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ABSTRACT: Quantum computing offers promising new avenues
for tackling the long-standing challenge of simulating the quantum
dynamics of complex chemical systems, particularly open quantum
systems coupled to external baths. However, simulating such
nonunitary dynamics on quantum computers is challenging since
quantum circuits are specifically designed to carry out unitary
transformations. Furthermore, chemical systems are often strongly
coupled to the surrounding environment, rendering the dynamics
non-Markovian and beyond the scope of Markovian quantum
master equations like Lindblad or Redfield. In this work, we
introduce a quantum algorithm designed to simulate non-
Markovian dynamics of open quantum systems. Our approach
enables the implementation of arbitrary quantum master equations
on noisy intermediate-scale quantum (NISQ) computers. We illustrate the method as applied in conjunction with the numerically
exact hierarchical equations of motion (HEOM) method. The effectiveness of the resulting quantum HEOM algorithm is
demonstrated as applied to simulations of the non-Lindbladian electronic energy and charge transfer dynamics in models of the
carotenoid-porphyrin-C60 molecular triad dissolved in tetrahydrofuran and the Fenna−Matthews−Olson complex.

1. INTRODUCTION
Simulations of open quantum systems are essential for
theoretical studies of a wide range of chemical processes,
including charge transfer, energy transfer, and proton transfer
in solutions or biological systems.1−3 However, accurate
simulations of such systems are challenging and often rely on
the Markovian approximation. Here, we introduce a quantum
algorithm for simulations of non-Markovian open quantum
systems on noisy intermediate-scale quantum (NISQ)
computers.
Traditionally, dynamical simulations of open quantum

systems relied on Markovian quantum master equations of
the Redfield or Lindblad types. These approaches assume that
the system is weakly coupled to a bath so that the coupling can
be treated within second-order perturbation theory.2,4−9 While
effective in numerous scenarios, these methods fall short when
chemical systems exhibit non-Markovian behavior. This occurs
under conditions such as strong system-environment coupling,
low temperatures, structured or finite reservoirs, or initial
correlations between the system and its environment.10−14

To address non-Markovian dynamics, various nonperturba-
tive methods have been developed, including tensor train
thermo-field dynamics (TT-TFD),15−18 the hierarchical
equations of motion (HEOM),14,19−24 the multilayer multi-
configuration time-dependent Hartree (ML-MCTDH),25,26

path integral techniques,27−35 and the generalized quantum
master equation (GQME).13,17,36−47

Recent advancements in quantum computing hardware have
opened new possibilities for simulating quantum dynamics on
quantum computers.48−53 Most quantum algorithms have
focused on closed systems, where unitary dynamics can be
directly mapped onto quantum circuits.52,54,55 However, the
inherently nonunitary nature of open quantum system
dynamics presents a unique challenge for quantum computing,
as quantum circuits are specifically designed to implement
unitary transformations.48,56,57

Efforts to bridge this gap and map nonunitary dynamics into
a unitary framework have led to the development of the linear
combination of unitaries (LCU),58−60 dilation meth-
ods,56,57,61−63 quantum imaginary time evolution,64−66 den-
sity-matrix purification,67 and variational quantum algo-
rithms.68−71 However, most quantum algorithms are tailored
to systems governed by the Lindblad quantum master
equation, which assumes weak system-bath coupling and
Markovian dynamics. While these algorithms have been
applied to simulate relatively simple models, such as
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spontaneous emission and two-level systems,57−59,62,66,72−74

their application to more complex model systems like the
transverse field Ising model,59,66,70,74 and the Fenna−
Matthews−Olson (FMO) complex,75 often relies on ad-hoc
choices of Lindblad operators, which may not fully capture
dephasing or damping processes induced by the environment.
In this work, we implement the numerically exact HEOM

approach with the dilation method to simulate non-Markovian
open quantum system dynamics on quantum computers. In
what follows, we will refer to this implementation as qHEOM.
We illustrate the capabilities of the qHEOM algorithm on IBM
quantum computers as applied to simulations of charge
transfer dynamics in a solvated molecular triad76 and electronic
energy transfer dynamics in the FMO complex. Additionally,
we evaluate the applicability of the time-convolutionless
(TCL) Redfield equation with the rotating wave approxima-
tion (RWA), which serves as the quantum master equation in
the Lindblad form for the model systems under consideration.
By comparing the results obtained by integrating the TCL-
Redfield equation with the RWA with those obtained from the
qHEOM method, we illustrate the limitations of the TCL-
Redfield equation across the parameter regimes relevant to
electronic charge and energy transfer processes.
Our qHEOM method belongs to the family of recently

proposed quantum algorithms for non-Markovian evolu-
tion.34,35,60,61,63,77 Using the Sz.-Nagy dilation theorem,78

Wang et al.63 dilated the propagator obtained from the
GQME. Walters et al.34 constructed the propagator time series
that spans a memory time using the path integral approach,
and dilated it into unitary gates. Seneviratne et al.35 used
dilation based on singular value decomposition62 (SVD
dilation) to dilate the Kraus operators that are calculated
through path integral. Li et al.60 presented a quantum
algorithm based on the linear combination of unitaries
(LCU) approach59 to implement the numerically exact
dissipaton-embedded quantum master equation in second
quantization (DQME-SQ).
The qHEOM algorithm offers several key advantages over

the methods mentioned above. First, it employs the SVD
dilation methodology that can be applied to dilate propagators
from a wide range of master equations. This SVD approach
essentially decomposes the propagator into a sum of two
unitary operators that require much fewer shots than the
traditional LCU method based on the Taylor expansion.59

Second, when compared to Sz.-Nagy dilation, the SVD
approach dilates only the diagonal matrix of singular values,
significantly reducing the circuit depth. Additionally, the
diagonal unitary operator of singular values can be efficiently
implemented using the Walsh operator representation,79

further reducing circuit complexity. Another important
advantage of qHEOM is that it employs projection operators
to map vectors from the HEOM space to the state vector used
in quantum computing. The flexibility in choosing the
projection subspace allows us to select a smaller subspace
and reduce the dimension of the propagator, thereby
decreasing the number of qubits and circuit complexity on
NISQ devices.
The outline of this paper is as follows. Section 2 introduces

our quantum algorithm for the propagation of non-Markovian
dynamics based on SVD dilation. Section 3 describes the
simulation methods based on the HEOM and the TCL-
Redfield equation with the RWA. Section 4 presents the model
systems used for electronic charge and energy transfer

simulations. Section 5 compares the simulation results from
HEOM and the TCL-Redfield equation with the RWA on
classical computers, along with qHEOM simulations. Section 6
concludes the paper with a summary of findings and future
directions. Overall, our work demonstrates the potential of a
novel quantum computing algorithm to simulate complex non-
Markovian dynamics, providing insights into quantum
phenomena in chemical systems beyond the limitations of
approximate methods.

