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ABSTRACT: The success of the self-attention mechanism in
classical machine learning models has inspired the development of
quantum analogs aimed at reducing the computational overhead.
Self-attention integrates learnable query and key matrices to
calculate attention scores between all pairs of tokens in a sequence.
These scores are then multiplied by a learnable value matrix to
obtain the output self-attention matrix, enabling the model to
effectively capture long-range dependencies within the input
sequence. Here, we propose a hybrid quantum-classical self-
attention mechanism as part of a transformer decoder, the
architecture underlying large language models (LLMs). To
demonstrate its utility in chemistry, we train this model on the
QM9 dataset for conditional generation, using SMILES strings as input, each labeled with a set of physicochemical properties that
serve as conditions during inference. Our theoretical analysis shows that the time complexity of the query-key dot product is reduced
from n d( )2 in a classical model to n d( log )2 in our quantum model, where n and d represent the sequence length and the
embedding dimension, respectively. We perform simulations using NVIDIA’s CUDA-Q platform, which is designed for efficient
GPU scalability. This work provides a promising avenue for quantum-enhanced natural language processing (NLP).

■ INTRODUCTION
Motivation. The self-attention mechanism, a cornerstone

of the Transformer architecture1 has revolutionized numerous
machine learning (ML) domains, including natural language
processing (NLP)2 computer vision3,4 and computational
biology.5,6 By capturing long-range dependencies in sequential
data, it enables efficient and scalable learning, driving the
Transformer’s widespread adoption. Its versatility has spurred
extensive research into refining and extending its applications
within and beyond this framework.

Quantum machine learning (QML) has emerged as a rapidly
growing field7−12 leveraging quantum computation to
potentially enhance learning and optimization tasks. Notably,
a recent hybrid quantum−classical model successfully
proposed and experimentally validated KRAS inhibitors,
demonstrating that quantum machine learning techniques
can already contribute meaningfully to real-world drug
discovery workflows.13 This field explores whether manipulat-
ing quantum states in Hilbert space outperforms classical
vector operations in deep learning. Inspired by the success of
the self-attention mechanism and the Transformer architec-
ture, researchers are increasingly exploring quantum analogs to
investigate potential performance gains achievable through the
learning of information encoded into quantum states. Recently,

Loshchilov et al.14 introduced a normalized transformer with
representation learning on a hypersphere. This approach bears
similarity to quantum state evolution, where unitary operators
move states across a hypersphere, suggesting that high-
dimensional normalized representations may offer advantages
for quantum self-attention mechanisms.
Background. The earliest application of self-attention in

QML came from Li et al.15 who used classical Gaussian
projections of query and key quantum states for text
classification. Some works depart from the classical formulation
of the scaled dot-product attention mechanism and “mix”
tokens together in Hilbert space to capture correlations instead
of computing query-key dot products. For instance, Khatri et
al.16 develop a quantum algorithm of the skip-k-gram NLP
technique using linear combinations of unitaries (LCU) and
the quantum singular value transform (QSVT). Zheng et al.17

encode both query and key vectors into a parametric quantum
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circuit (PQC) and measure the qubits to learn their
correlations. Evans et al.18 replace the explicit dot product
with a PQC that blends tokens in the Fourier domain via
quantum Fourier transformers (QFTs).

Other efforts focus on quantum analogs of self-attention and
transformers that closely adhere to the classical framework,
preserving the core principles of their operation. Xue et al.19

propose an end-to-end quantum vision transformer; however,
reliance of analog encoding for quantum random access
memory (qRAM), leads to exponential scaling unless binary-
tree structured data is assumed20 limiting its feasibility for
noisy intermediate-scale quantum (NISQ) and general-
purpose applications. Cherrat et al.21 introduce a hybrid
approach, learning query and key states with d( ) qubits�
where d represents the embedding dimension�to compute
the squared dot product as an attention score. Meanwhile, Liao
and Ferrie22 and Guo et al.23 propose theoretical quantum
transformer models based on algorithms like LCU and block
encoding to utilize quantum linear algebra techniques. While
these methods offer improved scaling under sparsity
assumptions, their quantum resource requirement continues
to make them impractical for the NISQ era, underscoring the
demand for NISQ-friendly quantum self-attention approaches.

In this work, we introduce a novel quantum-classical hybrid
self-attention mechanism, integrated into a transformer
decoder for molecular generation. This approach uses

d(log ) qubits and CNOT gates to learn all embeddings, as
well as query and key representations, quantum mechanically.
Unlike prior methods, it directly yields attention scores
without squaring the dot product. We further incorporate
positional embeddings and establish a general framework for
additional embeddings, such as physicochemical molecular
features, enabling control over generated molecular properties.
Our results demonstrate that this hybrid model performs on
par with classical baselines in SMILES validity, uniqueness,
novelty, and property-targeted molecular generation (Figure
1).

