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ABSTRACT: There is significant interest in targeting disease-causing
proteins with small molecule inhibitors to restore healthy cellular states.
The ability to accurately predict the binding affinity of small molecules to a
protein target in silico enables the rapid identification of candidate
inhibitors and facilitates the optimization of on-target potency. In this
work, we present T-ALPHA, a novel deep learning model that enhances
protein−ligand binding affinity prediction by integrating multimodal
feature representations within a hierarchical transformer framework to
capture information critical to accurately predicting binding affinity. T-
ALPHA outperforms all existing models reported in the literature on
multiple benchmarks designed to evaluate protein−ligand binding affinity
scoring functions. Remarkably, T-ALPHA maintains state-of-the-art
performance when utilizing predicted structures rather than crystal
structures, a powerful capability in real-world drug discovery applications where experimentally determined structures are often
unavailable or incomplete. Additionally, we present an uncertainty-aware self-learning method for protein-specific alignment that
does not require additional experimental data and demonstrate that it improves T-ALPHA’s ability to rank compounds by binding
affinity to biologically significant targets such as the SARS-CoV-2 main protease and the epidermal growth factor receptor. To
facilitate implementation of T-ALPHA and reproducibility of all results presented in this paper, we made all of our software available
at https://github.com/gregory-kyro/T-ALPHA.

1. INTRODUCTION
There is growing scientific and societal interest in developing
therapeutic interventions targeting diseases that disproportion-
ately affect humans and remain inadequately addressed by
current medical treatments.1 Protein dysregulation, including
overexpression and aberrant post-translational modifications, is
a fundamental factor in the pathogenesis of numerous human
diseases. For instance, in neurodegenerative disorders like
Alzheimer’s and Parkinson’s diseases, abnormal protein
modifications can lead to aggregation and neuronal death.2

Similarly, in cancer, the overexpression of certain proteins
disrupts cellular homeostasis, contributing to uncontrolled cell
proliferation.3 Targeting these dysregulated proteins with small
molecules (i.e., ligands) offers a promising therapeutic strategy
to restore normal cellular function and transition cells from a
disease state to a healthy state.4

A typical pipeline to develop therapeutic compounds
consists of several sequential stages: target identification
(selecting a biological target linked to disease),5 target
validation (confirming the target’s role in disease progression
and suitability for therapeutic intervention),6 hit identification
(screening for compounds with initial activity against the
target),7 lead optimization (refining compounds for potency,

selectivity, and desirable pharmacokinetics),8 preclinical testing
(evaluating safety and efficacy in nonhuman models),9 and
clinical development (testing for safety and efficacy in human
trials).10 In this work, we are focused on the hit identification
and lead optimization stages, specifically, predicting protein−
ligand binding affinity.
Machine learning (ML) has been widely applied to protein−

ligand binding affinity prediction and has become central to
computer-aided drug design more broadly, with applications
including protein structure prediction,11,12 molecular dock-
ing,13 small molecule property prediction,14,15 and others.16

Traditional ML approaches for protein−ligand binding affinity
prediction, such as random forests17−20 and shallow neural
networks,21 are increasingly being replaced by deep learning
methods that are better suited for learning geometric
representations of molecular structures.22 Examples include
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convolutional neural networks (CNNs), which utilize convolu-
tional operations to capture local spatial features from
voxelized grids,23−35 graph neural networks (GNNs), which
employ message passing to model relational information in
molecular graphs,33,35−58 and, more recently, transformers,
which utilize self- and cross-attention to model long-range
dependencies within and between embeddings, respec-
tively.59−82 Moreover, it has been demonstrated that trans-
former-based multimodal feature representation learning of
proteins is effective for extracting features from the protein that
are important for predicting protein−ligand binding affinity,73

a finding that has inspired multiple components of our work.
We present T-ALPHA, a novel deep learning model for

protein−ligand binding affinity prediction designed to
comprehensively integrate multimodal data representations
and leverage hierarchical transformer mechanisms to capture
the intricate physicochemical, structural, and spatial dynamics
governing protein−ligand binding interactions. T-ALPHA
processes input data through three distinct channels,
corresponding to the protein, ligand, and protein−ligand
complex. Each channel independently learns a rich and
optimized feature representation for its specific component,
ensuring that the critical properties of proteins, ligands, and
their interactions are captured.
Within the protein and ligand channels, cross-attention

mechanisms are employed to integrate complementary
information between diverse feature representations. The
protein channel combines features derived from the protein’s
surface topography and curvature using point cloud-based
quasi-geodesic convolutions, connectivity-based structural
information from an E(n) equivariant graph neural network
(EGNN), and sequence-derived evolutionary and structural
embeddings derived from a pretrained transformer-based
model. Similarly, the ligand channel integrates molecular-
level physicochemical descriptors, graph-based structural
features from an E(n) EGNN, and relational information
extracted from SMILES strings using a pretrained transformer
encoder. The protein−ligand complex channel focuses
exclusively on modeling the interactions between the protein
and ligand through an E(n) EGNN, capturing spatial
relationships and interaction-specific features that are essential
for binding affinity prediction. After processing through these
channels, an additional layer of cross-attention integrates the
outputs from the protein, ligand, and protein−ligand complex
channels, enabling the model to combine their complementary
perspectives into a unified, hierarchical representation. This
design ensures that T-ALPHA effectively models the complex
dependencies between proteins and ligands, resulting in state-
of-the-art performance across multiple benchmarks.
Typically, deep learning models for protein−ligand binding

affinity prediction are trained and benchmarked on datasets
containing many different proteins to assess generalization
across diverse targets. While this is valuable, in most practical
applications, the focus is on a single, disease-relevant protein
where high accuracy for that specific target is paramount.
Current methods for target-specific alignment, such as active
learning-based approaches,83 require acquisition of additional
experimental data which can be resource-intensive and slow. In
this work, we introduce a novel uncertainty-aware self-learning
method that enables protein-specific alignment without the
need for new experimental data. Applied to two distinct
protein targets, namely, SARS-CoV-2 main protease (Mpro)
and the epidermal growth factor receptor (EGFR), our

approach improves the model’s target-specific ranking of
compounds by binding affinity, offering a resource-efficient
strategy for real-world applications that require high accuracy
on defined protein targets.
The ability of T-ALPHA to effectively model protein−ligand

interactions, combined with the proposed self-learning method
for protein-specific alignment, underscores the utility of this
work for both broad and target-focused applications in
protein−ligand binding affinity prediction.