2. QUANTUM ALGORITHM FOR OPEN QUANTUM
SYSTEMS
2.1. Time Evolution of the Register State Vector. The

state vector |Φ⟩ represents the state of the qubits that make up
the register of the quantum circuit. Its time evolution is
mapped to the evolution of the reduced density matrix
elements that describe the non-Markovian dissipative dynamics
of the system of interest. To reduce the depth of the circuits,
we employ projection operators that allow us to propagate
subsets of the reduced density matrix elements. This approach
is exact and reduces both the number of gates and the number
of qubits required for simulation, allowing for parallel quantum
computing of subsets of matrix elements without introducing
any approximation.
The procedures for projecting the initialized density matrix

elements and encoding them into the state vector |Φ(0)⟩ are
described in Section 3.3. The time-evolved state vector |Φ(t)⟩
is obtained as

| = |t G t( ) ( ) (0) (1)

where G(t) represents the nonunitary propagator correspond-
ing to the numerical method of choice. This nonunitary
evolution reflects the open nature of the system interacting
with its surrounding environment. As described in Section 2.2,
G(t) is implemented as a linear combination of unitaries.
The overall accuracy of the simulation depends on the

accuracy of the propagator of choice. Here, we encode the
propagator of HEOM which yields numerically exact
dynamics, incorporating non-Markovian effects and enabling
precise simulations only limited by the number of shots and
the level of noise in the quantum device.
2.2. Turning the Propagator into Linear Combination

of Unitaries.We decompose the nonunitary propagator into a
linear combination of unitaries using the singular value
decomposition (SVD) method proposed by Schlimgen et
al.62 The procedure starts with the SVD of the propagator
G(t):

= †G t U V( ) (2)

where U and V are unitary matrices and Σ is a diagonal matrix
containing the singular values. The singular value matrix Σ is
expressed as a linear combination of two diagonal unitary
matrices Σ+ and Σ−,

= ++2
( )0

(3)

where the diagonal elements of Σ+ and Σ− are defined as

= ±± i( ) 1jj j j
2

(4)

with = /j j 0. Here, σj is the j-th singular value of G(t) and
σ0 is the largest singular value. Using Σ+ and Σ−, the
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propagator G(t) is decomposed into the linear combination of
two unitaries, as follows:

= ++
† †G t U V U V( )

2
( )0

(5)

2.3. Quantum Circuit for Nonunitary Propagation.
The linear combination of two unitaries, introduced by eq 5,
can be readily implemented by a quantum circuit with a one-
qubit dilation, using unitary gates as shown in Figure 1.

To achieve this, we define a diagonal unitary operator UΣ =
Σ+ ⊕ Σ− that acts on both the main and ancilla qubits, as
follows:

i
k
jjjj

y
{
zzzz= +U

0
0

.
(6)

The output of the quantum circuit is the following state:

i

k
jjjjjj

y

{
zzzzzz

i
k
jjjj

y
{
zzzz

+ |
|

= |
|

+
†

+
†

U V

U V
G t1

2
( ) (0)

( ) (0)
1 ( ) (0)

0 (7)

Therefore, when the ancilla is in state |0⟩, we obtain the
desired state G(t)|Φ(0)⟩/σ0 = U(Σ+ + Σ−)V†|Φ(0)⟩/2 (up to
the normalization factor σ0). When the ancilla is in state |1⟩, we
obtain the state |ϕ⟩=U(Σ+ − Σ−)V†|Φ(0)⟩/2, which is
discarded.
2.4. Efficient Implementation of Diagonal Unitary

Operators Using Walsh Operators. The diagonal unitary
UΣ, introduced by eq 6, entangles the main and ancilla qubits.
Upon compilation, this operation typically generates deep
circuits which represent the computational bottleneck for
computations on NISQ devices. However, efficient implemen-
tations of diagonal unitaries can be achieved using the Walsh
operator representation.79 For example, Seneviratne et al. have
implemented Walsh operators to compile the singular value
diagonal matrix of Kraus operators.35 Here, we apply this
technique to optimize the implementation of UΣ.
N-dimensional (N = 2n) diagonal unitary matrices UΣ, can

be expressed, as follows:

=U eiF (8)

where F̂ is a real diagonal matrix. Its diagonal elements f k
define the diagonal elements of UΣ: =U e( )kk

ifk . When UΣ is
defined according to eq 6, with matrix elements defined
according to eq 4, we have =f arccosk k, for k = 0,1, ···, N/
2−1, and =f arccosk k N/2, for k = N/2, ···, N − 1.
The real diagonal matrix F̂ can be represented in the N-qubit

Pauli-Z and identity basis through

=
=

F a w
j

N

j j
0

1

(9)

where aj, are the Walsh coefficients, and ŵj, are the Walsh
operators (i.e., tensor products of the one-qubit identity and
Pauli-Z matrices):

= ···w Z Z Z( ) ( ) ( )j
j j

n
j

1 2 n1 2 (10)

where (Ẑl)0 ≡ I ̂ (identity gate) and (Ẑl)1 ≡ Ẑ (Pauli-Z gate),
act on the l-th qubit. Here, ″⊗″ is the Kronecker product,
while jl ∈ {0, 1} are the bits of the binary expansion of j

= =( )j j 2l
n

l
l

1
1 . The elements of the diagonal matrix ŵj are

defined as

[ ] = | |

= | |

= | |

=

=

w k w k

k k k w k k k

k Z k( )

( 1)

j kk j

n j n

l

n

l l
j

l

j k

1 2 1 2

1

l

l l l

µ µ

(11)

where kl ∈ {0, 1} are the bits in the binary expansion of k, with
= =k k 2l

n
l

n l
1

( ), while |k1k2···kn⟩ = |k1⟩⊗ |k2⟩ ⊗ ··· ⊗|kn⟩ with
|0⟩ = [1,0]T and |1⟩ = [0,1]T.
The Walsh coefficients aj are obtained from the Hilbert-

Schmidt inner products of F̂ and the Walsh operators ŵj, as
follows:

= [ ]

= [ ]

=

=

=

a
N

w F

N
w f

N
f

1
Tr

1

1
( 1)

j j

k

N

j kk k

k

N
j k

k

0

1

0

1
l l l

(12)

This transformation between aj and f k, introduced by eq 12,
is the so-called Walsh−Fourier transform.80,81
Having the Walsh representation of F̂, introduced by eq 9,

and noting that Walsh operators commute (i.e., [ŵj, ŵk] = 0),
the UΣ can be written as

=
=

U e
j

N
ia w

0

1
j j

(13)

Each gate eia wj j can be readily implemented by using CNOT
and Z-rotation gates, as described in ref. 79 The circuit can be
further optimized by recognizing that the gates eia wj j commute.
By rearranging the indices j using the Gray code and leveraging
commutation properties of CNOT gates, we can reduce the
number of CNOT gates, as implemented in ref. 79

3. METHODS FOR OPEN QUANTUM SYSTEM
DYNAMICS
3.1. Model Hamiltonian. We simulate the dynamics of

quantum systems coupled to harmonic baths, as described by
the Hamiltonian

= + +H H H HT S B I (14)

where HS is the Hamiltonian of the system, HB is the bath
Hamiltonian, and HI describes the system-bath interaction. We
assume that the bath consists of harmonic modes and that the
system-bath coupling is linear in the coordinates of these
modes, such that

Figure 1. Quantum circuit for SVD dilation,35,62 with H the single
qubit Hadamard gate, while V and U are defined according to eq 2.
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= +

=

H
p

M
M x

H A B A c x

2
1
2B

mj

mj

mj
mj mj mj

I
m

m m
m

m
j

mj mj

2
2 2

(15)

Here, to maintain generality, we consider multiple distinct
harmonic baths indexed by m. Each bath contains multiple
modes, where xmj, pmj, Mmj, and ωmj are the coordinate,
momentum, mass, and frequency of the j-th mode in the m-th
bath. The Hermitian system operator Am couples to the
collective coordinate Bm = −∑jcmjxmj of the m-th bath, with the
coupling strength between the system and the mj-th bath mode
being given by cmj.
For the aforementioned system-bath model, the influence of

the environment on the system can be fully characterized by
the reservoir correlation function:1,3,82