■ FRAMEWORK
Classical Attention Score Calculation. For a given input

sequence of tokens {x1, x2, ..., xn}, each token xi is mapped to
an embedding ei via a learned embedding matrix. Positional
embeddings pi are added to preserve token order, yielding the
final input embeddings:

z e pi i i= + (1)

where the embedding dimension is d (i.e., dim ei = dim pi = d).
Additional embeddings can enhance next-token prediction and
condition the model to generate data with specific properties
during inference. These are incorporated by summing κ
additional vectors ci,v with the token and positional
embeddings, as in

z e p ci i i
v

i
1

v
= + +

= (2)

following established practice.24

The input embeddings are then linearly projected into query
(Q), key (K), and value (V) matrices:

Q ZW K ZW V ZW, ,Q K V= = = (3)

where Z = [z1, z2, ..., zn]T stacks the input embeddings and WQ,
WK, and WV are learned weight matrices. The scaled dot-
product attention mechanism1 computes attention scores
across all token pairs as

Attention Q K V A Q K V( , , ) ( , )= (4)

with

d
A Q K

QK
( , ) softmax

k

Ti
k
jjjjjj

y
{
zzzzzz=

(5)

where dk is the dimension of the key vectors.
Learning Attention Scores with Quantum States. In

the attention matrix A, each element ai,j is the scaled dot
product of the i-th query vector qi and the j-th key vector kj,
followed by a softmax operation (see eq 5). In this work, we
use quantum circuits to compute individual attention scores.
We learn representations of the embedding vectors zi, query

Figure 1. Proposed hybrid quantum-classical transformer model generates molecules by processing SMILES strings (e.g., O = [N+]([O-
])c1ccccc1). Each string is split into a sequence of tokens, which are assigned token, positional, and physicochemical property embeddings. These
embeddings pass through a hybrid self-attention mechanism: quantum circuits compute attention scores, which are combined with classical value
matrices. The output then flows through the remaining classical transformer decoder to predict the next token in the sequence. This enables
conditional molecular generation targeting specific physicochemical properties.
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vectors qi, and key vectors ki as quantum states, denoted |qi⟩
and |kj⟩, and determine their inner product ⟨qi|kj⟩. The value
matrix V and subsequent operations, however, remain classical.
Figure 2 illustrates our hybrid quantum-classical self-attention
framework. The next subsection details the quantum circuit
used to compute A’s matrix elements.

Quantum Encoding of Token and Positional Information.
Similar to the classical framework, we construct an embedding
matrix to assign token embeddings ei

, where each vector’s
entries are scaled to [0, π] and its dimension equals the
number of learnable parameters m in the ansatz Ue, which
prepares the quantum state |ei⟩ for each token. In this work, we
define learnable positional encoding angles pi

, initialized to
zero. The states |ei⟩ and |pi⟩ are prepared by applying unitaries
U U( )e e ei i

= and U U ( )p p pi i
= to initial states:

U e U p( ) 0 , ( ) 0e

d

i

d

ie p

log
2 p

log
2

i i
| = | | = | (6)

Just as the elements of the token and positional embeddings
are learned classically, the parameters of the unitary operators
Uei

and Upi
are learned as well. These states are prepared

independently, yielding the composite state Ψ1 as shown in

Figure 4, which encodes token and positional information for a
sequence:

e p zi i i1 = | | = | (7)

All PQC ansatzes in this work use a single layer of Ry gates
followed by an entangling layer of CNOT gates as shown in
Figure 3.

Learning Query and Key States. The separable quantum
states of token and positional encodings are entangled via a
PQC Uq, resulting in a quantum state analogous to a query
vector.

U z qq i i2 = | = | (8)

An ancilla qubit in the |+⟩ state is introduced, and the entire
circuit is conditionally reversed under its control. If the ancilla
qubit is in the |0⟩ state, the working register remains |qi⟩. If the
ancilla qubit is in the |1⟩ state, the working register is reset to |
0⟩⊗ log d as shown in eqs 9 and 10

CU q
q z0 1

2

0 1

2q i
i i

3
i
k
jjj y

{
zzz= | + | | =

| | + | |†

(9)

q z

q

CU CU
0 1

2

0 1 0

2

e p
i i

i
d

4

log

i i

i
k
jjjjjj

i
k
jjjjj

y
{
zzzzz

y
{
zzzzzz=

| | + | |
=

| | + | |

† †

(10)

where CU = |0⟩ ⟨0|⊗ I + |1⟩ ⟨1| ⊗ U and I is the identity
operator.

Analogous to the preparation of |zi⟩ in eq 7, |zj⟩ is prepared
with the difference being that all PQCs are controlled by the
ancilla qubit. This controlled preparation ensures the modified
Hadamard test yields a real-valued dot product ⟨qi|kj⟩ between
query and key states. After preparing |zj⟩, a controlled PQC
CUk transforms it into |kj⟩, applied only when the ancilla is in |
1⟩, resulting in the state:

CU CU
q

q z

0 1 0

2

0 1

2

p e
i

d

i j

5

log

j j

i

k

jjjjjjj
i

k
jjjjjjj

y

{
zzzzzzz

y

{

zzzzzzz=
| | + | |

=

| | + | |
(11)