2. DATA
2.1. Data Curation. 2.1.1. Protein−Ligand Binding

Affinity Data. T-ALPHA is trained on experimentally
determined protein−ligand complex structures deposited in
the Protein Data Bank, each labeled with a binding affinity
measurement. The PDBbind database,84−86 widely regarded as
the primary data source for evaluating deep learning models for
protein−ligand binding affinity prediction, contains 19443
protein−ligand complex structures in its latest update (v2020),
the majority of which are X-ray crystal structures, with a
smaller portion determined via Nuclear Magnetic Resonance
(NMR) spectroscopy. Each binding affinity value is reported as
an inhibition constant (Ki), dissociation constant (Kd), or half-
maximal inhibitory concentration (IC50).
Because the biochemical assays performed to obtain these

measurements operate within specific dynamic ranges, some
measurements are reported with inequalities (“>”, “<”) rather
than exact (“=”) or approximate (“∼”) values. While most
protein−ligand binding affinity prediction work treats all labels
as exact values (i.e., assuming the operator to be “=” for each
data point), we consider the original operators via a custom
loss function that we constructed to more accurately penalize
model predictions during training and validation (for more
details, see Section 4.1).
The complete v2020 release of the PDBbind database,

referred to as the general set, is filtered into a ref ined set (5316
entries),87 which comprises relatively high-quality crystal
structures with relatively reliable binding affinity values. The
refined set is further filtered into the core set (290 entries),
representing the highest quality data points, with 58 proteins,
each co-crystallized with five different ligands. Moreover, each
binding affinity measurement is reported as an exact value
(“=”). The core set serves as the basis for the Comparative
Assessment of Scoring Functions (CASF) 2016 benchmark,88

which is the most widely used benchmark for assessing
protein−ligand binding affinity scoring functions.
While the CASF 2016 benchmark is widely regarded as the

gold standard of the field, it is unable to adequately assess the
ability of models to generalize to protein−ligand complexes
with low similarity to those found in the rest of the PDBbind
database (i.e., the corresponding training and validation
data).89 Specifically, the majority of the data points in the
core set contain either identical proteins or chemically similar
ligands with entries in the rest of the PDBbind v2020 general
set, introducing data leakage that inflates performance
estimates on the CASF 2016 benchmark with respect to
generalizability to low-similarity protein−ligand complexes. In
this work, we utilize the CASF 2016 test set exclusively to
compare the T-ALPHA architecture to the many models
reported in the literature that also benchmark on this dataset.
To address some of the limitations of the CASF 2016

benchmark for assessing protein−ligand binding affinity
scoring functions, Leak Proof PDBbind (LP-PDBbind) was
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developed to minimize protein sequence and ligand structure
similarities across training, validation, and test sets, while also
ensuring distinct protein−ligand structural interaction patterns
across these sets.90 Ligand similarity was calculated as the Dice
similarity91 between 1024-bit Morgan fingerprints, and protein
similarity was calculated as the sequence identity between
Needleman−Wunsch-aligned92 amino acid sequences. The
splitting approach utilized ensures that no training data points
have a protein similarity or ligand similarity greater than 0.5 or
0.99, respectively, to any data point in the validation or test
sets, and that no validation data points have a protein similarity
or ligand similarity greater than 0.9 or 0.99, respectively, to any
data point in the test set. Additionally, proteo-chemometric
interaction fingerprints93 were used to evaluate interaction
patterns. These fingerprints extend the Morgan fingerprint by
incorporating the spatial interactions between ligand atoms
and adjacent protein residues, mapping interaction patterns to
a fixed-size integer vector with a length of 256. Pairwise
interaction fingerprint similarities were then calculated using a
weighted Tanimoto similarity score.94 The data splitting
protocol ensures distinct separation of training, validation,
and test data in terms of these interaction fingerprints.

In addition to the LP-PDBbind split, the same research
group developed a test set for benchmarking protein−ligand
binding affinity scoring functions that is independent of the
data contained in the PDBbind database, referred to as the
BDB2020+ dataset. This dataset consists of data points from
the BindingDB database95 that were deposited after 2020,
reducing the potential for data leakage with v2020 of the
PDBbind. While BindingDB provides experimental binding
affinity data for protein−ligand complexes, it does not include
the corresponding experimentally determined structures. To
address this, binding affinity data from BindingDB was cross-
referenced with matching experimental structures in the RCSB
Protein Data Bank.96

Additionally, two protein-specific test sets were developed
by the same research group and employed in this work that
focus on the SARS-CoV-2 main protease (Mpro)97 and the
epidermal growth factor receptor (EGFR),98 a receptor
tyrosine kinase implicated in multiple types of cancer. The
Mpro dataset contains 40 data points, each with a unique
ligand co-crystallized with Mpro, while the EGFR dataset
comprises 23 data points, each with a unique ligand co-
crystallized with EGFR; all data points are labeled with
experimentally determined binding affinity measurements. For

Figure 1. Protein channel of the T-ALPHA pipeline. The protein is represented and processed in three distinct ways: (1) a graph representation of
the protein pocket (top, green box), where nodes and edges are annotated with atomic and chemical features, is processed by an E(n) Equivariant
Graph Neural Network to generate graph embeddings; (2) a surface-oriented point cloud (middle, blue box) obtained from the entire protein is
processed via a quasi-geodesic convolution layer to capture the geometric and chemical properties of the protein’s surface; and (3) the protein
amino acid sequence (bottom, pink box) is processed by ESM2 to produce sequence-based embeddings that contain evolutionary and functional
information about the protein. Together, these three featurization approaches encode complementary information for integration in T-ALPHA,
enabling comprehensive modeling of the protein for downstream protein−ligand binding affinity prediction. The protein−ligand complex structure
shown corresponds to PDB ID 3ACX.112
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full details on the preparation and validation of the LP-
PDBbind splits, the BDB2020+ test set, as well as the Mpro
and EGFR test sets, please refer to the original paper.90

2.1.2. Ligand SMILES Transformer Pretraining Data. In T-
ALPHA, one of the ligand representations is a feature vector
that is extracted from a transformer encoder pretrained for
masked token prediction on a dataset of SMILES strings. For
pretraining, we utilize a comprehensive dataset that we have
previously curated,99 which combines all of the SMILES strings
from ChEMBL 33 (∼2.4 million bioactive molecules with
drug-like properties),100 GuacaMol v1 (∼1.6 million molecules
derived from ChEMBL 24 that have been synthesized and
tested against biological targets),101 MOSES (∼1.8 million
molecules selected from ZINC 15 to maximize internal
diversity and suitability for medicinal chemistry),102 Bind-
ingDB (∼1.2 million unique small molecules bound to
proteins),95 and the v2020 release of the PDBbind general
set (15710 unique small molecules bound to proteins).84−86