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

i
k
jjj y

{
zzz

É

Ö
ÑÑÑÑÑÑÑÑÑ

=C t d J t i t( )
1

( ) coth
2

cos( ) sin( )
0

(16)

where β = (kBT)−1 is the inverse temperature, and J(ω) is the
spectral density, defined as

=J
c

M
( )

2
( )

j

j

j j
j

2

(17)

For simplicity, we consider the environment to be identical
for each m (cmj ≡ cj), thus omitting the dependence on m for
C(t) and J(ω). Finally, we assume the spectral density has a
Debye form:

=
+

J( ) c

c
2 2 (18)

where η is the coupling strength, and ωc characterizes the
width of the spectral density.
3.2. Hierarchical Equations of Motion. The HEOM

approach decomposes the reservoir correlation function into a
sum of exponentials:

=C t d e( )
k

k
v tk

(19)

where vk and dk are the frequencies and coefficients of the
effective modes, respectively. For the Debye spectral density, vk
and dk are analytically given by22,83

=v c1 (20)

>v
k

k
2 ( 1)

; 1k
(21)

and

= [ ]d i
2

cot( /2)c
c1 (22)

= >d
v

v
k

2
; 1k

k c

k c
2 2 (23)

This decomposition transforms the original model of a
system coupled to infinite bath modes into a model of a system
interacting with a finite number of effective modes.60,84,85

In HEOM, the density matrices can be combined into a
single state vector in the tensor product Hilbert space of the
system and effective modes, as follows:

| = | | |q q q q n( , )
q qn

n
, , (24)

where |n⟩ defines the state of the effective modes, with n =
{n1,n2, ···, nmk, ···}. The states |q S and |q S belong
to the Hilbert space of the system, and its corresponding
fictitious twin space, respectively, as formulated by thermo-
field theory.86 This representation of a density matrix as a state
vector is also known as purification in quantum comput-
ing.48,87,88

The coefficients = | |q q q q( , )n n , introduced by eq 24,
are the matrix elements of the density operator in the system
Liouv i l l e space . The coeffic i en t q q( , )0 , w i th

{ ··· }0 0, 0, , 0 , corresponds to the reduced density operator
(RDO), defined as the partial trace of the total density
operator t( )T over the bath degrees of freedom:

= [ ]t t( ) Tr ( )B T . This RDO describes the evolution of the
reduced system.
With the twin-space formulation of thermo-field theory, the

HEOM can be written as a time-dependent Schrödinger-like
equation for the evolution of | ,84,89

| = |d
dt

i
(25)

where the effective Hamiltonian is

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

=

+ +

+
*

†

†

†

H H i v b b

A r b
d

r
b

A r b
d

r
b

S S
mk

k mk mk

mk
m k mk

k

k
mk

mk
m k mk

k

k
mk

(26)

Operators with hats ( ) act on the system Hilbert space,
while tilde operators ( ) act on the fictitious space:

| | | |O q q O I q q , and | | | |O q q I O q qT , where
I is the identity operator. Creation and annihilation operators
for the effective modes satisfy

| = + | +

| = |

†
b n n n n n

b n n n n n

, , , 1 , , 1,

, , , , , 1,

mk mk mk mk

mk mk mk mk

1 1

1 1

µ µ µ µ

µ µ µ µ

(27)

The scaling factor rk allows flexible definitions of the

operators (if [ ] =†
b b, 1mk mk then

Ä
Ç
ÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑ

=
†

r b , 1k mk
b

r
mk

k
still

satisfies the commutation relation). For this work, we use rk
= |dk|, corresponding to the efficient filtering algorithm by Shi
et al.22,90

In practice, the number of effective modes k (i.e., the
number of terms in the decomposition in eq 19) and the Fock
space size L defining the truncation of the basis for each
effective mode, with nmk ≤ L, need to be limited. We ensure
convergence by increasing both parameters until stable results
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are achieved. For our model systems in this work, K ≤ 5 is
sufficient. However, for more complex spectral densities or
lower temperatures, larger values of k might be required,
posing computational challenges. Those challenges could be
addressed by recent advances, such as Tensor-Train
methods,23,84,91,92 and more advanced reservoir correlation
function decomposition schemes (e.g., Pade ́ spectrum
decomposition,93,94 Fano spectrum decomposition
(FSD),95,96 barycentric spectrum decomposition (BSD),14,97

P r o n y fi t t i n g d e c omp o s i t i o n ( P FD ) , 9 8 a n d
others.99−102103104105106

3.3. The Projected Propagator. In this section, we
present the general method for calculating the propagator
G(t), introduced by eq 1, using the HEOM method.
As described in Section 3.2, the HEOM method casts the

effect of the bath on the system in terms of a small number of
effective modes, thereby significantly reducing the computa-
tional cost. However, the Hilbert space of the state vector |
can still be very large. Therefore, we further reduce the
dimensionality of the problem by projecting | onto a smaller
subspace, as described in Section 2.1. The projected state
vector is then encoded into the state vector of qubits,

| = |( ) (28)

where is the projection operator that projects the state |
onto a subspace corresponding to the relevant physical
quantities. maps the projected subspace state | to the
qubit state vector | .
We use the following projection operator:

= | | | |qq qq0 0
qq S (29)

where S is the subspace containing all the states relevant to the
physical quantities of interest. { ··· }0 0, 0, , 0 corresponds to
all effective modes being in the 0 state, which is associated with
the space of the reduced density operator. The mapping
then encodes states in this subspace into qubit states, as
follows:

| | |q q j j0: , . . . ,j j n 1 (30)

where qjqj′ is the j-th element in S, and (jn, ···, j1) represents the
n-bit binary form of the integer j. Here, n = log2 NS gives the
number of qubits required to encode the NS relevant states in
S. Consequently, the state | |q q 0j j is encoded as the qubit state
|jn, ···, j1⟩. A schematic representation of the projection and
encoding processes is shown in Figure 2.
To derive the expression for the propagator in eq 1, we first

write the formal solution of the HEOM. By integrating eq 25,
we obtain

| = |t e( ) (0)i t (31)

then performing the Projection and mapping , we have

| = |†t e( ) (0)i t (32)

Here, we utilize the properties = and † being
the identity operator in the projected subspace, which together
yield =† . We also impose the constraint

| = |(0) (0) , a condition commonly used when
selecting the Nakajima−Zwanzig−Mori projection operator
in the derivation of the GQME.107−109 By comparing the

above expression with eq 1 and utilizing eq 28, the propagator
in the reduced space has dimensions NS × NS and is given by

= †G t e( ) i t (33)

where is the effective Hamiltonian of HEOM defined in eq
26. In this work, the propagator G(t) is calculated on a classical
computer. The process starts with solving the HEOM (i.e.,
e i t in eq 33), followed by applying the projection onto the
subspace corresponding to the quantity of interest. Finally,
through the encoding process , the propagator is mapped
onto its representation within the qubit state space.
It should be noted that the dynamics within the subspace S

are still numerically exact, in the sense that the numerical exact
HEOM governs the evolution of the subspace elements.
Simulations of physical quantities of interest require a suitable
choice of projection operators to the corresponding subspace
of those physical properties.
3.4. The Time-Convolutionless Redfield Equation

within the Rotating Wave Approximation. The Lind-
blad-type quantum master equation is widely used in the field
of quantum information science to model decoherence and
open quantum system dynamics.57−59,62,66,70,72−75 However,
research indicates that the Lindblad equation, which rests on
several rather restrictive assumptions, is only applicable within
the semiclassical dynamics limit.110−113 Therefore, its applic-
ability should be carefully examined before using it to predict
the dynamics of the open systems under consideration. In what
follows, we perform such a test by comparing and contrasting
the predictions of the Lindblad-type quantum master equation
to those of the numerically exact HEOM for the model systems
under consideration.
For an open quantum system governed by the Hamiltonian

given in eqs 14 and 15, the time-convolutionless (TCL)
Redfield equation can be derived under the assumptions of
weak system-bath coupling and Markovian dynamics. By
further applying the rotating wave approximation (RWA), the
equation takes the Lindblad form and is expressed as
follows:1,8,114

i
k
jjj y

{
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= [ + ] +
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d t
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i H H t