Figure 2. Quantum self-attention layer combining QKT calculated
with quantum circuits and a classically computed value matrix V (eq
3). Quantum token embeddings θe, positional angles θqp, and
learnable parameters θq, θk are used in the unitary U as the circuit that
evolves the quantum states depicted in eqs 7−12. Each quantum
circuit produces an attention score, and thus, there are n n

2

2 + instances
of U with their respective angles to ensure a fully populated masked
attention matrix. The expectation value of the Pauli-X observable on
the ancilla qubit (equivalent to a Hadamard transform and
measurement in the computational basis as shown in eqs 13 and
14) is obtained and represents the dot product between query and key
vectors. The original transformer implementation1 scales attention
scores by

d
1

k
to maintain a variance of 1. Since the dot products

herein are obtained from the expectations of the quantum subsystems,
they are bound on the closed interval [−1, 1]. To maintain a variance
of 1, they must be scaled by dk . The scaled values are stored in the
masked attention matrix, softmax is applied to the rows, and the
resulting matrix is multiplied with V.

Figure 3. Structure of the parametric quantum circuits used in this
work.
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CU
q z

q k

0 1

2

0 1

2
.

k
i j

i j

6

i
k
jjjjj

y
{
zzzzz=

| | + | |
=

| | + | |
(12)

A final Hadamard gate is applied to the ancilla qubit, which
transforms the state to

q k q k0 ( ) 1 ( )

2
i j i j

7 =
| | + | + | | |

(13)

The ancilla qubit is measured yielding an expectation value
of

Z I q k( ) Red
i j7

log
7| | = | (14)

which is equivalent to the classical analog of the i,j-th entry of
the QKT matrix, where Z is the Pauli-Z gate Figure 4.

Because each attention score is computed by an independent
quantum circuit, this process can be parallelized across
multiple quantum processing units (QPUs). For next-token
prediction, where the upper triangle of the QKT matrix is

masked, a maximum of 1n n
2

2 + unique quantum circuits are
required in the worst-case scenario. This “worst case” occurs
because circuits with identical parameters, which produce the
same results, need not be recomputed, thus eliminating
redundancy. Moreover, the first circuit, corresponding to a1,1,
need not be executed since its softmax output is always 1 due
to masking. The overall architecture is shown in Figure 5.
Extension to Additional Embeddings. Beyond token and

positional encodings, our method can incorporate additional
embeddings. To mirror the classical approach of equal
embedding dimensions, we choose all Hilbert subspaces for
each embedding to be of equal dimension. Thus, to form the
quantum state |z̃i⟩, which includes token, positional, and κ
additional embeddings, we prepare

z U U

U

( ) 0 ( ) 0

( ) 0 .

i e

d

p

d

v
c

d

e p

c

(
log

2 ) (
log

2 )

1

(
log

2 )
v

i i

v

| = | |

|

+ +

=
+

(15)

We note that the κ + 2 term arises because the total number
of qubits (log d) is divided into registers of equal size for each
embedding−two registers for tokens and positions, along with
κ additional registers. Here, we incorporate κ = 1 additional
embeddings for physicochemical properties. Frequently, addi-
tional embeddings like molecular properties (c) use the same

embedding vector for each sequence element. For this case, eq
2 reduces to

z e p c e p ci i i
v

v i i
1

= + + = + +
= (16)

Likewise, the quantum circuit can be simplified when
embeddings are uniform across the sequence. Instead of
reversing the entire register to |0⟩⊗ log d under control, as in eqs
9 and 10, subspaces with uniform embeddings remain

Figure 4. Quantum circuit used to create query and key states from a given quantum token and positional encoding to produce an attention score
when measured. U U/e ei j

and U U/p pi j
are the unitaries that create the token and positional encoding of the i/j-th token into the quantum state. Uq and

Uk are the unitaries to learn query and key representations of the quantum states containing token and positional information. The mathematical
description of states Ψ1 to Ψ7 are found in eqs 7−13. The expectation value on the ancilla qubit yields the desired query-key dot product Re⟨qi|kj⟩.

Figure 5. Architecture of the hybrid quantum-classical transformer
decoder where embeddings are learned both quantum and classically.
QKT is computed with quantum circuits and V is computed
classically. Embedding and parameter (learnable position) matrices
of dimension n × dimθe = n × dimθp and n × d are defined for a given
input sequence to obtain quantum parameters (orange) and classical
(pink) parameters of the model, respectively. The query and key
angles are learned and used to transform the quantum embedding
states into quantum query and key states. Modified-Hadamard tests
are performed, and the output of the masked quantum-classical hybrid
attention mechanism (teal) is a matrix of dimensions n × d.
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unchanged, as they are identical across query-key pairs. This
simplification yields the circuit in Figure 6, where

q c0 1 0

2
i

1

d2log
3

=
| | + | | |

(17)

CU CU

q k

( ( ))

0 1

2
.

p e

i j

2 1j j
= =

| | + | |
(18)

