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Impact of chaos on the excited-state quantum phase transition of the Kerr parametric oscillator
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The driven Kerr parametric oscillator, of interest to fundamental physics and quantum technologies, exhibits
an excited state quantum phase transition (ESQPT) originating in an unstable classical periodic orbit. The main
signature of this type of ESQPT is a singularity in the level density in the vicinity of the energy of the classical
separatrix that divides the phase space into two distinct regions. The quantum states with energies below the
separatrix are useful for quantum technologies, because they show a catlike structure that protects them against
local decoherence processes. In this work, we show how chaos arising from the interplay between the external
drive and the nonlinearities of the system destroys the ESQPT and eventually eliminates the cat states. Our results
demonstrate the importance of the analysis of theoretical models for the design of new parametric oscillators with
ever larger nonlinearities.
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Introduction. The presence of an excited state quantum
phase transition (ESQPT) is characterized by a nonanalyticity
in the level density of a quantum system [1], which is con-
nected with underlying features of the classical counterpart of
the system. The transition happens at an excited energy that
divides the spectrum of the system into regions with distinct
properties. ESQPTs have been used to explain the complex
vibrational spectra of nonrigid molecules [2,3] and to engineer
Schrödinger cat states [4]. They have also been shown to
affect the evolution of quantum systems in opposite directions.
The dynamics can be very slow due to localized states in the
vicinity of the ESQPT [5–7] but it can also be accelerated due
to quenches over the critical region or initial states on unstable
points [8–11].

The squeeze-driven Kerr oscillator implemented with su-
perconducting circuits [12,13] exhibits an ESQPT [11,14–16].
The system presents a double-well structure, which results
in pairs of degenerate levels within the wells. The regions
inside and outside the wells represent the two phases of
the ESQPT [11]. It was demonstrated experimentally that
the number of degenerate levels inside the wells grows
as the amplitude of the squeezing drive (control parameter)
increases [17]. Schrödinger cat states of the two lowest degen-
erate states have also been experimentally realized [13]. These
states are protected against local decoherence processes [18],
thus finding application as logical states of Kerr-cat qubits
[19–21].

In addition to realizing Kerr-cat qubits [13], Kerr paramet-
ric oscillators present advantages for quantum error correction
[22], quantum computation [23], and quantum activation
[24–26]. However, they also face the potential problem of

chaos, brought up recently in [27–30]. The onset of local
chaos, in particular, can disintegrate the double-well structure
of the Kerr parametric oscillator and melt away the Kerr-cat
qubit [30]. The parameters for the onset of local chaos were
established with the analysis of quasienergies and Floquet
states and studies of the classical limit of the system [30].

Given the technological applications of ESQPTs in a Kerr
parametric oscillator, we investigate how they are impacted
by the onset of chaos. There are different types of ESQPTs
[1,14]. We focus on the ESQPT mentioned above, which
arises from the double-well structure. This ESQPT stems from
a classical unstable periodic orbit, which defines a separatrix
in phase space. This classical feature gets manifested as a cusp
singularity in the density of states of the quantum spectrum. In
quantum maps, it has been shown that chaos destroys ESQPTs
[31], while the transition persists in the chaotic regime of the
Dicke model [32].

Our analysis delineates the threshold at which the ES-
QPT is disrupted, making a parallel with the chaos boundary
delineated in Ref. [30]. We also conduct a comprehensive
examination of the states at the bottom of the double-well
structure—those used in Kerr-cat qubits [19–21]—and derive
the threshold for their complete decimation. This happens
when the two regular islands, which remain in the classical
phase space after the destruction of the double wells, are
finally eliminated. We show that there is an interplay between
the scale of these islands and the quantum resolution deter-
mined by the effective Planck constant.

There have been great breakthroughs in the implementa-
tion of hardware-protected qubits [33]. The chaos-induced
destruction of the ESQPT can potentially render supercon-
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ducting qubits unsuitable for quantum technologies. This
underscores the significance of our analysis not only from a
theoretical standpoint, but also in shaping the development of
future qubits.