A t A A A t
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, ( ) ( )

( ) ( ) ( )
1
2

( ) ( ), ( )

S LS
m

m

m m m m

(34)

For simplicity, we will hereafter also refer to this equation as
the Lindblad equation. In this equation, ρ(t) is the reduced

Figure 2. Illustration of the projection and encoding processes. The
HEOM computational space is projected by onto a subspace where
all effective modes are in state |0⟩. The subspace is defined by the set
S, which includes states relevant to the physical quantities of interest.
The states within this subspace are further encoded into the qubit
state vector | , with each qubit in either |0⟩ or |1⟩. States in different
spaces are marked with different colors in the figure: red represents
the system Hilbert space, blue corresponds to the effective mode
(bath) space, and black denotes the qubit state space.
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density operator that describes the state of the system and [·,·]
and {·,·} correspond to the commutator and anticommutator,
respectively. HLS is the Lamb shift Hamiltonian given by eq
37,1 which accounts for the energy shift induced by the
interaction with the environment, and commutes with the
system Hamiltonian (i.e., [HS, HLS] = 0). {γm(ω)} and
{Am(ω)} are damping rate coefficients and system jump
operators, respectively, which are given by

= dt e C t( ) ( )m
i t

m (35)

= | | | |
=

A A( )m m
(36)

= †H S A A( ) ( ) ( )LS
m

m m m
(37)

Here, ω = ϵ′ − ϵ, where ϵ and ϵ′ are the eigenvalues of HS,
corresponding to the eigenstates |ϵ⟩ and |ϵ′⟩, respectively, and
Cm(t) is the bath correlation function defined in eq 16. Here
we explicitly reintroduce the subscript m to indicate that it
corresponds to the correlation function of the m-th bath, which
is coupled to the system through the operator Am. Finally,
Sm(ω) is given by

= *S
i

( )
1
2

( ( ) ( ))m m m (38)

= dt e C t( ) ( )m
i t

m
0 (39)

Importantly, the validity of the Lindblad equation relies on
three critical approximations.8,115 First, the Born approxima-
tion assumes weak system-bath coupling within the framework
of second-order perturbation theory. Second, the Markovian
approximation assumes that the time scale of bath fluctuations
is much faster than the time scale of the system’s damping.
Third, the RWA assumes that rapidly oscillating terms,
compared to the time scale of the system’s dynamics can be
neglected.
Equation 34 can also be solved using the quantum algorithm

presented in Section 2 by replacing the HEOM propagator in
eq 33 with the propagator based on the Lindblad equation.
The Lindblad equation propagator can be computed using the
quantum algorithm outlined in ref. 59 The accuracy of the
quantum algorithm depends on the accuracy of the equation of
motion that underlies the propagator. Since circuit con-
struction is the same once the propagator is obtained, the cost
difference between implementing the HEOM and Lindblad
equation using the quantum algorithm primarily lies in the
propagator calculation, which is performed on a classical
computer.
The popularity of the Lindblad equation can be traced back

to the fact that the description of open quantum system
dynamics becomes analytically tractable under those approx-
imations. However, the restrictive nature of those assumptions
requires validation, particularly when applied to ultrafast
processes of molecular systems such as electronic charge and
energy transfer where those assumptions might break down
(see below).

4. MODEL SYSTEMS FOR CHARGE AND ENERGY
TRANSFER

In what follows, we will demonstrate the accuracy and utility of
the quantum algorithm described in Section 2 by applying it to
models of charge transfer in a solvated molecular triad and
excitation energy transfer in the FMO complex. Figure 3

provides schematic representations of the model systems. For
those model systems, the system corresponds to the electronic
degrees of freedom, while the nuclear degrees of freedom play
the role of the bath. Furthermore, the system-bath coupling
plays a crucial role in determining the rates of charge and
energy transfer in both cases. Below, we outline the
Hamiltonians for the two model systems under consideration.
4.1. Model Hamiltonian for Charge Transfer in a

Molecular Triad. The first model we examine is photo-
induced charge transfer within the carotenoid-porphyrin-C60
(CPC60) molecular triad dissolved in tetrahydrofuran, which
has been recently investigated extensively using a variety of
semiclassical rate theories based on inputs from molecular
dynamics simulations and time-dependent density functional
theory (TDDFT) calculations.76,117−123

Upon photoexcitation, the CPC60 transitions from its
ground state to the porphyrin-localized excited ππ* state,
CP*C60. The system subsequently undergoes electron transfer
from the porphyrin to the C60, to form the so-called CT1 state,
CP+C−

60. Further hole transfer from the porphyrin to the
carotene subsequently leads to the formation of the so-called
CT2 state, C+PC−

60 state.117 This sequence of events from
photoexcitation to the formation of CT2 can then be
summarized as follows:

* *[ ]

+

+

CPC CP C ( )

CP C (CT1)

C PC (CT2)

h
60 60

60

60 (40)

Two dominant characteristic conformations were reported
when CPC60 is dissolved in liquid tetrahydrofuran.117 These
conformations are denoted bent and linear and are shown in

Figure 3. Schematic representation of model systems for electron and
energy transfer. (a) Bent conformation and (b) linear conformation of
the carotenoid-porphyrin-C60 (CPC60) molecular triad dissolved in
tetrahydrofuran. Charge transfer can occur after photoexcitation of
the molecular triad. (c) The FMO complex, where two pathways exist
for excitation energy transfer: starts at site 1, transferring through site
2 to site 3, or starts at site 6 and passes through sites 5, 7, and 4, then
reaching site 3.116
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Figure 3a,b, respectively. Importantly, the charge transfer rates
are conformation-dependent.
In what follows, we will focus on the rate of the ππ* → CT1

charge transfer process. To this end, we map the system onto a
spin-boson model with a Hamiltonian of the following form:76

i

k
jjjjjj

y

{
zzzzzz= + + +H V E

p

M
M x

c

M2
1
2T x z

j

j

j
j j j

j

j j
z0

2
2

2

2

(41)

Here, the donor state ππ* is represented as |D⟩ = [1,0]T, and
the acceptor state CT1 as |A⟩ = [0,1]T. The electronic coupling
between these states is denoted by V, while E0 represents the
energy difference between these two electronic states.
Therefore, considering eqs 14 and 15, the subsystem
Hamiltonian is HS = Vσx + E0σz, with no dependence on m,
Am = σz. The intramolecular and intermolecular (solvent)
nuclear degrees of freedom are treated as a harmonic bath
linearly coupled to the system. The initial state is chosen to be

= = | |
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t D D e
e

( 0)
TrT

H

B
H

B

B (42)

where ρT is the total density operator, and the bath DOFs are
at thermal equilibrium. The coupling strength (η) and the
width ωc of the spectral density in eq 18 are chosen to match
the reorganization energy and the width of the spectral density
from ref. 76 Table 1 lists the parameters for the ππ* → CT1
charge transfer process corresponding to the bent and linear
conformations of the molecular triad in tetrahydrofuran.