The term d2log
3

arises because, as explained in eq 15, the
quantum registers for each embedding are designed to have
equal sizes. Consequently, with token, positional, and an
additional κ = 1 embedding representing molecular properties,
there are three working quantum registers. Two of these three
registers (the token and position quantum states) have been
reversed under control.
Quantum Gradient Calculation. Parameter Shift. The

inability to access intermediate quantum states significantly
complicates traditional backpropagation via reverse-mode
automatic differentiation for PQCs compared to classical
methods.25 The parameter shif t rule offers an approach for
computing exact gradients of PQCs. The expectation value of
an observable O (e.g., a Pauli operator) is given by

f U OU( ) 0 ( ) ( ) 0= | |† (19)

and the parameter shift rule computes its derivative with
respect to θ as follows:

f
f f

( ) 1
2 2 2

Ä
Ç
ÅÅÅÅÅ

i
k
jjj y

{
zzz i

k
jjj y

{
zzz

É
Ö
ÑÑÑÑÑ= +

(20)

This approach computes the gradient by evaluating f(θ) at
shifted values

2
± , avoiding the need for finite differences

but introducing an overhead of two circuit evaluations per
parameter. As a result, its computational cost scales linearly
with the number of parameters, rendering it impractical for
large-scale QML models and motivating alternative methods.
Simultaneous Perturbation Stochastic Approximation.

To address the parameter shift method’s linear scalability
with parameter count, we employ approximate quantum
gradient calculations via the simultaneous perturbation
stochastic approximation (SPSA) algorithm.26 SPSA seeks a
parameter vector x m that minimizes

f Fx xmin ( ) min ( , )
x x

= [ ]
(21)

where F: m depends on the parameter vector x m and a
noise term ξ. SPSA approximates the gradient ∇ f(x) as
follows:

f
f f

x
x x

( )
( ) ( )

2
1+ · ·

(22)

where Δ is an m-dimensional vector with elements randomly
chosen as ± 1, 1 represents the element-wise reciprocal and
multiplication of the perturbation vector Δ, and the
perturbation step ϵ is set to 0.01 in this work. We note that
the noise term ξ in the objective function (eq 21) arises from
the stochasticity of mini-batch sampling. This is separate from
the perturbation vector Δ, which is generated by the SPSA
algorithm to approximate the gradient.

SPSA requires just two PQC evaluations regardless of the
parameter count, making it ideal for the NISQ era.
Convergence analysis27 indicates that larger batch sizes yield
more stable updates by reducing gradient variance, aligning
well with our training approach using a batch size of 256.
Complexity Analysis. Computational Complexity. The

time complexity of the classical calculation of the attention
matrix A in eq 5 is n d( )2 stemming from the multiplication of
Q and KT, which are matrices of dimensions n × d and d × n,
respectively. Under the assumption of efficient preparation of
quantum states, this modified Hadamard test approach
produces each inner product ⟨qi|kj⟩ in (1) time compared
to the classical d( ), leading to a complexity of n( )2 for the
population of A. In practice, we prepare states with d(log )
depth, bringing the overall practical complexity to n d( log )2 .
It is important to note that preparing quantum states in

d(log ) time may result in highly structured states.
Specifically, low-depth circuits are likely to produce quantum
states with sparse amplitudes or pattern-like structures, which
could make direct comparisons to classical algorithms that are
designed for dense and unstructured data less equitable.
Query Complexity. The measurement of the ancilla qubit

produces a Bernoulli random variable where the probability of

measuring 1 is given by p
q k

0

1 Re

2
i j= + |

. Thus, the Chernoff-
Hoeffding theorem demonstrates Re⟨qi|kj⟩ can be found in

( )1
2 query complexity with additive error ϵ. However, since

Re⟨qi|kj⟩ = 2p0 − 1 is obtained by measuring the ancilla qubit

Figure 6. Quantum circuit in the hybrid quantum-classical self-attention mechanism. The circuit learns all embeddings, query and key
representations, and produces a query-key dot product upon repeated measurement. Uc is a set of angles representing the physicochemical property

embeddings. Mathematical descriptions of 1 and 2 are found in eqs 17 and 18, respectively.
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in the |0⟩ state, quantum amplitude amplification can be
performed to improve the query complexity to ( )1 . To
illustrate this, the final state before measurement as described
in eq 13 can be written equivalently:

q k q k

p p

0
2

( )
1
2

( )

1 .

i j i j7

0 good 0 bad

= | | + | + | | | =

| + | (23)

In this form, it is clear to see that a quadratic speed up in
query complexity can be achieved using amplitude amplifica-
tion with Grover operator

G R Rgood7
= (24)

where the reflector R
7
is the unitary that prepares the entire

Hadamard-test circuit R 0 d
7

(log 1)
7

= | + and the reflector
Rgood is the Pauli-Z gate since the ancilla qubit is always in state
|0⟩ for |ψgood⟩. While we leave the implementation of amplitude
amplification to future researchers, we note that the overall
practical complexity of the attention score calculation may be

reduced to ( )n dlog2

.