2.1.3. Predicted Protein−Ligand Complex Structures. For
each of the test sets employed in this work, we use Chai-1, a
state-of-the-art multimodal foundation model for molecular
structure prediction, to predict the protein−ligand complex 3D
structure from each protein amino acid sequence and ligand
SMILES string pair. In the context of this work, we utilize
predicted structures to assess the robustness of T-ALPHA in
scenarios where experimentally determined structures are
unavailable or incomplete. We provide full implementation
details of Chai-1 in Section 9.
2.2. Data Preparation. 2.2.1. Protein−Ligand Complex

Structures. We preprocessed all protein−ligand complex
structures, including both the experimentally determined and
predicted structures. Solvent molecules were removed using
Biopython103 to allow the model to implicitly learn solvent
effects. Each protein was corrected for missing heavy atoms
and residues using PDBFixer and OpenMM.104 We then added
missing hydrogen atoms to the proteins and ligands with Open
Babel.105 For each data point, we extracted the protein pocket
by taking any residue in the protein that contains at least one
atom that is within 8 Å of at least one ligand nonhydrogen
atom.

2.2.2. Ligand SMILES Strings. To prepare the pretraining
dataset for the SMILES-based transformer encoder that we use
as a ligand feature extractor, we processed each SMILES string
using RDKit106 by creating a mol object and canonicalizing.
After removing duplicate canonical SMILES and those that
failed processing, 5131118 valid and unique SMILES strings
remained out of the original 5791565 entries. Tokenization
resulted in a vocabulary of 379 unique tokens, of which only
132 occur in the PDBbind v2020 general set. We removed any
SMILES string that contains at least one token that does not
occur in any data point in the PDBbind v2020 general set,
resulting in 4810575 remaining SMILES strings and a
significant reduction of the vocabulary. In order to significantly
increase computational efficiency, we removed any SMILES
string with more than the 95th percentile number of tokens,
reducing the block size from 385 to 155 tokens. This entire
preparation yielded a pretraining dataset of 4778512 data
points.
2.3. Data Featurization. 2.3.1. Protein Featurization. In

T-ALPHA, there are three channels of data processing,
corresponding to the protein, ligand, and protein−ligand
complex. For the protein channel, we represent and process the
protein in three distinct ways: (1) a sparse graph derived from

the protein pocket which is processed by an E(n) EGNN to
learn connectivity-based structural features, (2) a point cloud
of the surface of the protein pocket which is processed via
quasi-geodesic convolutions to learn features pertaining to the
surface topography and curvature, and (3) an amino acid
sequence-derived embedding which is processed by a multi-
layer perceptron (MLP) to learn complementary global
evolutionary and structural information (Figure 1).

2.3.1.1. Protein Pocket Graph. For the protein pocket graph
representation, each nonhydrogen atom of the protein pocket
is represented as a node, and each covalent bond between
these atoms is represented as an edge. The nodes and edges of
this graph are richly annotated with features that capture both
atomic properties and chemical interactions that are suitable
for equivariant transformations.
The node features are described in Table 1, and the edge

features are described in Table 2.

2.3.1.2. Protein Pocket Surface-Based Point Cloud. In
order to capture the detailed geometry and chemical properties
of the protein−ligand interface, T-ALPHA employs an
approach largely based on the dMaSIF111 method for
describing the curvature of the protein pocket. This approach
involves converting atomic-level information into an oriented
point cloud that represents the surface of the protein pocket
and then processing this point cloud via quasi-geodesic

Table 1. Node Features Used for the Protein Pocket Graph
Representationa

node feature description data type

atom type C, O, N, S, F, P, Cl, Br, B, I, or
other

one-hot
encoding

amino acid type hydrophobic, polar, basic, or
acidic

one-hot
encoding

hydrophobic indicator indicates if atom is hydrophobic binary
aromaticity indicator indicates if atom is part of an

aromatic ring
binary

hydrogen bond acceptor
indicator

indicates if atom is a H-bond
acceptor

binary

hydrogen bond donor
indicator

indicates if atom is a H-bond
donor

binary

ring membership
indicator

indicates if atom is part of a ring binary

chirality indicator indicates whether atom is a
chiral center

binary

formal charge formal charge value integer
hybridization state sp2, sp3, etc. integer
total degree number of bonded neighbors integer
heavy atom degree number of bonded heavy atoms integer
heteroatom degree number of bonded heteroatoms integer
hydrogen degree number of bonded hydrogen

atoms
integer

van der Waals radius as reported by Los Alamos
National Lab

float

partial charge partial atomic charge float
electronegativity based on the Pauling scale float
static dipole polarizability for neutral atoms float
avan der Waals radius values were obtained from Los Alamos
National Lab.107 Partial charge values were calculated using Open
Babel’s GetPartialCharge() method,105 which assigns partial charges
based on the Gasteiger method.108 Electronegativity values were
retrieved from PubChems’ periodic table resource.109 Static dipole
polarizability values for neutral atoms were obtained from The New
Zealand Institute for Advanced Study and the Institute for Natural
and Mathematical Sciences.110
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convolutions. In our implementation, the point cloud is
obtained from an disconnected atomic graph created
identically to that described in Section 2.3.1.1 but with a few
exceptions: (1) it is derived from the entire protein rather than
just the protein pocket, (2) it also considers hydrogen atoms as
nodes in addition to nonhydrogen atoms, and (3) it does not
contain any edges.
This unconnected graph representation is processed through

a multistep pipeline designed to accurately capture the relevant
protein pocket surface geometry and chemical characteristics
for each protein−ligand complex. First, random points are
placed around each atom of the protein, and their positions are
iteratively refined using a soft distance metric which evaluates
how close each sampled point is to the actual surface
boundary, taking into account both the atomic radii and
local geometric constraints. Through gradient-based optimiza-
tion, these points converge to positions where the distance
metric aligns with a defined threshold representing the
protein’s surface. This results in a dense collection of points
that accurately reflects the topography of the protein surface.
Once these initial points have converged, a cubic grid
clustering method is applied to produce a more uniform
representation.111 Next, surface normals are computed for each
remaining point, where the normal vectors are derived from
the gradient of the soft distance function used to position the
points on the protein surface. Each normal vector therefore
indicates the outward-facing direction of the surface at the
respective point, capturing orientation-based information for
downstream transformations (Section 3.1.2).

