experimentally accessible.

In Fig. 4, we show the evolution of the averaged survival
probability [Fig. 4(a)] and the averaged spin-autocorrelation
function [Fig. 4(b)] for the long-range interacting Ising model
in Eq. (14) in the chaotic regime (α = 1.1, W = 0.5). In
contrast with the Heisenberg model, the correlation hole
for 〈SP(t )〉 becomes clearly visible only when L > 8 and
for 〈Iz(t )〉, it needs L � 8, which makes the experimental
detection of the correlation hole more challenging for the
long-range interacting Ising model.

IV. QUANTUM CIRCUIT AND MANY-BODY QUANTUM
CHAOS DETECTION

With the analysis in the previous section, one concludes
that the most promising case for the experimental detection
of the correlation hole is the survival probability evolving
under the Heisenberg model with L = 6 sites. In this section,
we provide a quantum circuit for this case and run it in the
IBM FakeSherbrooke provider [84], where noise is included.
Our results show that the circuit captures the beginning of
the ramp.

The quantum algorithm employed is the Variational
Quantum Real Time Evolution (VarQRTE) algorithm [85].
Variational quantum simulation methods consist of encoding a
quantum state in a parametrized circuit, and then mapping its
evolution into the evolution of the parameters that control the
circuit. The VarQRTE algorithm, in particular, approximately
evolves an input state in a restricted subspace of the total
Hilbert space, which is defined by the ansatz of parameters
used. In the case of the Heisenberg model, the excitation
preserving symmetry of the Hamiltonian motivates the use of
an excitation preserving ansatz, which is naturally provided in
Qiskit under qiskit.circuit.library.ExcitationPreserving [86].

The quantum circuit that we use is shown on the left side of
Fig. 5. Following the Qiskit notation, qk indicates the kth spin
1/2. In the circuit, U3(π, 0, π ) = σ x

k flips the kth spin and I
is the identity operator, so that our initial state has three spins
pointing up in the z direction and three spins pointing down in
the z direction. RZ (θ ) = exp(−i θ

2 σ z
k ) indicates the rotation of

the kth spin about the z axis. RXX (θ ) = exp(−i θ
2 σ x

k σ x
k+1) and

RYY (θ ) = exp(−i θ
2 σ

y
k σ

y
k+1) involve only neighboring spins

and both gates have the same parameter to keep the evolution
in the Sz = 0 subspace.

Using VarQRTE, the circuit depth of the quantum circuit
necessary to simulate the evolution can be chosen by the user
to ensure that it is within hardware and noise constraints.
Therefore, the quantum circuits can be made shallower, at
the cost of decreasing accuracy. Additionally, simulation
of long times does not require deep quantum circuits as
Trotterization requires. Instead, the gate depth of the ansatz
is fixed at the start of the algorithm. For these reasons,
VarQRTE is a promising noisy intermediate-scale quantum
(NISQ) algorithm for detecting many-body quantum chaos.

The ansatz that we use has two layers (the two diagonal
lines of gates in the circuit) and linear entanglement in order to
minimize gate depth. The circuit is run in the IBM FakeSher-
brooke provider, which mimics the real corresponding noisy
IBM quantum system. Despite the limited gate depth of the
employed ansatz and the presence of noise, the simulation is
able to detect the beginning of the correlation hole, as seen
on the right panel of Fig. 5. This figure shows with blue
circles the result produced by the circuit for the evolution of
the survival probability under the chaotic Heisenberg model,
and the solid line represents the result obtained with exact
diagonalization. There is reasonable agreement between the
two curves up to t ≈ 12 (dark blue circles), which allows for
capturing the beginning of the ramp. Beyond this point (light
blue circles), noise kicks in and the curves diverge. This result
is very encouraging. Ways to further improve the circuit will
be discussed in a forthcoming presentation.