■ EXPERIMENTS
Dataset and Features. We employ the QM9 dataset,28 a

benchmark of 133,885 small organic molecules represented as
SMILES strings,29 as the basis for our study. The SMILES are
canonicalized with RDKit30 and duplicates were removed
leaving 133,798 remaining data points. After preprocessing, the
dataset was split into training and validation sets at a 20:1 ratio.
From the dataset, we extracted nine key physicochemical
features using RDKit: molecular weight (MW), number of
hydrogen bond acceptors (HBA), number of hydrogen bond
donors (HBD), number of rotatable bonds (nRot), number of
rings (nRing), number of heteroatoms (nHet), topological
polar surface area (TPSA), logP (partition coefficient), and the
number of stereocenters (Stereo). To incorporate these
descriptors as additional embeddings into our quantum-
classical hybrid model, we transform them via a classical linear
layer from 9 dimensions to dim{θe} = dim{θp}. We then scale
the batch linearly between between 0 and π to produce θc for
quantum circuit encoding. The SMILES strings are tokenized
by breaking them into meaningful substructures, such as atoms,
rings, branches, and bond types, and converting them into a
sequence of discrete tokens that can be mapped to a high-
dimensional embedding vector. The QM9 SMILES strings
consist of 30 unique tokens, along with padding, start-of-
sequence, and end-of-sequence tokens, resulting in a total
vocabulary size of 33.
Benchmarks and Trainings. We trained two models in

this study: one learning SMILES strings using only text
sequences and another incorporating physicochemical embed-
dings for conditional molecular generation. The architecture of
the proposed hybrid quantum-classical transformer used for
this conditional generation task is illustrated in Figure 1, where
molecular properties are embedded alongside token and
positional information to guide the quantum attention
mechanism. For the sequence-only setup, we assigned 3 qubits
to each of the token and positional registers. For the condition-
based setup, we allocated 2 qubits to each of the token,

positional, and physicochemical registers, maintaining 6
working qubits across both configurations.

We compared the quantum-classical model’s performance to
that of fully classical models with equivalent architectures. All
training setups employed one decoder layer and one attention
head. The quantum model computed attention scores using 6
active qubits, producing a Hilbert space of dimension 26 = 64,
and thus, we set the classical token and positional embedding
vectors to 64 dimensions. We also trained a classical model
with equal parameter counts, denoted Classical−eq, for further
comparison. Since each PQC ansatz uses a single layer of Ry
gates, the number of learnable parameters per register matches
the qubit count of 3 for token and positional registers in
sequence-only training ( 3log 64

2
= , eq 6), and 2 for token,

positional, and physicochemical registers in condition-based
training ( 2log 64

3
= , eq 15). To match the parameter count

between the Quantum and Classical−eq models, the weight
matrices WQ and WK (eq 3) have shapes 3 × 2 and 2 × 3 for
sequence-only and condition-based setups, respectively,
yielding 6 parameters each for query and key transformations.
All models in this work use 64-dimensional embeddings for the
value matrix WV. To summarize, the total number of
parameters for the hybrid quantum-classical model (Quan-
tum), fully classical model with an equal number of parameters
(Classical−eq) model were 47,704 and 48,307 for the
sequence and condition-based models, respectively. The fully
classical model with an equivalent architecture to the Quantum
model but with traditionally sized query-key weight matrices
WQ and WK of shape 64 × 64 (denoted as Classical) has
55,713 and 56,535 parameters for the sequence and condition-
based model, respectively. To fairly evaluate the performance
of these models, we initialized shared parameters across all
models with identical random values.

We implemented the machine learning components using
PyTorch.31 All models underwent training for 20 epochs with
the AdamW optimizer32 set to a learning rate of 0.005 and a
weight decay of 0.1. We applied gradient clipping with a
maximum norm of 1.0 per layer to stabilize gradients and used
cross-entropy loss as the objective function. To support a batch
size of 256, we conducted quantum circuit simulations with
CUDA-Q,33 an open-source QPU-agnostic platform designed
for accelerated quantum-classical supercomputing. All quan-
tum simulations were performed using the state-vector
simulator available in CUDA-Q. Training times for a single
epoch on a CPU versus a single GPU are shown in Table 1,
with a single GPU achieving a speedup of 1.34 over the CPU.
Distributing simulations across four GPUs further yielded a
speedup of 3.84 relative to one GPU. Consequently, we

Table 1. Training Time for a Single Epoch on the QM9
Dataset with the Condition-Based Quantum Model Using a
Batch Size of 256a

Hardware Epoch Time (hrs)

CPU 41.28
1 GPU 30.85
4 GPUs 8.03

aRuntimes for the full training are extrapolated from the average
runtime over 4 batch updates. The GPUs and CPU used here are
NVIDIA A100s and an AMD EPYC 7763, respectively.
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utilized four NVIDIA A100 GPUs on NERSC’s Perlmutter
supercomputer to accelerate training with this large batch size.