The charge transfer dynamics in CPC60 were simulated via
the numerically exact HEOM framework, eq 25, as well as via
the approximate Lindblad equation, eq 34. In the HEOM
simulations, the initial state was set according to eq 42, with
| = = | | |t D D 0( 0)MT . The effective Hamiltonian for
HEOM is
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where “MT” denotes the molecular triad model.
For the projection operator in the form of eq 29, we

consider the full reduced density matrix as the quantity of
interest, with the subspace S = {DD, DA, AD, AA}. This four-

state subspace can be encoded in two qubits, resulting in a 3-
qubit circuit with the SVD dilation method. For charge transfer
in a molecular triad, where only electronic state populations
are of interest, the subspace S can be simplified to S = {DD,
AA}, yielding a 2-qubit circuit. Later, we will show that this
population-only subspace provides more accurate NISQ
simulation results.
Note that the dynamics within subspace S remain numeri-

cally exact, and the limitation imposed by the subspace is that
the quantum computer can only simulate the physical
quantities within S. For S = {DD, DA, AD, AA}, the quantum
circuit captures the full reduced density matrix dynamics.
However, with the population-only subspace S = {DD, AA},
the circuit cannot simulate the coherences (⟨A|ρ̂|D⟩, ⟨D|ρ̂|A⟩).
Such subspace selection has also been adopted in recent
studies.18,63

4.2. Model Hamiltonian for Energy Transfer in the
FMO Complex. The Fenna−Matthews−Olson (FMO)
complex is a well-characterized light-harvesting sys-
tem82,116,124−128 that serves as a quantum conduit, directing
excitation energy from the light-harvesting antenna to the
reaction center.129,130 This process involves exciton transfer
between the seven bacteriochlorophyll (BChl) chromophores
comprising the FMO complex. Figure 3c provides a schematic
representation of the system.
FMO is often described in terms of a Frenkel exciton

Hamiltonian:
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Here, |m⟩ represents the excited state of site m, which
corresponds to locally exciting the m-th BChl chromophore. ϵm
is the site excitation energy, and Jmn denotes the dipolar
coupling between sites m and n. Each site is coupled to its
phonon bath, with Nb

m phonon modes per bath. The parameter
cmj defines the coupling strength of phonon mode j to site m.
F o l l o w i n g e q s 1 4 a n d 1 5 , w e i d e n t i f y

= | | + | | + | |= <H m m J m n n m( )S m
N

m m n mn1 a s the
system Hamiltonian, and Am = |m⟩⟨m|.
In this study, we use the seven-site model Hamiltonian (N =

7) for the FMO complex, with ϵm and Jmn values obtained from
Moix et al.126 The matrix representation of HS (in units of
cm−1) is
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310.0 97.9 5.5 5.8 6.7 12.1 10.3
97.9 230.0 30.1 7.3 2.0 11.5 4.8
5.5 30.1 0 58.8 1.5 9.6 4.7
5.8 7.3 58.8 180.0 64.9 17.4 64.4

6.7 2.0 1.5 64.9 405.0 89.0 6.4
12.1 11.5 9.6 17.4 89.0 320.0 31.7
10.3 4.8 4.7 64.4 6.4 31.7 270.0

S

(45)

For the bath, each site couples to an identical bath (i.e., cmj ≡
cj) and follows a Debye spectral density with parameters η = 70
cm−1 and = 50 fsc

1 .23,116,131

Excitation energy transfer within the FMO complex follows
two primary pathways: either starting at site 1 and passing

Table 1. Model Parameters of the Spin-Boson Model
Correspond to the ππ* → CT1 Charge Transfer Process for
the Bent and Linear Conformations of the CPC60 in
Tetrahydrofuran Solution76

Parameter Bent Linear

V 2.4 × 10−2 eV 9.0 × 10−3 eV
E0 0.507 eV 0.236 eV
η 0.2565 eV 0.318 eV
ωc 25 cm−1 25 cm−1

T 300 K 300 K
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through site 2 to site 3, or starting at site 6 and passing through
sites 5, 7, and 4, to reach site 3.116 We focus on the first
pathway, where the initial state is |m = 1⟩ and the phonon bath
is at thermal equilibrium:

= = | |
[ ]

t e
e

( 0) 1 1
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B
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In this setup, the initial HEOM state vector is
| = = | | |t 0( 0) 1 1FMO , and effective Hamiltonian is ex-
pressed as
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where “FMO” stands for the FMO complex.
For the projection operator in the FMO complex model, we

measure populations at sites 1, 2, 3, and 6, capturing the
primary excitation pathway 1 → 2 → 3 .75,126,132 Therefore,
the projection operator is chosen as in eq 29 with the projected
subspace S = {11, 22, 33, 66}, which, after dilation, results in a
3-qubit circuit. This subspace can be decomposed into three
smaller subspaces: S1 = {11, 22}, S2 = {11, 33}, and S3 = {11,
66}. Notably, the constraint | = |(0) (0) imposed on
the projection operator (i.e., as shown below eq 32) applies to
these subspaces.

5. RESULTS
To assess the applicability of the Lindblad equation, we first
tested a general spin-boson model (eq 41) with tunable
parameters. Figure 4 compares the dynamics of the donor state
population at different system-bath coupling strengths η, as
obtained via the Lindblad quantum master equation vs the
numerically exact HEOM method (the values of the remaining
model parameters are set at V = 0.5, E0 = 2.5, β = 1, and ωc =
1). The inset provides a detailed view of the short-time

dynamics. As expected, the Lindblad quantum master equation
is seen to be accurate when η is sufficiently small (the weak
system-bath coupling limit). Increasing the value of η beyond
the weak coupling limit (η ∼ 0.01−0.05), the Lindblad
quantum master equation is found to overestimate the
population relaxation rate at short times and underestimate it
at longer times.
It should also be noted that the dynamical range of validity

of the Lindblad quantum master equation corresponds to a
weak damping regime, and therefore gives rise to donor
population dynamics that are pronouncedly coherent (oscil-
latory) and dominated by the electronic coupling V. While
damping increasingly dominates the dynamics with increasing
η, the regime where the dynamics are truly incoherent lies
outside the range of validity of the Lindblad quantum master
equation. The breakdown of the Lindblad equation at strong
system-environment coupling η is consistent with the fact that
it relies on the Born-Markov approximation.1 As noted in
previous studies, perturbative methods become invalid when
the perturbation strength is strong.13,133−135 The results in
Figure 4 clearly demonstrate that the Lindblad quantum
master equation is only applicable within the coherent
dynamics regime (η ≪ V). Detailed comparisons with the
HEOM and Lindblad-typed TCL-Redfield equation can be
found in refs. 110, 111 and 113
5.1. Charge Transfer in a Molecular Triad: Lindblad vs

HEOM. We now apply the Lindblad equation and HEOM to
study electron transfer in the molecular triad. Figure 5 shows

the donor state (ππ*) population dynamics for the ππ* →
CT1 charge transfer process of CPC60 in tetrahydrofuran
solution. Simulation parameters for the two CPC60 con-
formations (bent and linear) are provided in Table 1.
Inspection of the exact HEOM results shows that, for both

bent and linear conformations, the population dynamics follow
incoherent rate kinetic (η ≫ V), with the long-time population
of the ππ* state exhibiting an exponential decay. Notably, the
ππ* → CT1 electron transfer is significantly faster in the linear
conformation, which is consistent with previous studies.117 In
contrast, the Lindblad quantum master equation predicts much
slower charge transfer rates for both conformations, which is
consistent with the fact that η ≫ V for this model (see Table
1). Despite these discrepancies, the Lindblad quantum master

Figure 4. Population dynamics P(t) of the donor state in the spin-
boson model across various system-bath coupling strengths η,
computed using numerically exact HEOM (solid lines) and the
Lindblad equation (dashed lines). Simulation parameters: V = 0.5, E0
= 2.5, β = 1, ωc = 1. The inset highlights the transient dynamics in
detail.