Kerr parametric oscillator. We consider the squeeze-driven
Kerr oscillator implemented in a superconducting circuit that
has a superconducting nonlinear asymmetric inductive ele-
ment (SNAIL) transmon and a squeezing drive [17,34]. The
SNAIL transmon is an arrangement of Josephson junctions
with a threaded magnetic flux that allows for tuning the non-
linearity of the system [12,35,36]. The Hamiltonian is given
by [17,34–37]

Ĥ (t )

h̄
= ω0â†â +

4∑

m=3

gm

m
(â + â†)m − i�d (â − â†) cos ωdt,

(1)

where â† and â are the bosonic creation and annihilation
operators, ω0 is the bare frequency, g3, g4 � ω0 are the coeffi-
cients of the third- and fourth-rank nonlinearities [17,34], �d
is the amplitude of the sinusoidal drive, and ωd is the driving
frequency. We set h̄ = 1.

Following Ref. [17], we perform two transformations on
Ĥ (t ). First, a displacement into the linear response of the
oscillator is done, where the amplitude of the displacement
is � ≈ 2�d/(3ωd ). Second, we move into a rotating frame
induced by ωd â†â/2. The transformed Hamiltonian is

Ĥ(t ) = − δâ†â +
4∑

m=3

gm

m
(âe−iωd t/2

+ â†eiωd t/2 + �e−iωd t + �∗eiωd t )m. (2)

Here we consider the case of the detuning δ = ωd
2 − ωo ≈ 0.

We remark that for this case, i.e., δ very close to zero, the
sign is not important. The analysis of the rich behavior as a
function of the detuning can be found in Refs. [17,34]. There
is a period doubling bifurcation in the classical limit of the
system that is taken into account by this choice of frame. The
driving condition for the period-doubling bifurcation, includ-
ing the Lamb and Stark shift to the bare frequency ωo, can be
specified as ωd = 2ωa, where ωa ≈ ωo + 3g4 − 20g2

3/3ωo+
(6g4 + 9g2

3/ωo)(2�d/3ωo)2 (see Refs. [16,34,38] for details).
For the values of the nonlinearities and drive amplitude

used in the experiment [17], the quasienergies of Ĥ(t ) co-
incide with the energies of an effective time-independent
Hamiltonian [16] derived from Eq. (2). This static effec-
tive Hamiltonian gives rises to a double-well metapotential
(see Ref. [38]). The consequences of the change of the
metapotential structure as a function of δ can be found in
Refs. [14,17,34].

The driven system is described by the Floquet states [39],
|�k (t )〉 = e−iεkt |φk (t )〉, where |φk (t )〉 = |φk (t + T )〉 are the
Floquet modes, εk are the Floquet quasienergies, and T is
the period of the drive. Since we profit from the period
doubling bifurcation [40], we consider as Floquet modes
the eigenstates of the time-evolution operator at twice the
period of the drive τ = 2T , so Û (τ )|φk〉 = e−iεkτ |φk〉, and
the quasienergies are obtained by diagonalizing Û (τ ). The
quasienergies are uniquely defined modulo ωd/2 = 2π/τ ,
that is, εk ∈ [0, ωd/2].
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FIG. 1. Top: Scaled quasienergies of Ĥ(t ) in Eq. (2) as a function
�. The colored dots indicate the degree of overlap between the corre-
sponding Floquet state and a coherent state centered on the unstable
fixed point (q0, p0) = (0, 0). Gray dots are for states with no overlap
with the coherent state. (a)–(c) Husimi functions of the Floquet states
that lie at the ESQPT line; they are marked with crosses in the
top panel. (d)–(f) Husimi functions of the Floquet states that have
catlike structure; they are marked with circles in the top panel. All
panels: Basis size N = 200, g3/ωo = 0.01695, g4/ωo = 8.33 × 10-5,
and K = 10g4.