■ RESULTS
Evaluation of SMILES String Learning and Gener-

ation. Training and validation loss curves for the sequence-
based and condition-based models are presented in Figure 7.
For performance evaluation, we used the epoch with the lowest
validation loss per model for inference, reporting next-token
accuracy on the validation set as the ratio of correctly predicted
tokens (highest output probability matching the true token) to
total tokens. The validity, uniqueness, and novelty percentages
from 100,000 inference queries to the trained models are
reported. The results in Table 2 for the condition-based model

used the mean values of each physicochemical property in the
training set to construct the property embedding vector during
inference, as it produced the greatest rate of valid and unique
SMILES (shown as V × U in Table 2) across all models. The
results using the mean, median, and mode of each property to
guide the conditional generation were tested and are shown in
Table A1 in the appendix.

The decrease in V × U-from 55.1 to 56.2% for the sequence-
only model to 18.5−20.3% for the condition-based model
arises from the trade-off between structural validity and
diversity when optimizing for property constraints. The
condition-based model samples molecules from a narrower
chemical space to satisfy both structural and physicochemical
constraints. The benefit of incorporating property embeddings

Figure 7. Learning curves for the training and validation losses of the quantum-classical model (Quantum), the fully classical model with an equal
number of parameters to the quantum-classical model (Classical−eq), and the fully classical model with an equivalent architecture but with
traditionally sized weight matrices (Classical). To better illustrate the model’s learning progress, the validation curves (7b, 7d) display the 3-epoch
moving average of the loss.

Table 2. Performance of Each Model at the Epoch with the Lowest Validation Lossa

Model Loss Accuracy (%) Validity (%) Uniqueness (%) V × U (%) Novelty (%)

Sequence Only
Quantum 0.634 62.0 68.6 81.9 56.2 52.6
Classical-eq 0.639 61.6 69.4 79.4 55.1 53.9
Classical 0.632 62.4 72.5 81.2 55.9 52.0

Property Embeddings
Quantum 0.397 69.9 50.5 38.8 19.6 69.6
Classical-eq 0.386 68.3 50.7 40.0 20.3 70.4
Classical 0.414 68.0 38.5 48.0 18.5 71.2

aQuantum denotes the quantum-classical hybrid model. Classical−eq denotes a fully classical model with an qqual number of learnable parameters
as the quantum model. Classical denotes a fully classical model with an equivalent architecture as the quantum model but with traditionally sized
weight matrices. Accuracy % is the percentage of tokens correctly predicted. Validity % is the percentage of generated sequences that create a valid
mol structure in RDKit Out of 100,000 queries to the trained model. The product of validity (V) and uniqueness (U) shows the percentage of
model queries that result in unique compounds. Novelty % is the percentage of valid and unique SMILES strings that do not appear in the training
set.
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is reflected in the improved next-token prediction accuracy
across all models, increasing from 61.6−62.4% to 68.0−69.9%.
Across all metrics in both the sequence-only and condition-
based trainings, the quantum and classical models exhibited
comparable performances.
In-Distribution Modeling Performance. Following

SMILES generation, we evaluated models trained with
physicochemical embeddings for their ability to reproduce
the training set’s property distribution. The first row of Table 3
presents the mean values of the nine molecular properties in
the training set. To assess how well each model aligns with this
distribution, we performed inference using the epoch with the
lowest validation loss per model employing a physicochemical
embedding vector based on these mean property values. After
100,000 queries, we computed the properties of all valid
SMILES strings and reported their averages in the upper
section of Table 3 for each model. Bold values in each column
indicate the model generating valid molecules closest to the
target mean. Results revealed comparable performance across
models, with the quantum model producing molecules nearest
to the target means for 3 of 9 properties: hydrogen bond
acceptors (HBA), heteroatoms (nHet), and logP (octanol−
water partition coefficient). The Classical−eq model excelled
at generating molecules with on-target molecular weights
(MW), while the Classical model outperformed others for the
remaining five properties: hydrogen bond donors (HBD),
rotatable bonds (nRot), rings (nRing), topological polar
surface area (TPSA), and number of stereocenters (Stereo).
Out-Of-Distribution Modeling Performance. The

middle and bottom sections of Table 3 examined the models’
ability to generate molecules beyond the training distribution.
For each experiment, we set the target for one property two
standard deviations above and below the mean (μ ± 2σ),
imputing the other eight properties from the training data
using the k-nearest neighbors (k-NN) method in scikit-learn.34

For targets 2σ above the mean, the quantum model
generated molecules closest to the targets for four properties:
nRing, nHet, LogP, and Stereo. The Classical−eq model

matched three properties (MW, HBD, TPSA), while the
Classical model outperformed others on two (HBA, nRot).
Below the mean by 2σ, the quantum model excelled at HBD,
nRot, TPSA, and LogP; the Classical−eq model at MW and
nHet; and the Classical model at HBA and Stereo. Notably, all
models generated molecules with zero rings equally well. To
assess whether skewed distributions disproportionately affect
any model, we repeated the experiment using median ± 1.5
IQR targets, where IQR is the interquartile range. Results in
Table A2 confirm further that all models exhibit comparable
performance in generating molecules beyond the training
distribution.
Comparison of Attention Maps. To visualize and

qualitatively compare the features learned by the attention
mechanisms, attention maps for an example molecule, shown
in Figure 8a, are presented in Figure 8b−d. While the
aggregate quantitative performance of the models is similar, it
is evident that they do not learn the same features to the same
extent. This divergence in feature learning highlights the
potential utility of hybrid quantum-classical self-attention
mechanisms. Combining quantum and classical self-attention
heads could enhance the extraction of a broader range of
sequence features compared to relying solely on either. Such
an approach could improve downstream task performance, an
avenue for future research.