Figure 5. ππ* state population dynamics in the ππ* → CT1
photoinduced charge transfer process of CPC60 molecular triad
dissolved in tetrahydrofuran. Here, the simulation results using the
Lindblad equation and the numerically exact HEOM are shown for
the two configurations of the CPC60 molecular triad (bent and linear).
The parameters used in the simulations are in Table 1.
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equation does capture some trends, such as the exponential
decay in population dynamics and the faster charge transfer
rate in the linear conformation.
To quantitatively illustrate the discrepancy between the

predictions of the Lindblad quantum master equation and the
exact results, we present the charge transfer rate constants
predicted by HEOM and the Lindblad equation in Table 2.

The rate constants are obtained from an exponential fit of the
P(t) data in Figure 5 over the time range t = 3000 to 4000 fs.
For comparison, we also include rate constants calculated using
Marcus theory.136−138 According to Marcus theory, the charge
transfer rate constant kMarcus is given by2,76,136−138

=k V
kT

eMarcus
E kT

2
( ) /4DA

2

(48)

where EDA = 2E0 is the energy difference between the donor
and acceptor states, and λ is the reorganization energy. For a
spin-boson model with Debye spectral density (eq 18), λ =
2η.22 The Marcus rate constants in Table 2 are consistent with
those reported by Tong et al.76 Our ππ* state dynamics results
for the bent conformation also align with the cavity-free case in
ref. 18 where minimal population change was observed within
5000 au (120.9 fs); here, significant dynamics emerge only
beyond the 1000 fs time scale.
As shown in Table 2, the exact HEOM rate constants closely

match the Marcus rate constants, underscoring Marcus
theory’s robustness in describing charge transfer in solution
and validating the spin-boson model parameters in Table 1 and
the HEOM results. In contrast, the Lindblad equation predicts
significantly slower transfer rates, one to two orders of
magnitude lower than the exact (HEOM) rates. This
discrepancy is more pronounced for the linear conformation,
with kHEOM/kLindblad values of 23.3 for the bent conformation
and 88.8 for the linear conformation.
This outcome is expected. From Figure 4, we observed that

the Lindblad equation is only accurate when η ≪ V, suggesting
η/V as a key parameter for assessing its validity. Table 1 shows
η/V = 10.7 for the bent conformation and η/V = 35.3 for the
linear conformation. These values indicate that the deviation
between the Lindblad and exact rates (kHEOM/kLindblad) is
indeed proportional to η/V.
5.2. Energy Transfer in the FMO Complex: Lindblad

vs HEOM. In Figure 6, we compare Lindblad dynamics with
the numerically exact HEOM dynamics for excitation energy
transfer in the FMO complex at 300 K. We present the
population dynamics across different sites, with the initial
population localized at site 1. Simulation parameters are
specified in Section 4.2.
The HEOM results in Figure 6 show that within the

transient dynamics regime (t < 300 fs), coherent oscillations
occur between sites 1 and 2. These oscillations fade over
longer time scales, transitioning into a rate kinetics regime at

longer times. As the population at site 3 grows, signifying
energy transfer toward the terminal site and subsequently to
the reaction center.126 This behavior stems from the fact that η
∼ Jmn in this case.
The fact that η ∼ Jmn in FMO is also consistent with the

observation that the Lindblad dynamics in Figure 6 are in
better agreement with the exact HEOM results (in comparison
to the molecular triad case where η ≫ V). However, the
deviations between the Lindblad and HEOM results are rather
large, with the former exhibiting faster short-time and slower
long-time dynamics, as evidenced by the shallower slope of
P(t) for Lindblad results after t = 600 fs. This outcome is
consistent with the general trends shown in Figure 4.
5.3. Quantum Circuit Simulation Results. In this

section, we report results obtained by applying the qHEOM
algorithm described in Section 2 to simulate the charge and
energy transfer dynamics in the two model systems under
consideration on quantum circuits. Figure 7 compares results
obtained via qHEOM to results obtained via HEOM on a
classical computer. The qHEOM results were obtained by
utilizing IBM’s noisy quantum circuit simulator, QasmSimu-
lator from the Qiskit Aer package,139 sampling 20,000 shots
per time point. Figure 7a shows the dynamics of the ππ*
population in CPC60 based on the projection operator in eq 29
which treats the full reduced electronic density matrix as the
quantity of interest (i.e., projects onto the subspace S = {DD,
DA, AD, AA}) and yields a 3-qubit circuit (with dilation).
Figure 7b shows the energy transfer dynamics in the FMO
complex, where we measure populations at sites 1, 2, 3, and 6
(i.e., the subspace S = {11, 22, 33, 66}).
The excellent agreement between the qHEOM and HEOM

results validates the accuracy of our quantum algorithm, as well
as its ability to simulate nonunitary dynamics of open quantum
systems on a unitary circuit. It also demonstrates the ability of
qHEOM to accurately simulate non-Markovian dynamics
beyond the range of applicability of the Lindblad quantum
master equation.
In this work, we focus on electronic energy and charge

transfer dynamics in models of the molecular triad and the
FMO complex. In those cases, the populations of electronic
states constitute the quantity of interest. Importantly, the fact
that the populations of electronic states constitute the quantity
of interest does not imply that the coherences are left out or
that the coherences do not impact the population dynamics.

Table 2. Charge Transfer Rate Constants Calculated by the
HEOM, the Lindblad Equation, and the Marcus Theorya

Rate constant HEOM Lindblad Marcus

Bent 1.24 × 1011 s−1 5.32 × 109 s−1 1.19 × 1011 s−1

Linear 8.17 × 1011 s−1 9.20 × 109 s−1 1.13 × 1012 s−1

aThe HEOM and Lindblad rate constants are obtained by exponential
fitting of their respective P(t) data in Figure 5, in the range of t =
3000−4000 fs.

Figure 6. Population dynamics of different sites in the FMO complex
at 300 K with Debye spectral density. All parameters are defined in
Section 4.2, and dynamics are obtained using numerically exact
HEOM (solid lines) and the Lindblad equation (dashed lines). The
population is initialized at site 1.
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Furthermore, it should be emphasized that our quantum
algorithm is not restricted to simulating population dynamics.
For instance, in the case of the molecular triad model, the
subspace S = {DD, DA, AD, AA} includes all elements of the
full reduced density matrix, not just populations. Similarly, for
the FMO complex model, coherence dynamics can be
incorporated by adjusting the projection subspace.
It should be noted that the construction of quantum circuits

is based on the propagator G(t), which, according to eq 33, is
precomputed by solving the HEOM on a classical computer.
The quantum circuit simulates the nonunitary process
described by eq 1, which can also be directly performed on a
classical computer. Therefore, a direct comparison of
computation times between classical and quantum implemen-
tations is not appropriate. Nonetheless, the purpose of this
work is not to demonstrate quantum advantage but to illustrate
how numerically exact HEOM can be implemented using
quantum circuits based on unitary gates.
Next, we report the results obtained via qHEOM on NISQ

devices. Figure 8 shows the charge transfer dynamics in CPC60
as obtained by running qHEOM on the IBM Sherbrooke

quantum computer, with the same projected subspace S =
{DD, DA, AD, AA} as in Figure 7a. Populations for the donor
ππ* state [PD(t)] and the acceptor CT1 state [PA(t)] were
measured at 40 time points, each corresponding to an
individual circuit sampled 20,000 times. Dynamic decoupling
(XX sequence) and 2-qubit Clifford gate twirling error
mitigation techniques were used within Qiskit.139 Circuit
complexity remains consistent across time points, with an
example circuit depth of 60 and 11 2-qubit gates shown in
Supporting Information.
Inspection of Figure 8 reveals that while simulation on the