In Floquet systems, there is no energy hierarchy. Based on
previous results obtained with the approximate static effective
Hamiltonian [16,38], we implement the following scaling of
the quasienergies

ε̃ = [(ε − ε0) mod (ωd/2)]/K, (3)

where K is the Kerr nonlinearity, which, to leading order, is

K ≈ − 3g4

2 + 10g2
3

3ωo
[34], and ε0 corresponds to the Floquet state

localized at the bottom of the two wells. For the effective
time-independent Hamiltonian, this is the ground state. For
a wide range of parameters, the Floquet state with the lowest
occupation number, 〈â†â〉, is almost equal to the ground state
of the static effective Hamiltonian [16].

In the top panel of Fig. 1, we show with dots the scaled
quasienergies [Eq. (3)] as a function of the control parameter
� = g3�/K introduced in [30], where

√
2� is the half dis-

tance between the two minima of the double-well structure.
The dots are colored according to the overlap of their cor-
responding Floquet states with a coherent state |G(q0, p0)〉
centered at the origin of the phase space (q0, p0) = (0, 0).
As the control parameter increases, pairs of neighboring
low-lying levels successively coalesce. This happens from
lower to higher energies as � increases, as verified also with
the effective static Hamiltonian [17]. This spectral kissing
is directly related to an ESQPT [11]. The critical energy
of the ESQPT, separating the degenerate (inside the wells)
from the nondegenerate (outside the wells) levels, coincides
with the energy of the separatrix of the classical limit of
the Hamiltonian [11]. The separatrix intersects at an unstable
hyperbolic point at the origin of the phase space, (q0, p0). The
states at the ESQPT line have the largest overlaps with the
coherent state |G(q0, p0)〉 (orange, red), while the states far
away from the transition, either degenerate (below the line)
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or nondegenerate (above the line), show almost no overlap
(blue, black). The ESQPT line has a quadratic dependence
with � [11]. The states below the line exhibit a quasilinear
dependence on � and display structures akin to cat states [17].
The gray dots are for the Floquet states with a large average
occupation number 〈a†a〉 > 30, whose quasienergies do not
match the eigenvalues of the effective Hamiltonian [16].

In the bottom panels of Fig. 1, we show examples of
Husimi functions for two types of Floquet states: those with a
large overlap with the coherent state at the phase space origin
and therefore at the ESQPT line, Figs. 1(a)–1(c), and states for
a fixed value of � with ε̃ below the ESQPT, Figs. 1(d)–1(f).
The separatrix structure crossing at the hyperbolic point is
clearly visible for Figs. 1(a)–1(c). The Husimi function of the
Floquet state with the lowest occupation number is shown in
Fig. 1(d). Since this Floquet state is equivalent to the ground
state of the static effective Hamiltonian, we call it |Fmin〉. The
states [Fig. 1(e) and 1(f)] are higher in energy than |Fmin〉 and
show two asymmetric rings that increase with energy.

Transition to chaos and destruction of the ESQPT. The
fact that the double-well structure associated with the ESQPT
and the properties of the spectrum of the squeeze-driven Kerr
oscillator can be described by an effective time-independent
Hamiltonian implies that the system is in the integrable
regime, since chaos cannot be generated in time-independent
Hamiltonians of systems with one degree of freedom. As
the nonlinearities and drive amplitude increase, the system
undergoes a transition to chaos [30] and the time-independent
effective Hamiltonian no longer holds.

To investigate how the ESQPT is affected by the on-
set of chaos, we analyze the overlaps between the Floquet
states and the coherent state |G(q0, p0)〉. If the ESQPT re-
mains manifested in the spectrum, there must exist a Floquet
state with a significant overlap with this packet. To quan-
tify the overlap, we employ a metric of localization known
as inverse participation ratio (IPR), which, for the coherent
state |G(q0, p0)〉 is defined as IG = ∑

j |〈φ j |ÛS|G(q0, p0)〉|4,
where US is the unitary operator generated by a canonical
transformation S needed to obtain the time-independent static
effective Hamiltonian [41]. This metric assesses the number
of Floquet eigenstates contained in |G(q0, p0)〉. If the coherent
state coincides with a Floquet state, then IG = 1, and if it is
delocalized in this basis, IG is very small.