2.3.1.3. Protein Amino Acid Sequence-Based Embedding.
In addition to the information derived from the protein’s 3D
structure, T-ALPHA also integrates embeddings obtained from
ESM2 � a large-scale transformer model pretrained on
extensive protein sequence databases.113 ESM2 processes each
amino acid sequence using self-attention mechanisms to
capture complex relationships and dependencies between
amino acid residues, thereby encoding evolutionary informa-
tion, structural context, and functional insights from the
sequence. The output is a high-dimensional embedding vector
that encapsulates relevant sequence-based information such as
residue conservation, proximity to active sites, secondary
structure elements, and overall fold constraints, rooted in the
extensive evolutionary and structural patterns learned by ESM2

during its large-scale pretraining. By leveraging ESM2, we can
extract complementary features that are not directly inferable
from the protein pocket graph or the protein pocket surface-
based point cloud. For example, certain amino acid residues
might be critical for function and highly conserved
evolutionarily, which ESM2 can highlight even if these residues
do not have immediately obvious structural patterns.

2.3.2. Ligand Featurization. For the ligand channel in T-
ALPHA, we employ a featurization strategy analogous to that
used for the protein channel, capturing multiple facets of the
ligand’s chemical and structural properties that we later
demonstrate are important for predicting protein−ligand
binding affinity. Specifically, we represent and process the
ligand in three distinct ways: (1) a sparse graph which is
processed by an E(n) EGNN to learn connectivity-based
structural features, (2) a molecular-level descriptor vector
which is processed by an MLP to encapsulate global
physicochemical properties, and (3) a SMILES sequence-
based embedding which is further refined by an MLP to
capture local and global chemical context such as atom-level
interactions, substructures, and stereochemical details�
information that is not inferable from the graph or global
descriptor representations. This multifaceted approach ensures
a comprehensive representation of the ligand for downstream
tasks.

2.3.2.1. Ligand Graph. The ligand is represented as a graph
where each nonhydrogen atom is a node and each covalent
bond between these atoms is an edge. The node and edge
features are calculated similarly to those in the protein pocket
graph (Section 2.3.1.1), with the only distinction being that
amino acid type is not one of the node features.

2.3.2.2. Ligand Physicochemical Property-Based Embed-
ding. In addition to the graph representation, we compute a
molecular-level descriptor vector for each ligand using
RDKit.106 This descriptor vector encapsulates a range of
physicochemical and topological properties that provide a
comprehensive overview of the ligand’s chemical character-
istics; all of the calculated descriptors are listed in Table S1 of
the Supporting Information. These descriptors include
information about molecular size, polarity, flexibility, electronic
properties, and other relevant features that influence binding
affinity. By characterizing the ligand’s global properties, this
descriptor vector complements the detailed local structural
information captured by the graph representation, ensuring
that both global and local features contribute to the overall
ligand representation.

2.3.2.3. Ligand SMILES Sequence-Based Embedding. As
an additional feature representation of the ligand, we utilize a
transformer encoder pretrained on a large dataset of SMILES
strings to extract a context-rich embedding that contains
information about complex chemical patterns and substruc-
tures. This pretrained model utilizes self-attention mechanisms
to capture both local chemical contexts such as functional
groups and ring systems, as well as global structural
information.
In this approach, the ligand SMILES string is first tokenized

into individual symbols representing atoms, bonds, and
structural features. These tokens include elements like C, N,
and O; bond types denoted by symbols such as “=”, and “#”;
branching symbols like “(“, and “)”; and stereochemical
indicators such as “@”, “/”, and “\”. Each token is mapped to a
learnable high-dimensional embedding vector, and each
positional index in the input is encoded into a learnable

Table 2. Edge Features Used for the Protein Pocket Graph
Representationa

edge feature description
data
type

bond order interatomic bond order integer
aromaticity
indicator

indicates if bond is part of an aromatic ring binary

ring membership
indicator

indicates if bond is part of a ring binary

interatomic
distance

measured in angstroms (Å) float

electronegativity
difference

absolute difference in electronegativity
between the two bonded atoms (based on
the Pauling scale)

float

electrostatic
interaction
energy

coulombic interatomic electrostatic
interaction energy

float

aElectrostatic interaction energy is calculated as qiqj/rij2, where qk
denotes the partial charge of atom k and rkl represents the interatomic
distance (Å) between atoms k and l.
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high-dimensional vector. Rather than using fixed sinusoidal
encodings, we employ learned positional embeddings, where
each position is assigned a trainable embedding vector. This
strategy allows the model to learn an optimal representation of
positional dependencies directly from data rather than
imposing a handcrafted inductive bias. The token embeddings
capture semantic information about the chemical symbols,
while the positional encodings provide the transformer with
information about the order of the tokens in the sequence.
This is critical because the self-attention mechanism in
transformers is inherently permutation-invariant and does not
consider token order unless explicitly encoded. The final input
embeddings are obtained by element-wise summing the token
embeddings and positional encodings, producing a combined
representation for each token that integrates both semantic and
positional information.
These combined embeddings are then passed through a

series of transformer encoder blocks. Each block consists of a
multi-head self-attention sublayer followed by a residual
connection and layer normalization, and a position-wise feed-
forward network sublayer which is also followed by a residual
connection and layer normalization. The self-attention
mechanism allows the model to compute a weighted
representation of all tokens in the sequence relative to a
given token, capturing intricate patterns and dependencies
within the molecule. For each token, self-attention computes

three vectors: a query vector, a key vector, and a value vector,
all derived from learned linear transformations of the input
embedding. The attention score between any two tokens is
calculated as the scaled dot product of the query vector of one
token with the key vector of another, normalized using a
softmax function to ensure that the scores sum to one. These
scores are then used to compute a weighted sum of the value
vectors, resulting in an output embedding that reflects the
token’s context in the sequence. By attending to all tokens in
the sequence, the model effectively captures both local
interactions, such as adjacent atoms in a functional group,
and long-range dependencies, such as conjugated systems or
distant functional groups that influence each other. In the
multi-head self-attention mechanism, multiple attention heads
process the embeddings in parallel, with each head learning to
focus on different types of relationships among tokens. This
parallel processing enhances the model’s ability to capture
diverse aspects of chemical interactions within the molecule.
Following the multi-head self-attention sublayer, each

transformer block applies a residual connection and layer
normalization to the output of the attention mechanism. Next,
a position-wise feed-forward sublayer is applied to each token
individually. This feed-forward sublayer consists of two linear
transformations separated by a Gaussian Error Linear Unit
(GELU) activation function. The feed-forward sublayer is
followed by another residual connection and layer normal-