NISQ device can reproduce the general dynamical behavior,
noise gives rise to discrepancies compared with the exact
results. These discrepancies exhibit notable patterns. First,
larger errors occur when PD(t) or PA(t) approaches 0 (as the
other population nears 1), particularly in the short-time region
for the bent conformation and across short- and long-time
regions for the linear conformation. This behavior is consistent
with observations from previous studies,35,63 which reported
larger deviations in NISQ results at early times when the exact
population of certain states is close to zero. Second, deviations
are more pronounced when the exact population is near 0,
compared to when it is near 1. In particular, PA(t) exhibits
larger errors than PD(t) at short times for the bent
conformation, and PD(t) shows greater errors than PA(t) at
longer times for the linear conformation. This effect is
attributed to noise in the sampling measurements.
To explain this trend, we note that after running the circuit

in Figure 1, the population for |i⟩ with ii ∈ S is retrieved by
counting instances of |ii 0 with the ancilla qubit in |0⟩. If Ni
counts occur from Nc total measurements, the population of
state |i⟩ is calculated as

=P N N/i i c0 (49)

where σ0 is the largest singular value of the propagator (see eq
3). Allowing for noise in Ni, Ni = Nexact ± Nerr, the error in Pi
can be estimated as follows:

= = ±P N N P N N/ ( 1 / )i i c exact err exact0 (50)

Thus, as Pexact approaches 0, Nexact is small, increasing the
deviation of ± N N( 1 / )err exact from 1.
Importantly, error mitigation does reduce deviations

significantly, with results in the Supporting Information
showing that the unmitigated NISQ data exhibits the same
trends but with larger errors. The results in Figure 8 surpass in
accuracy previously reported results obtained on 3-qubit
circuits in ref. 63 where the Sz.-Nagy dilation method was
employed to handle the nonunitary propagator G(t). Here,
SVD dilation with an efficient Walsh operator representation of
UΣ reduced circuit depth, as shown in Table 3. Thus,
combining SVD dilation with Walsh operator implementation
for UΣ reduces circuit complexity by more than a factor of 2
compared to the Sz.-Nagy approach.
Figure 9 shows the population dynamics of FMO obtained

by running qHEOM on the IBM Sherbrooke quantum
computer. The projection subspace S = {11, 22, 33, 66} is
consistent with Figure 7b. Each quantum circuit was sampled
20,000 times with error mitigation applied. Circuit complexity
is uniform across time points (an example is provided in Table
4), and a sample circuit diagram is available in the Supporting
Information.

Figure 7. Quantum circuit simulation of (a) ππ* state population
dynamics of the CPC60 molecular triad in tetrahydrofuran and (b)
population dynamics of different sites in the FMO complex. The solid
lines, labeled “Exact”, correspond to HEOM results from Figures 5
and 6. Dotted points show quantum circuit results obtained via IBM
QasmSimulator (Qiskit Aer139 ), with 20,000 shots per time point.
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Overall, the NISQ device accurately simulates the energy
transfer dynamics in FMO, capturing both the coherent
oscillations between site 1 and site 2 at short times and the
growth of population at site 3 at longer times (the terminal
site.126 Similar to the observations in Figure 8, slight deviations
in NISQ results appear when P(t) approaches zero, particularly
in the initial populations of sites 3 and 6, and in the long term
population of site 1.
In both Figures 8 and 9, the projected subspace S includes

four states, resulting in a nearly identical depth for the 3-qubit
circuits in both cases. However, compared to the CPC60 results
in Figure 8, the NISQ results for the FMO complex are more
accurate. This is because, in the FMO case, the largest singular
value σ0 of G(t) in eq 3 is less than 1, whereas, for CPC60, σ0
exceeds 1. For the same Pexact in eq 50, we have Nexact =
Nc(Pexact/σ0)2. A smaller σ0 thus results in a larger Nexact,
reducing the deviation of the error factor ± N N( 1 / )err exact
from 1.

The quantum algorithm based on the dilation of G(t) used
in this work has the advantage of allowing the selection of
projection subspace toward reducing the circuit depth, thereby
lowering the effect of noise.63 Figure 10 shows the population
dynamics of the molecular triad obtained using the IBM
Sherbrooke quantum computer, where the projected subspace
is restricted to S = {DD, AA}. In this case, the corresponding
dilation circuit involves only 2 qubits, with examples of the
circuit shown in the Supporting Information. As shown in the
figure, compared to Figure 8, the accuracy of the NISQ results

Figure 8. Population dynamics of the CPC60 molecular triad: (a) bent conformation, (b) linear conformation. PD represents the population in the
ππ* (donor) state, and PA represents the population in the CT1 (acceptor) state, with the projection subspace S = {DD, DA, AD, AA}. Solid lines
show the exact HEOM results, while scatter points indicate quantum circuit results obtained from the IBM Sherbrooke quantum computer. Each
time point was sampled with 20,000 shots. Error mitigation techniques, including dynamic decoupling (XX sequence) and 2-qubit Clifford gate
twirling, were applied using Qiskit.139

Table 3. Circuit Complexity for Different Dilation
Methodsa

Dilation method Sz.-Nagy SVD SVD + Walsh

Depth 148 105 60
Number of 2-qubit gate 28 22 11

a“SVD” refers to the SVD dilation approach shown in Figure 1, where
the diagonal unitary operator UΣ is directly compiled, while “SVD +
Walsh” indicates the SVD dilation approach combined with the Walsh
operator representation for UΣ. The dilation is based on the
propagator G(t) at t = 2073.5 fs for the linear conformation shown
in Figure 8. Circuits are compiled to the basis gate set of the IBM
Sherbrooke quantum computer (X, Rz, and ECR) and adapted to its
specific topology. The 2-qubit gate count reflects the number of ECR
gates in the circuit.

Figure 9. Population dynamics of the FMO complex. Solid lines
indicate the exact HEOM simulation results, while dotted scatter
points represent quantum circuit results from the IBM Sherbrooke
quantum computer. Each time point was sampled with 20,000 shots.
The projection subspace is defined as S = {11, 22, 33, 66}. Dynamic
decoupling (XX sequence) and 2-qubit Clifford gate twirling error
mitigation techniques were applied using Qiskit.
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has improved significantly. For both conformations, the NISQ
results closely match the exact results, with only minor
deviations when the exact population approaches zero. The
reasons for these errors are the same as discussed earlier in
Figures 8 and 9. The improved accuracy of the NISQ results is
attributed to the significant reduction in circuit depth: in Table
4, due to the decrease in the number of qubits, the example
circuit depth is reduced from 60 to 15, and the number of 2-
qubit gates decreases from 11 to 2.
The same approach can be applied to the FMO complex.