In Fig. 2(a), we show IG as a function of �. For small �

(small nonlinearity and drive), IG is close to 1. As � increases,
there appears two Floquet states localized near the hyperbolic
point, one below and one above the separatrix, so IG ∼ 0.5. A
sharp drop in the value of IG then happens at � ≈ 40, which
implies the destruction of the ESQPT. As we explain below,
this point coincides with the transition to classical chaos.

In Fig. 2(b), we show a density plot of the values of IG as
a function of � and K . The black solid line at

�K/ω0 = g3�dωd

ω0
(
ω2

d − ω2
0

) 
 0.03347 (4)

marks the point where local chaos, arising from the unsta-
ble point of the separatrix, merges with chaos around the
double-well structure, completely destroying the structure
[30]. This line was determined through the analysis of the Lya-
punov exponents of the classical limit of the system and was
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FIG. 2. (a) IPR, IG, in the Floquet basis, of the coherent state
|G(q0, p0)〉 centered at the fixed point (q0, p0 ) = (0, 0) as a function
of � for K/ω0 = 0.0009 with N = 250 (light blue) and N = 400
(black). (b) Density plot of IG as a function of � and K/ω0. The
solid black curve [Eq. (4)] indicates the parameters for which local
chaos arising at the unstable point merges with chaos around the
double-well structure, N = 250. (c) Quasienergies ε mod (ωd/2)]
of Ĥ(t ) in Eq. (2) as a function of the control parameter �. The colors
correspond to the overlap square of the corresponding Floquet state
with a coherent state |G(q0, p0)〉; N = 250. (d)–(f) Poincaré surface
of section for � = 20, 40, and 60.

supported by the study of quasienergies and Floquet states
[30]. Following the solid line in Fig. 2(b), we see that for the
value of K in Fig. 2(a), the transition to chaos indeed happens
at � ≈ 40. The line separates two clearly distinct regions, the
region of the ESQPT where IG is large (bright colors) and the
region where IG is small (dark blue) and the ESQPT no longer
exists. Figure 2(b) shows that chaos destroys the ESQPT of the
system in accordance with what was demonstrated in Ref. [31]
for abstract maps.

In Fig. 2(c), we examine the effect of the destruction of the
ESQPT on the quasienergies. In this case, we show the un-
scaled ε to avoid periodic folding due to the modulo operation
in Eq. (3). The ESQPT line is marked by yellow to red colors
(large values of IG) at the center of the plot (around ε = 0),
which corresponds to the parabolic line of the spectral kissing
in Fig. 1. For the chosen parameters, the ESQPT line gets
disrupted around � = 40, in agreement with the sudden drop
of IG in Fig. 2(a) and with the transition to chaos in Fig. 2(b).

In Figs. 2(d)–2(f), we select three values of �, marked
with dashed vertical lines in Fig. 2(c), to show the classical
Poincaré sections. For � = 60 in Fig. 2(f), the separatrix
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FIG. 3. (a) Normalized inverse participation ratio Iψ as a func-
tion of � − �ESQPT for the three states with quasienergies ε̃ shown
in the insets (b) and (c). The vertical dashed lines mark the ESQPT
breaking point (� ≈ 40) for each one of the three states. (b) Scaled
quasienergies ε̃ as a function of �. (c) Enlargement of the region in
the white rectangle in (b). The arrows mark the value of �ESQPT for
the states shown with colored symbols. All panels: Parameter values
as Figs. 1 and 2(c).

structure, that defines the ESQPT, has completely disap-
peared (see also Ref. [30]) in agreement with the results in
Figs. 2(a)–2(c).

One of the goals of the devices realizing squeeze-driven
Kerr oscillators is to take advantage of the cat states below
the ESQPT to redundantly store information. For example, in
Fig. 1(a), for � = 20, there are ten cat-states (taking quaside-
generacies into account). An important question is then what
happens to these cat states as the parameters that lead to the
destruction of the ESQPT and the onset of chaos are increased.