Figure 2. Ligand channel of the T-ALPHA pipeline. The ligand is represented and processed in three distinct ways: (1) a graph representation
(top, green box), where nodes and edges are annotated with atomic and chemical features, is processed by an E(n) Equivariant Graph Neural
Network to generate graph embeddings; (2) physicochemical property-based embeddings (middle, blue box) capture molecular-level features that
contribute to binding affinity such as size, polarity, and flexibility; and (3) the ligand SMILES string (bottom, pink box) is processed by a pretrained
transformer to obtain embeddings that capture local substructures, stereochemistry, and long-range dependencies. Together, these three
featurization approaches encode complementary information for integration in T-ALPHA, enabling comprehensive modeling of the ligand for
downstream protein−ligand binding affinity prediction. The protein−ligand complex structure shown corresponds to PDB ID 3ACX.112
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ization. This setup enables the effective modeling of intricate
patterns and long-range dependencies across sequences, with
residual connections promoting stable gradient flow and layer
normalization ensuring numerical stability to facilitate efficient
training of deep architectures. The transformer that we use
contains 10 sequential transformer blocks.
After the input SMILES string is processed by the

transformer blocks, we obtain contextualized embeddings for
each token in the sequence, where each embedding now
contains information about the token itself and its relationships
with other tokens in the sequence. In our implementation, we
extract the embedding corresponding to the start token added
at the beginning of the sequence. This start token aggregates
information from all positions in the sequence during the self-
attention computations, effectively capturing a global repre-
sentation of the molecule.
For each data point, the start token embedding extracted

from the pretrained transformer is passed through an MLP to
optimize it for predicting protein−ligand binding affinity. This
step allows the model to refine the embedding, capturing
subtle chemical features and intricate patterns that might not
be inferable from the ligand’s graph representation or
molecular-level descriptors (Figure 2).

2.3.3. Protein−Ligand Complex Featurization. In T-
ALPHA, the protein−ligand complex is represented as a
unified graph that integrates both the protein pocket and
ligand into a single structure designed to capture the intricate
interactions between the two molecules that are crucial for
accurate binding affinity prediction.
The nodes in this graph represent nonhydrogen atoms from

both the protein and the ligand. The node features are identical
to those previously described for the protein (Section 2.3.1.1)
and ligand (Section 2.3.2.1) graphs, with the addition of a
source identifier that indicates whether a given node belongs to
the protein or ligand, enabling the model to learn source-
specific patterns and interactions.
Edges in the graph represent both intramolecular and

intermolecular interactions. Intramolecular edges are estab-
lished based on covalent bonds within the protein and within
the ligand, as defined in their respective individual graphs.
These edges capture the internal connectivity of each
molecule. Intermolecular edges are introduced between
protein and ligand nonhydrogen atoms that are within 4.5 Å
to capture potential noncovalent interactions critical for
binding, such as hydrogen bonds, hydrophobic contacts, π−π
stacking, and electrostatic interactions. We chose 4.5 Å as the
distance threshold because it is commonly used as a
hydrophobic distance threshold in protein−ligand interaction
modeling.114 Edge features are identical to those used for the
protein and ligand graphs, with an additional interaction
feature to indicate whether a given edge represents an
intramolecular connection or an intermolecular interaction.
This labeling enables the model to distinguish between bonds
that define molecular structures and interactions that
contribute to binding affinity that are not apparent when
considering the protein and ligand separately. By integrating
the protein and ligand into a single graph with enriched node
and edge features, T-ALPHA is able to consider both the
structural details of the individual molecules and the critical
interactions between them.

2.3.4. Data Scaling. To ensure that our model effectively
learns from features of varying scales and to enhance training
stability, we apply standardization to all continuous features

across our dataset. Specifically, we transform these features to
have a mean of zero and a standard deviation of one. This
preprocessing step is crucial for preventing any single feature
from disproportionately influencing the learning process due to
differences in magnitude. Additionally, given that our
architecture integrates multiple components, some of which
do not include built-in normalization mechanisms, scaling
ensures numerical consistency across all submodules. Empiri-
cally, we observe that presacaling stabilizes training, mitigates
gradient-related instabilities, and contributes to improved
model performance.
Across our graph representations (i.e., those for the protein

pocket, the entire protein used in the dMaSIF-based module,
the ligand, and the protein−ligand complex), we standardize
continuous node features including van der Waals radius,
partial charge, electronegativity, and polarizability. For the
edge features, we standardize interatomic distance, electro-
negativity difference, and Coulombic electrostatic interaction
energy. In addition to the graph-based features, we standardize
the protein amino acid sequence-based embeddings, ligand
physicochemical property-based embeddings, and ligand
SMILES sequence-based embeddings.

2.3.5. Training and Validation Set Construction. For each
training−validation−test split, the test set is predefined and
excluded entirely from the training and validation data. To
partition the remaining data, we used a structured and
reproducible approach. For CASF 2016, 95% of the remaining
PDBbind general set is randomly selected for training, while
the remaining 5% is used for validation. For LP-PDBbind, the
predefined splits provided by the authors are used directly to
ensure consistency with previous studies. For the BDB2020+,
Mpro, and EGFR test sets, a single model is trained with 95%
of the remaining PDBbind general set randomly selected for
training, while the remaining 5% is used for validation.