V. SINGLE-EXCITATION CASE

To provide one more case in which dynamical manifesta-
tions of spectral correlations could be experimentally detected
with available capabilities, we resort to a system with a single
excitation described by the following Hamiltonian:

Ĥ = 1

2

L∑
k=1

hk
(
σ̂ z

k + I
) + J

4

L−1∑
k=1

(
σ̂ x

k σ̂ x
k+1 + σ̂

y
k σ̂

y
k+1

)
, (15)

where hk are random Zeeman splittings uniformly distributed
in [−W,W ]. This Hamiltonian is similar to that in Eq. (12),
where only nearest-neighboring couplings are present, but it
does not have the Ising interaction. In the thermodynamic
limit, the system in Eq. (15) exhibits Anderson localization for
any finite disorder strength [87] with a localization length for
eigenstates away from the edges of the spectrum given by l ≈
6.5653/W 2 [88]. To investigate finite system sizes, one can
then take the scaled localization length ξ = 6.5653/(W 2L) as
a parameter.

The system in Eq. (15) is not chaotic, but if the localization
length is larger than the system size, the energy levels are
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FIG. 5. The left panel provides the quantum circuit used to obtain the evolution of the survival probability for the chaotic Heisenberg
model with L = 6 sites shown on the right panel with dark and light blue circles. The simulation included 16 384 shots per time step and the
six qubits were selected by the Qiskit library. The solid line is obtained with exact diagonalization. The horizontal dot-dashed line indicates
the saturation value of the exact dynamics.

correlated and show Wigner-Dyson distribution Refs.
[89–94]. Despite being just a finite-size effect, these spectral
correlations also get dynamically manifested [93] and could
then be experimentally detected.

Figure 6(a) provides the results for the analysis of short-
range correlations done with the ratio [95,96],

rn = min

(
r̃n,

1

r̃n

)
, where r̃n = En+1 − En

En − En−1
. (16)

The figure shows the average 〈r〉 over rn for states in the
middle of the spectrum as a function of ξ . As ξ increases and
the localization length becomes larger than the system size,
the level spacing distribution moves from Poisson (absence
of correlations) to distributions that indicate stronger and
stronger level repulsion, reaching statistics equivalent to those
for Gaussian orthogonal ensemble (GOE), Gaussian unitary
ensemble (GUE), Gaussian symplectic ensemble (GSE), and
beyond (picket fence).

When ξ = 2.11 [dashed line in Fig. 6(a)], the average ratio
〈r〉 is approximately that observed in the GSE. This is the
value that we use for the analysis of the survival probability,
because among the ensembles, the GSE leads to the lowest
values of 〈SP(t )〉 below the saturation line of the dynamics.
We compare the results with those for ξ = 0.11, for which the
level spacing distribution is Poissonian.

The comparison of the participation ratio,

PRn = 1∑
k |〈k|En〉|4 , (17)

as a function of En for ξ = 2.11 [Fig. 6(b)] and ξ = 0.01
[Fig. 6(c)] further corroborates that the finite system in
Eq. (15) is delocalized when ξ is large. Notice that the density
of states, shown in the inset of Fig. 6(a), is not Gaussian as in
many-body systems, although the most delocalized states are
still those in the middle of the spectrum.

FIG. 6. Results for the spin-1/2 model in Eq. (15) with a single excitation. (a) Average ratio of level spacing, 〈r〉, as a function of
ξ ∝ (W 2L)−1 for different system sizes L. The red dashed line indicates the value ξ = 2.11 where 〈r〉 ≈ 0.68, which is the average ratio
observed in GSE. The inset shows the density of states ρ(E ) averaged over 104 disorder realizations for two different values of ξ and L = 8192;
the dashed line indicates the analytical expression of the density of states for ξ � 1. Participation ratio as a function of energy from a single
disorder realization for (b) ξ = 2.11 and (c) ξ = 0.01. Survival probability for (d) ξ = 2.11 and (e) ξ = 0.01 for different system sizes. The
initial state has the excitation on the first site of the chain. The data are averaged over 200 disordered realizations and further smoothed with a
moving time average. Time is in the unit of J = 1. The horizontal dot-dashed lines denote the asymptotic values of 〈SP(t )〉.
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To investigate the evolution of the survival probability, we
prepare the system in an initial state where the excitation is on
the first site of the chain. This is done, because for W → 0, the
shape of the LDOS for this state is semicircular [93], which
brings us closer to the case of Fig. 1 and should facilitate the
visibility of the dip below SP.