Catlike states exhibit highly localized Husimi functions at
the minima of the double-well structure. When the double-
well structure disappears, the states spread out. To assess this
phenomenon, we examine the localization in phase space of
the Floquet states with scaled quasienergy ε̃ lying below the
ESQPT line. This is done with the IPR of the Husimi function
Qψ (q, p) of the state |ψ〉, given by Iψ = ∫

Q2
ψ (q, p)dqd p,

where Qψ (q, p) = |〈α|ψ〉|2/π and the coherent state |α〉 is
defined by â|α〉 = α|α〉 with α = (q + ip)/

√
2. The IPR of

the Husimi function of the state at the ESQPT energy has a
large value, denoted by IESQPT, because the state at this energy
is localized at the hyperbolic point.

For the same parameter values as in Fig. 1, we compute Iψ

for three states with ε̃ below the ESQPT, following them as
their structures change with the increase of � (see Ref. [38]).
In Fig. 3(a), we show the normalized IPR of the Husimi
function of these three states, Iψ ≡ Iψ/IESQPT, as a function
of � − �ESQPT, where �ESQPT is the value of � where the
ESQPT takes place for each of the three quasienergy lines,
according to Figs. 3(b)–3(c). In Fig. 3(b), we show the full
spectrum, the three selected quasienergies (colored circles)
and the ESQPT line (orange) as a function of �. In Fig. 3(c),
we show a blowup of the white rectangle from Fig. 3(b), with
the arrows in Fig. 3(c) indicating the values of �ESQPT for the
three states that we follow.
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area of the classical islands become negligibly small. Right: Husimi
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The normalized IPR Iψ = 1 corresponds to a localized
state at the hyperbolic point, while highly delocalized states
have negligible values of Iψ . After the peak for � ∼ �ESQPT,
the curves in Fig. 3(a) decrease to an approximate constant
value, Iψ ≈ 0.4, and then decrease abruptly. Interestingly,
this sudden decay and consequent breakup of the ESQPT
occurs at values of � larger [vertical dashed lines in the
Fig. 3(a)] than the value � = 40 for the onset of chaos in
Fig. 2. This means that structures that could encompass Kerr-
cat-like states persist for parameters beyond the transition to
chaos.

We now perform a more thorough analysis of the structure
of |Fmin〉 as a function of the control parameter �. In the
left panel of Fig. 4, we show the density plot of I|Fmin〉 as a
function of K and �. We can identify a region beyond the
solid line that marks the transition to chaos [Eq. (4)], where
I|Fmin〉 remains large (green). This means that even though the
ESQPT is broken and chaos has set in [according to Figs. 2(a)
and 3], there remains a structure that could hold a catlike state.
This structure reflects the islands of stability reminiscent of
the double wells, as already suggested by Fig. 2(f). The islands
require larger values of � to be destroyed than for chaos to
emerge.

Indeed, the Husimi functions of |Fmin〉 shown on the right
panels of Fig. 4 exhibit two regions of localization in phase
space for K and � at the line of chaos (bottom panel) and
slightly above it (middle panel). The complete destruction
of this structure and spread of the Floquet state (top panel)
requires much larger values of the parameters than those
determined by the line of chaos. The parameter values that
eliminate the islands of stability are marked with a white
dashed line on the left panel of Fig. 4. This line is computed
classically [38], marking the point where the islands become
negligibly small.

Conclusions. Quantum manifestations of classical chaos
have been a subject of study for the last 40 years. In this
work, we studied one manifestation that can have considerable
effects on future devices for processing quantum information.
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We showed how chaos destroys the ESQPT in the driven Kerr
parametric oscillator that models experimentally accessible
systems [13,17,34,42–44]. As a result, the cat states below the
ESQPT line lose their structure and get spread out in phase
space. This phenomenon has to be taken into account in the
design of future qubits based on Josephson junction technol-
ogy. To do this, a close interaction between theoreticians and
experimentalists is needed for determining the exact point for
the onset of chaos for each specific device.
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