3. ARCHITECTURE
T-ALPHA employs a hierarchical multimodal transformer-
based architecture designed to integrate multiple complemen-
tary feature representations from three channels (protein,
ligand, and protein−ligand complex) to accurately predict
binding affinity.
The protein channel contains three architectural compo-

nents: (1) an E(n) EGNN that processes a graph
representation of the protein pocket, (2) an adaptation of
the dMaSIF111 model based on quasi-geodesic convolutions
that processes a point cloud representation of the protein
surface, and (3) an MLP that processes the protein amino acid
sequence-based embeddings. The output of the dMaSIF-based
model is passed to a transformer encoder, and the outputs of
the E(n) EGNN and the MLP are passed to separate
transformer decoders. Each of the decoders engages in cross-
attention with the encoder output, enabling the integration of
geometric features of the protein pocket surface into both the
graph-based connectivity features and the sequence-based
evolutionary and functional features. The outputs from each of
the three transformers are then concatenated and reduced in
dimensionality to match the output dimensionality of the
protein−ligand complex E(n) EGNN, ultimately resulting in a
single embedding to describe the protein channel.
For the ligand channel, an analogous architectural frame-

work is employed, containing three components tailored
specifically to capture the multifaceted characteristics of the
ligand: (1) an E(n) EGNN that processes a graph

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c02332
J. Chem. Inf. Model. 2025, 65, 2395−2415

2401

pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c02332?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


representation of the ligand, (2) an MLP that processes the
ligand physicochemical property-based embeddings, and (3)
an MLP that processes the ligand SMILES sequence-based
embeddings. The output of the MLP that processes the
property-based embeddings is passed to a transformer encoder,
and the outputs of the E(n) EGNN and the MLP that
processes the sequence-based embeddings are passed to
separate transformer decoders. Each decoder engages in
cross-attention with the encoder output, enabling the
integration of molecular-level physicochemical features into
both the graph-based connectivity features and the sequence-
based chemical and structural features. Similarly to as is done
for the protein channel, the outputs from each of the three
transformers are then concatenated and reduced in dimension-

ality to match the output dimensionality of the protein−ligand
complex E(n) EGNN, ultimately resulting in a single
embedding to describe the ligand channel.
The protein−ligand complex channel focuses exclusively on

processing the graph of the bound complex using an E(n)
EGNN. This approach captures the spatial relationships and
interactions between the protein and ligand atoms that are
important for accurately predicting binding affinity.
The outputs from all three channels are integrated using the

proposed hierarchical transformer framework (Figure 3). The
output of the protein−ligand complex channel is passed to a
transformer encoder, and the outputs of the protein and ligand
channels are passed to separate transformer decoders. Each
decoder engages in cross-attention with the encoder output,

Figure 3. Overview of the hierarchical multimodal transformer-based architecture of T-ALPHA for protein−ligand binding affinity prediction. A
given input protein−ligand complex structure is first processed by protein, ligand, and protein−ligand complex channels. The outputs of each of the
three channels are then further processed by transformers, the outputs of which are then concatenated, pooled with an attention-based method, and
passed to a final MLP to generate the output prediction.
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enabling the integration of detailed binding interaction
information from the protein−ligand complex with the rich
representations of the individual protein and ligand. The
outputs from the three transformer layers are then con-
catenated and pooled with an attention mechanism. Specifi-
cally, a linear layer computes an attention score for each
position across the concatenated outputs, which are
normalized using a softmax function to produce attention
weights. These weights are applied to the corresponding
embeddings at each position, and a weighted sum is computed
over all positions. The resulting vector is projected through a
linear layer to produce the pooled representation. This
representation is then passed to a final MLP to produce the
output prediction.
3.1. Protein Channel. 3.1.1. E(n) Equivariant Graph

Neural Network. To capture the connectivity-based structural
features of the protein pocket while preserving E(n)
equivariance (i.e., equivariance under Euclidean transforma-
tions including rotations, translations, reflections, and
permutations within n-dimensional Euclidean space), we
employ an adaptation of the E(n) EGNN presented by
Satorras et al.115 This architectural component ensures that the
learned graph representation accurately reflects the spatial
relationships and geometric structure of the protein pocket,
enabling the model to capture critical interactions and patterns
that are independent of the molecular orientation or position.
In our E(n) EGNN, each node i represents a nonhydrogen

atom in the protein pocket, characterized by initial features hi
that encode atomic properties (Table 1), and coordinates xi
representing the atom’s 3D position. Edges (i,j) connect
covalently bonded atoms and include edge features eij (Table
2).
The E(n) EGNN updates both the node features and

coordinates through iterative message passing, where messages
(mij) are computed along the edges:

=m h h x x e( , , , )ij e i j i j ij
2

(1)

where ∥xi − xj∥2 is the squared Euclidean distance between
nodes i and j, and ϕe is an MLP that computes edge-specific
messages mij by integrating node features, edge features, and
geometric distance. In addition, we apply a learned attention
mechanism that assigns a weight to each edge, allowing the
model to focus on more important interactions. For the
protein pocket graph, each atom’s feature vector hi has a
dimensionality of 31, and each edge feature vector eij has a
dimensionality of 6.
The node coordinates are updated based on the messages:

+
| |N i

x x x x m1
( )

( ) ( )i i
j N i

i j x ij
( ) (2)

where N(i) denotes the neighbors of node i, ϕx is a coordinate-
based MLP, and ⊙ denotes element-wise multiplication. This
update mechanism ensures that coordinate transformations
depend on relative positions and learned messages, thus
maintaining E(n) equivariance. We aggregate the coordinate
updates by taking the mean over the neighbors.
The node features are updated using the aggregated

messages:

+h h h m,i i h i
j N i

ij
( )

i

k
jjjjjjj

y

{
zzzzzzz (3)

where ϕh is an MLP that integrates the incoming messages to
refine the node features. We incorporate residual connections
by adding the original node features hi to the output of ϕh, thus
stabilizing the training.
The protein pocket E(n) EGNN consists of four layers, with

each layer applying updates to the node features and
coordinates to progressively refine the protein pocket graph
representation. Each node’s final feature vector has a
dimensionality of 64, capturing the spatial and relational
information necessary for accurately predicting protein−ligand
binding affinity.