We show the evolution of the averaged survival proba-
bility obtained for ξ = 2.11 in Fig. 6(d) and for ξ = 0.01
in Fig. 6(e). The behavior in the two panels is completely
different. The survival probability in Fig. 6(d) exhibits a
“correlation plateau” at 〈SP(t )〉 ≈ 2/L, which is below the
saturation plateau at SP ≈ 3/L, [97] while 〈SP(t )〉 in Fig. 6(e)
simply oscillates around SP.

The results in Fig. 6(d) indicate that even though the long-
time dynamics of the survival probability for the Hamiltonian
in Eq. (15) is not described by the b2(t ) function in Eq. (3),
as in truly chaotic systems, one can still capture dynamical
manifestations of spectral correlations in spin systems with a
single excitation. In this case, since the saturation (Heisen-
berg) time scales linearly with the chain size (tH ∝ L/�,
where � ∼ 1/2), it should be viable to experimentally run the
entire evolution up to saturation. This simple scenario could
serve as a first step towards the experimental detection of
many-body chaos.

VI. CONCLUSION

Experimental advances in engineering pure initial states,
preserving quantum coherences for long times, and monitor-
ing the time evolution of quantities of interest to many-body
quantum systems set the stage for the direct observation
of dynamical manifestations of many-body quantum chaos,
specifically of the onset of the slope-dip-ramp-plateau struc-
ture (correlation hole), that is typical of systems with
correlated eigenvalues. Several existing quantum simulators
and quantum computers can be generally described by inter-
acting spin-1/2 models. This motivated our analysis of the
emergence of the correlation hole in the survival probability
and in the spin autocorrelation function evolved under two
chaotic spin-1/2 models: the 1D disordered Heisenberg model
with nearest-neighbor couplings and the 1D disordered long-
range interacting Ising model in a transverse field.

We concluded that the averaged survival probability
evolved under the disordered Heisenberg chain with only six
sites offers the best prospect for the detection of many-body
quantum chaos with available experimental resources. Fur-
thermore, our analysis of the shot-noise experiment for the
survival probability indicated that measurements at some few
times within the correlation hole should suffice for inferring
its presence.

Inspired by the promising results obtained with exact diag-
onalization, we employed the VarQRTE algorithm to simulate
with a quantum circuit the time evolution of the survival prob-
ability for the six-site Heisenberg model. We used a fake IBM
provider to run the circuit and, despite the presence of noise,
we were able to capture the beginning of the ramp of the cor-
relation hole, confirming the feasibility of our proposal. This
result should motivate further improvements to the circuit to
make it shallower and to mitigate errors, which we intend to
pursue in a forthcoming work.

The detection of dynamical manifestations of spectral
correlations, but not necessarily many-body quantum chaos,
could also be achieved with quantum systems of few exci-
tations or few degrees of freedom. We presented the case of
a spin-1/2 model with a single excitation, where correlated
eigenvalues are due to finite-size effects. These correlations
get manifested in the dynamics at times that are shorter and
at values of the survival probability that are larger than what
we have for many-body systems of the same length. Another
model that could be used for the experimental detection of
quantum chaos is the Dicke model, which describes a set of N
spin-1/2 particles collectively interacting with a single-mode
field and also exhibits a correlation hole [47,98]. Because the
interaction is collective, the system has only two degrees of
freedom.

We close this work with a brief discussion about the
case of noisy systems. Recent investigations of the spectral
form factor in energy dephasing scenarios [10,12,14–16],
non-Hermitian Hamiltonians [11,13], and parametric quan-
tum channel models [15] suggest that weak interactions with
the environment reduce the need for ensemble averaging. This
implies that some noise can be beneficial for the experimen-
tal detection of the correlation hole, a subject that deserves
further investigation.
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