■ LIMITATIONS, FUTURE WORK, AND
CONCLUSIONS

Our primary contribution is demonstrating that quantum
states and learnable unitary evolutions can replace classical self-
attention components in a generative model, achieving a
NISQ-friendly solution that maintains performance parity with
fully classical models. Additionally, we introduce a novel
method for incorporating positional encodings to enhance the
model’s ability to learn sequence-based information, alongside
the integration of supplementary embeddings, such as
molecular properties. This approach enabled targeted molec-

Table 3. Conditional Generation Resultsa

MW HBA HBD nRot nRing nHet TPSA logP Stereo

Mean 122.77 2.23 0.83 0.92 1.74 2.47 37.16 0.30 1.71
Quantum 125.13 2.31 0.55 0.63 2.05 2.37 32.58 0.30 2.11
Classical−eq 123.42 2.15 0.55 0.55 2.03 2.21 31.74 0.46 1.98
Classical 128.04 2.15 1.00 0.79 1.67 2.19 34.53 0.52 1.81

Mean + (2 × σ) 137.88 4.34 2.50 3.10 4.16 4.84 79.67 2.30 4.77
Quantum 135.73 3.95 2.79 2.71 3.74 4.82 81.61 2.24 4.46
Classical−eq 137.12 3.98 2.75 2.52 3.62 4.76 78.03 2.36 4.34
Classical 136.09 4.05 2.90 2.91 3.53 4.78 83.44 2.37 4.27

Mean − (2 × σ) 107.66 0.12 0.00 0.00 0.00 0.10 0.00 −1.71 0.00
Quantum 112.83 0.63 0.15 0.11 0.00 0.05 0.55 −1.74 0.41
Classical−eq 112.12 0.58 0.19 0.11 0.00 0.06 0.67 −1.49 0.26
Classical 113.33 0.30 0.33 0.11 0.00 0.06 0.66 −1.46 0.15

aThe top section demonstrates how well each model is able to generate molecules targeting the mean values of each property from the training
data. The middle and lower sections indicate a target that is above and below the mean value for each property by 2 × the standard deviation (σ),
respectively. For each model, the average value for that property of all valid generated molecules is shown. In the middle and lower sections, each
numerical entry represents the result from an inference experiment where only that property was specified, and the remaining 8 properties were
imputed from the training data with k-nearest neighbors. Bold values indicate which model generated molecules closer to the target value. Quantum
indicates the quantum-classical hybrid model, Classical−eq denotes the fully classical model with an equal number of parameters as the quantum
model, and classical denotes the fully classical model with an equivalent architecture to the quantum model but with traditionally sized weight
matrices. All inferences were performed with the epoch that possessed the lowest validation loss for each model.
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ular generation, producing molecules with desired properties,
thus demonstrating the potential of hybrid quantum-classical
architectures for generative tasks. Notably, we achieved
comparable performance between our quantum and classical
baselines while training with the Simultaneous Perturbation
Stochastic Approximation algorithm. Since parameter-shift
gradients are computationally expensive, and backpropagation
remains a common criticism of quantum neural networks,
demonstrating competitive performance using SPSA is a
promising result.

Despite these advances, our method has limitations to
consider. The primary bottleneck in a self-attention mecha-
nism’s complexity is its quadratic scaling with sequence length,

n d( )2 . Our proposed method reduces the attention matrix
computation time complexity to n d( log )2 but fails to address

the dominant n2 quadratic scaling term. Additionally, the
complexity to multiply the attention matrix and value matrix
still scales n d( )2 . While prior quantum transformer and self-
attention formulations suggest further reductions are theoret-
ically possible (such as a complexity reduction to a
polylogarithmic n d((log ) )2 dependence on sequence
length23 they demand quantum resources impractical for the
NISQ era such as efficient state preparation and block
encodings of matrices, reinforcing our focus on NISQ
compatibility over exhaustive complexity optimization. We
defer exploring additional attention heads, decoder layers
where query and key encodings could be prepared from the
embedding vectors of the previous layer via a small neural
network to map them to angles in a unitary, and more
expressive ansatzes to future research. Additionally, while our

Figure 8. Attention maps of O = [N+]([O-])c1ccoc1 (a) for the quantum-classical hybrid model (Quantum) (b), the fully classical model with an
equal number of parameters (Classical−eq) (c), and the fully classical model with an equivalent architecture as the quantum-classical model but
with traditionally sized weight matrices (Classical) (d). All attention maps were computed using the model parameters from the epoch with the
lowest validation loss per condition-based model.
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simulations do not account for quantum noise due to
computational constraints, we provide a query complexity
analysis to theoretically assess robustness. Future work will aim
to incorporate noise models to study the model’s behavior in
realistic quantum scenarios. Remarkably, both the Quantum
and Classical−eq models, with as few as two learnable
parameters for tokens and positions, effectively learn SMILES
strings. We hope these findings spur further development of
practical, NISQ-ready designs that balance efficiency and
performance for generative modeling.