3.1.2. Quasi-Geodesic Convolutional Layer. To capture the
detailed geometry and curvature of the protein pocket surface,
we employ a dMaSIF111-based quasi-geodesic convolutional
layer to process a surface-based point cloud representation of
the protein pocket.
The protein pocket surface is represented as a point cloud of

512 points, where each point xi
3 lies on the molecular

surface of the protein. The selection of 512 surface points is
performed by identifying the closest points to the ligand rather
than uniformly sampling across the entire protein surface. As a
result, this selection process is independent of the total protein
size and instead ensures that the extracted surface
representation consistently focuses on the binding pocket
across different proteins. For each point xi, we compute a
smoothed normal vector ni by averaging the normals of
neighboring points nj within a Gaussian kernel:

=
w

w
n

n

ni
j ij j

j ij j (4)

where each weight wij is defined as

=w eij
sx x /2i j

2 2

(5)

and s is a scale parameter controlling the spread of the
Gaussian smoothing window. We implement five different
scale parameter values: 1.0, 2.0, 3.0, 5.0, and 10.0, for
computing five geometric features at each point. Using the
smoothed normal vector ni, we compute two orthogonal
tangent vectors ui and vi to form an orthonormal basis [ni,ui,vi]
at each point, thus providing a local coordinate system at each
point on the surface.
We estimate the mean curvature Hi and Gaussian curvature

Ki at each scale for each point using a local quadratic
approximation of the surface. Specifically, we compute the
shape operator Si by solving:

= +S P P I P Q(Cov( , ) ) Cov( , )i i i i i
12

(6)

where Pi and Qi are matrices of coordinate differences and
normal differences, respectively, that have been projected into
their local tangent planes, λ is a regularization parameter that is
set to 0.1 Å, and I is the identity matrix. Cov( · , · ) is an
element-wise-weighted covariance matrix where the weights
are derived from the Gaussian smoothing window. The mean
and Gaussian curvatures are then given by

= =H KS Strace( ), det( )i i i i (7)

In addition to geometric features, we incorporate chemical
information by employing a separate module with message
passing, where chemical properties of atoms in proximity to a
given surface point are propagated to that point. Each atom aj
is associated with a feature vector fj encoding its chemical
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properties. In our implementation, each atom’s feature vector
has a dimensionality of 32, incorporating the features listed in
Table 1 with the addition of a one-hot encoding for the
Hydrogen atom type. We apply a neural network ϕf to
transform these features:

=h f( )j f j (8)

We then perform message passing among atoms to update
their features based on their 16 nearest neighboring atoms:

= + dh h h h( , , )j j
k N j

j k jk
( )

atom
(9)

where ϕatom is a neural network function, N(j) denotes the 16
nearest neighboring atoms to atom j, and djk is the distance
between atoms jand k. We use three message passing layers to
iteratively update the atomic features.
We then propagate the updated atomic features to each

surface point by considering the 16 nearest neighboring atoms:

= dg h( , )i
j M i

j ij
( )

surface
(10)

where ϕsurface is a neural network function, M(i) denotes the 16
nearest atoms to surface point i, and dij is the distance between
surface point i and atom j. The resulting chemical feature
vector gi, which has a dimensionality of 32, is concatenated
with the geometric features (i.e., the mean and Gaussian
curvatures computed at five scales). This results in a combined
feature vector cj with a dimensionality of 42.
To aggregate these combined geometric and chemical

features over the surface, we apply a quasi-geodesic convolu-
tional layer that updates the combined feature vector cj at each
point by aggregating information from neighboring points
using a learned kernel:

= ·wc P cLeakyReLU ( )i
j

ij ij j
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k
jjjjjjj

y

{
zzzzzzz (11)

where wij is a scalar weight based on a pseudo-geodesic
distance, and ψ is a neural network acting on the local
coordinate differences Pij. The weighting function used to
obtain wij considers both spatial proximity and normal
similarity:

= ·[ · ]w eij
rx x n n2 ( ) /2i j i j

2 2 2

(12)

where r is a scale parameter that controls the sensitivity of the
weighting function to spatial proximity and normal similarity,
which we set to 9.0 Å.
For each of the 512 surface points, the final embedding ci′ is

a vector of dimensionality 64 that encapsulates rich geometric
and chemical characteristics of the protein pocket surface.

3.1.3. Amino Acid Sequence-Based Embedding Neural
Network. To incorporate global evolutionary and biophysical
characteristics of the protein that can be derived from its
amino acid sequence, we utilize ESM2, a protein language
model trained for masked token prediction, to produce a fixed-
dimensional embedding vector eseq

2560. We reduce the
dimensionality of each embedding from 2560 to 512 using a
linear layer, followed by batch normalization and ReLU
activation:

= +h W e bReLU(BatchNorm( ))seq 1 seq 1 (13)

where ×W1
512 2560 is a weight matrix, and b1

512 is a
bias vector. The resulting vector hseq

512 is then reshaped
into a sequence by treating each of its 512 elements as
individual tokens with scalar features:

= ×Z h 1seq seq
T 512 1

(14)

where ⊗ denotes the tensor product operation and 1 is a
vector of ones. We then expand the feature dimension of each
token of the resulting vector ×Zseq

512 1 from 1 to 64 using
another linear layer, where

[ ] = [ ] + =i i iH W Z b, : , for 1, ..., 512seq 2 seq 2 (15)

where ×W2
64 1 and b2

64. The resulting representation
×Hseq

512 64 is now suitable for processing by a transformer
decoder.

3.1.4. Protein Transformer. To effectively integrate the
diverse protein representations obtained from the E(n)
EGNN, the quasi-geodesic convolutional layer, and the
amino acid sequence-based embedding neural network, we
employ a protein transformer architecture composed of a
transformer encoder and two transformer decoders, enabling
different feature modalities to interact through cross-attention
mechanisms. The key technical difference between a trans-
former encoder and a decoder lies in their attention
mechanisms. While the encoder applies only self-attention,
the decoder incorporates both self-attention and cross-
attention. Specifically, the decoder in T-ALPHA follows the
formulation originally introduced by Vaswani et al.116

The processed surface features from the dMaSIF-based
model, denoted as ×Hsurf

512 64 (where 512 is the number
of surface points and 64 is the feature dimensionality), are
passed through a transformer encoder to capture contextual
relationships among the learned surface point embeddings:

=Z HTransformerEncoder( )enc surf (16)

The outputs of the E(n) EGNN ( ×H N
graph

64nodes ) and
the amino acid sequence-based embedding neural network (

×Hseq
512 64) are each passed to separate transformer

decoders, each of which incorporates the transformer encoder
output via cross-attention:

=Z H ZTransformerDecoder( , )graph graph enc (17)

=Z H ZTransformerDecoder( , )seq seq enc (18)

The cross-attention mechanism allows the transformer
decoders to selectively focus on relevant parts of the encoder’s
output. Specifically, for a decoder input Hdec (either Hgraph or
Hseq), cross-attention is computed as

=
d

Q K V
QK

VAttention( , , ) softmax
k

Ti
k
jjjjjj

y
{
zzzzzz (19)

where queries Q = HdecWQ, keys K = ZencWK, values V = Zenc
WV, and WQ, WK, and WV are learned projection matrices. The
dimensionality of each of the key vectors, dk, is used to scale
the dot products.
The graph decoder output Zgraph for each protein has a

uniform length within the batch during decoding, achieved by
padding all graphs to match the number of nodes in the largest