Note that, as shown below eq 32, the constraint
| = = | =t t( 0) ( 0) imposed on the projection oper-

ator means that the projection subspace must include the
initial site |1⟩. For the 2-qubit circuit, S should take the form of
{11, ij}. Therefore, to measure the populations of sites 1, 2, 3,
and 6 at a given time, we need three 2-qubit circuits
corresponding to the projection subspaces S1 = {11, 22}, S2
= {11, 33}, and S3 = {11, 66}. The decomposition of the
projection subspace can significantly reduce the circuit depth.
As an example shown in Table 4, after decomposing the S =

{11, 22, 33, 66} into S1, S2, and S3, the circuit with a depth of
67 and 12 two-qubit gates is transformed into three circuits,
each with a depth of around 17 and containing two two-qubit
gates.
The reduction in circuit complexity has significantly

improved the accuracy of the NISQ results. Figure 11 shows
the IBM Sherbrooke results for the FMO complex, where we
use S1 = {11, 22}, S2 = {11, 33}, and S3 = {11, 66} to construct
2-qubit quantum circuits.

Table 4. Circuit Complexities for Different Examples from
Figure 8 to Figure 11a

Depth Number of 2-qubit gates

3 qubits CPC60 60 11
3 qubits FMO 67 12
2 qubits CPC60 15 2
2 qubits FMO 17 2

aAs specific cases, the circuit for CPC60 uses the propagator for the
linear conformation at t = 2073.5 fs, while for FMO uses the
propagator at t = 612.0 fs. The 3-qubit CPC60 and 3-qubit FMO
correspond to projection subspaces S = {DD, DA, AD, AA} and S =
{11, 22, 33, 66}, respectively, while the 2-qubit CPC60 and 2-qubit
FMO correspond to S = {DD, AA} and S = {11, 22}, respectively. The
circuit compilation settings are the same as those in Table 3.

Figure 10. Population dynamics of the CPC60 molecular triad. The projection subspace is defined as S = {DD, AA}, yielding 2-qubit quantum
circuits. Solid lines denote the exact HEOM simulation results, while scatter points represent quantum circuit results from the IBM Sherbrooke
quantum computer. Each time point was sampled with 20,000 shots, with error mitigation applied.

Figure 11. Population dynamics of the FMO complex. The solid lines
represent the exact HEOM results, and the dot scatter points
represent the quantum circuit results from the IBM Sherbrooke
quantum computer. To calculate the populations of states |1⟩, |2⟩, |3⟩,
and |6⟩ using two-qubit circuits, three different projection subspaces
are employed: S1 = {11, 22}, S2 = {11, 33}, and S3 = {11, 66}. Each
time point is measured by 20,000 shots with error mitigation.
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Except for slight deviations in the population of sites 3 and 6
at early time points t < 200 fs, the IBM Sherbrooke results
align almost perfectly with the exact results. This demonstrates
that our quantum algorithm can achieve high precision in
simulating the population dynamics of the FMO complex on
actual NISQ devices.

6. CONCLUDING REMARKS
We have introduced the qHEOM quantum algorithm and
demonstrated its accuracy and practical utility by using it to
simulate charge transfer in a solvated molecular triad and
excitation energy transfer in the FMO complex, on NISQ
devices. We have shown that the dynamics in both cases are
non-Markovian and beyond the weak system-bath coupling
limit, thereby rendering a description via the Lindblad
quantum master equation inadequate. Specifically, we found
that the TCL-Redfield equation with the RWA (quantum
master equation in the Lindblad form) is limited to the
coherent dynamics regime, fails to capture the charge transfer
rate in the molecular triad, and provides only qualitative results
for energy transfer in FMO.
qHEOM implements the SVD dilation to convert the

nonunitary HEOM propagator into unitary gates and utilizes
the Walsh operator representation to efficiently represent the
diagonal unitary operator within the dilation circuit. In doing
so, qHEOM significantly reduces circuit complexity compared
to algorithms based on Sz.-Nagy dilation.18,63 Further
reduction in circuit depth and complexity is achieved by
projecting the HEOM propagator onto the subspace of
quantities of interest. Since different subspaces are independ-
ent, this approach also allows for parallel quantum computing
implementations on multiple circuits.
Our qHEOM simulations performed on the IBM NISQ

device show that device noise can lead to significant
discrepancies. The discrepancy is found to be related to the
properties of the propagator. When the largest singular value of
the propagator is relatively large, it can amplify this
discrepancy. Consequently, for circuits of similar complexity,
the NISQ results for energy transfer in the FMO complex are
more accurate than those for charge transfer in the molecular
triad.
Reducing the size of the projection subspace can mitigate

device-induced errors. By limiting the projection subspace to
include only two states, the IBM device achieved highly
accurate quantitative results. Notably, for energy transfer in the
FMO complex, the NISQ results are almost perfectly aligned
with numerically exact benchmark results.
When simulating open quantum system dynamics via

qHEOM on IBM quantum computers, error mitigation
techniques included in Qiskit can effectively reduce errors
caused by device noise. However, the noise susceptibility of
qubits on NISQ devices still limits the problems these
machines can address. Consequently, this work employs
small projected subspaces to obtain meaningful results.
Nevertheless, the proposed algorithm is not inherently
restricted to such subspaces. If deep quantum circuits involving
a large number of qubits can be executed with lower error
rates, the exact propagation of HEOM, a significant challenge
for classical computers, could be achieved without using
projected subspaces by constructing the propagator for the full
Hilbert space.
To this end, future efforts could explore different dynamical

decoupling sequences140−143 to suppress errors. Building on

this foundation, advancements in fault-tolerant quantum
computing (FTQC)144−147 may provide a pathway to integrate
the proposed algorithm with quantum error correction. In this
scenario, the physical qubits in our circuits would be replaced
by logical qubits, encoded using quantum error correction
codes (QECC),148−151 to correct errors in qubits and further
enhance computational reliability.
We note that the quantum algorithm implemented in this

work is quite general. Although we used it to implement the
HEOM propagator, the same algorithm could be applied to
implement propagators from other quantum master equations.
Those propagators could be obtained using various numerical
methods, such as TT-TFD,15−17 path integral,27−35 time-
evolving matrix product operator (TEMPO),152−154

GQME,13,17,36−47 and others. Once the propagator for the
evolution of the system is obtained, the SVD dilation and
Walsh operator representation implemented in this work can
be applied to construct the corresponding quantum circuit.
In future studies, we will use bosonic quantum devices to

simulate the dissipative dynamics of chemical systems
according to the quantum algorithm developed in this work.
Hybrid qubit-qumode quantum devices could offer significant
advantages over traditional qubit-based quantum plat-
forms,155−159 particularly for implementations of the HEOM
methodology where the degrees of freedom of the environ-
ment are decomposed into several effective bosonic modes.
Moreover, by selecting appropriate projection operators, the
method introduced in this study can be extended to more
complex models and interactions onto quantum circuits, such
as the Holstein model,160−162 the Holstein-Hubbard model,163

and model systems with conical intersections.164
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Allen, B.; Dan, X.; Cortiñas, R. G.; Khazaei, P.; Schäfer, M.; Albornoz,
A. C. C. D.; Smart, S. E.; Nie, S.; Devoret, M. H.; Mazziotti, D. A.;
Narang, P.; Wang, C.; Whitfield, J. D.; Wilson, A. K.; Hendrickson, H.
P.; Lidar, D. A.; Pérez-Bernal, F.; Santos, L. F.; Kais, S.; Geva, E.;
Batista, V. S. Simulating Chemistry on Bosonic Quantum Devices. J.
Chem. Theory Comput. 2024, 20, 6426−6441.
(157) Crane, E.; Smith, K. C.; Tomesh, T.; Eickbusch, A.; Martyn, J.
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