■ APPENDIX A

Property Choices for Inference
For all models (Quantum, Classical−eq, Classical), the ranking
of property value selection methods that maximize valid and
unique molecules (V × U) is mean > mode > median, as
shown in Table A1. Interestingly, this statistical choice affects

novelty, with mode-based inference increasing the fraction of
novel compounds to over 95%. We tested the models’ ability to
generate molecules beyond the training distribution using
median ± 1.5 IQR targets, as presented in Table A2, to assess
whether distributional skew disproportionately impacts any
model. For the upper range, the Quantum model performed
best for nRing; the Classical−eq model for MW, nHet, LogP,
and Stereo; and the Classical model for HBA, HBD, nRot, and
TPSA. For the lower range, the Quantum model performed
best for HBA, nHet, and LogP; the Classical−eq model for
TPSA; and the Classical model for MW, HBD, nRot, and
Stereo. These results�given the margins observed�suggest
no model outperforms or underperforms in generating target
molecules when using μ ± 2σ versus median ± 1.5 IQR
approaches.

Table A1. Inference Performance of Each Model at the Epoch with the Lowest Validation Loss, Where the Conditions Used
for Generation are Chosen from the Mean, Median, and Mode of Those Properties from within the Training Dataa

Model Validity % Uniqueness % V × U % Novelty %

Mean
Quantum 50.5 38.8 19.6 69.6
Classical−eq 50.7 40.0 20.3 70.4
Classical 38.5 48.0 18.5 71.2

Median Quantum 70.2 14.5 10.2 66.3
Classical−eq 80.3 14.5 11.6 66.3
Classical 70.9 23.1 16.4 75.2

Mode Quantum 73.8 21.7 16.0 95.1
Classical−eq 65.8 22.6 14.9 94.6
Classical 64.9 28.0 18.2 95.4

aQuantum indicates the quantum-classical hybrid model, Classical−eq denotes the fully classical model with an equal number parameters as the
quantum model, Classical denotes the fully classical model with an equivalent architecture to the quantum model, but with traditionally sized
weight matrices. Validity % is the percentage of generated sequences that create a valid Mol structure in RDKit out of 100,000 queries to the
trained model. The product of validity (V) and uniqueness (U) shows the percentage of model queries, which result in unique compounds. Novelty
% is the percentage of valid and unique SMILES strings that do not appear in the training set.

Table A2. Conditional Generation Resultsa

MW HBA HBD nRot nRing nHet TPSA log P Stereo

Median 125.13 2.00 1.00 1.00 1.00 2.00 35.82 0.28 2.00
Quantum 122.51 1.93 1.24 0.70 1.00 1.94 35.58 0.24 2.17
Classical−eq 124.51 1.95 1.26 0.81 1.00 1.97 34.89 0.33 2.05
Classical 123.55 1.96 0.70 0.84 1.00 2.04 31.51 0.53 1.58

Median + (1.5 × IQR) 134.07 3.50 2.50 2.50 2.50 3.50 81.29 2.23 6.50
Quantum 131.98 3.08 2.61 2.05 2.39 3.23 71.37 2.14 5.29
Classical−eq 134.31 3.32 2.96 1.99 2.25 3.37 86.42 2.27 5.32
Classical 134.66 3.50 2.50 2.29 2.12 3.70 81.63 2.47 5.12

Median − (1.5 × IQR) 116.19 0.50 0.00 0.00 0.00 0.50 0.00 −1.66 0.00
Quantum 116.09 1.07 0.23 0.15 0.00 0.45 0.92 −1.60 0.21
Classical−eq 119.34 1.12 0.48 0.13 0.00 0.77 0.87 −1.58 0.24
Classical 116.22 1.14 0.16 0.11 0.00 0.81 1.02 −1.41 0.10

aThe top section demonstrates how well each model is able to generate molecules targeting the median values of each property from the training
data. The middle and lower sections indicate a target that is above and below the median value for each property by 1.5 × interquartile range
(IQR), respectively. For each model, the average value for that property of all valid generated molecules are shown. In the middle and lower
sections, each numerical entry represents the result from an inference experiment where only that property was specified and the remaining 8
properties were inputed from the training data with k-nearest neighbors. Bold values indicate which model generated molecules closer to the target
value. Quantum indicates the quantum-classical hybrid model, Classical−eq denotes the fully classical model with an equal number of parameters as
the quantum model, Classical denotes the fully classical model with an equivalent architecture to the quantum model, but with traditionally sized
weight matrices. All inferences were performed with the epoch that possessed the lowest validation loss for each model.
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■ ASSOCIATED CONTENT
Data Availability Statement
The datasets and code to reproduce the figures and results
from this work are available at https://github.com/
anthonysmaldone/Quantum-Transformer, and as an applica-
tion tutorial on the CUDA-Q documentation page https://
nvidia.github.io/cuda-quantum/latest/applications/python/
quantum_transformer.html.
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