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c02332
J. Chem. Inf. Model. 2025, 65, 2395−2415

2404

pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c02332?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


graph in the batch. After decoding, the padding is removed,
resulting in an effective length of Zgraph that matches the
number of nodes in the respective graph. To obtain a fixed size
representation for each protein graph, we apply a masked mean
pooling over the node dimension:

= ×h ZMaskedMeanPool( , mask) B
graph graph

64
(20)

where the mask accounts for the variable node lengths in the
batch. Here, B denotes the batch size. The pooled graph
representation ×h B

graph
64 is reshaped and expanded via a

learned linear layer to match the dimensionality of the other
modalities, resulting in ×Z graph

512 64.
We then concatenate the encoder output Zenc, the processed

graph decoder output Z′graph, and the sequence decoder output
Zseq along the sequence length dimension to obtain a unified
representation of the protein:

= ×Z Z Z ZConcat( , , )concat enc graph seq
1536 64

(21)

We permute the dimensions of Zconcat to obtain
× ×Z B

concat
64 1536, and then apply a linear projection to

reduce the concatenated feature dimension from 1536 to 512.
After permuting back to the original dimensions, we obtain the
final protein representation ×Z protein

512 64. This represen-
tation encapsulates the integrated information from all three
modalities and is prepared for downstream processing.
3.2. Ligand Channel. 3.2.1. Ligand E(n) Equivariant

Graph Neural Network. To capture the structural and
connectivity-based characteristics of the ligand, we represent
each ligand as a graph and process it using the same E(n)
EGNN architecture described in Section 3.1.1. The only
distinction between the ligand graph and the protein pocket
graph is that the ligand graph has one fewer node feature,
corresponding to the amino acid indicator in the protein
pocket graph.

3.2.2. Physicochemical Property-Based Embedding Neu-
ral Network. To incorporate molecular-level physicochemical
properties of the ligand, we compute a vector of descriptors
based on the 2D molecular structure using RDKit, resulting in
a fixed-length vector dprop

209. We reshape and expand the
vector using a learned linear layer, where

[ ] = + =i d iD W b, : , for 1, ..., 209iprop 1 prop, 1 (22)

with ×W1
64 1 and b1

64. The resulting output
×Dprop

209 64.
3.2.3. SMILES Sequence-Based Embedding Neural Net-

work. To capture complementary structural and chemical
features of the ligand, we utilize a transformer encoder
pretrained on a large dataset of SMILES strings to extract a
contextual embedding eseq

768. To integrate these embed-
dings into our architecture, we reduce the embedding
dimensionality from 768 to 512:

= +h W e bReLU(BatchNorm( ))seq 2 seq 2
512

(23)

where ×W2
512 768 and b2

512. The resulting vector hseq
is then reshaped into a sequence of length 512, with each
element representing a token, and its feature dimension is
expanded using a learned linear layer:

= ×S h 1Linear( )seq seq
T 512 1

(24)

Each element of the reshaped sequence Sseq is projected into
a higher-dimensional feature space by using a learned linear
transformation:

[ ] = + =i h iS W b, : , for 1, ..., 512seq 3 seq 3 (25)

with ×W3
64 1 and b3

64.
3.2.4. Ligand Transformer. To integrate the various ligand

representations, we employ a transformer architecture
analogous to that described in Section 3.1.4. The output of
the physicochemical property-based embedding neural net-
work serves as input to a transformer encoder. The outputs
from the E(n) EGNN and the SMILES sequence-based
embedding neural network are input into separate transformer
decoders that incorporate the encoder output via cross-
attention. The outputs from the three transformer components
are then combined in the same manner as described for the
protein transformer in Section 3.1.4. This combined ligand
representation encapsulates integrated structural, physico-
chemical, and interaction-relevant substructural features.
3.3. Protein−Ligand Complex E(n) Equivariant Graph

Neural Network. To model the critical interactions between
the protein and ligand, we construct a unified graph
representation of the protein−ligand complex and process it
using an E(n) EGNN, as described previously in Section 3.1.1.
An important distinction is that the protein and ligand E(n)
EGNNs are each four layers, while the protein−ligand complex
EGNN is eight layers. This increased depth allows the
protein−ligand complex E(n) EGNN to capture intricate
interactions between the protein and ligand atoms which are
essential for accurately predicting binding affinity.
3.4. Meta Transformer. The output feature representa-

tions from each of the three channels are integrated via a meta
transformer architecture that leverages cross-attention mech-
anisms to capture interdependencies among the protein,
ligand, and complex that are critical for accurately predicting
binding affinity. The output of the protein−ligand complex
channel serves as the input to a transformer encoder. The
outputs of the protein and ligand channels are each passed to
separate transformer decoders, each of which uses the encoder
output as the memory input in a cross-attention mechanism,
allowing the protein and ligand modalities to attend to relevant
parts of the complex encoding. The outputs of the protein−
ligand complex encoder (Zcomplex), protein decoder (Zprotein),
and ligand decoder (Zligand) are then concatenated along the
sequence dimension to create a unified representation that
aggregates the learned features from all three modalities:

=Z Z Z ZConcat( , , )meta complex protein ligand (26)

where ×Zmeta
1536 64. Attention pooling is then applied to

distill the concatenated representation into a fixed-size vector
vmeta that captures the most relevant information across the
sequence:

=v W Z( )meta proj meta (28)

where Wproj projects the weighted sum of features to a fixed-
size output vector vmeta

512, and the attention weights
×1536 1 are calculated as

= W Zsoftmax( )attn meta (27)
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where Wattn is a learnable weight matrix for the attention
mechanism. The pooled representation vmeta is then passed to
an MLP to produce the final binding affinity prediction.

4. MODEL TRAINING DETAILS
4.1. Experimental Dynamic Range-Aware Custom

Loss Function. The data from PDBbind contains target
values yi, each associated with an operator oi from the set {=, ∼,
>, <}, indicating exact equality, approximate equality, greater
than, or less than relationships, respectively. To account for
these relational constraints, we designed a custom loss function

that adjusts the penalization based on the operator
associated with each target value. The loss for a given sample
is defined as

{ = } =o y yfor , : ( )i i i i
2

(29)
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where ŷi is the model’s prediction for the i-th sample. The
overall loss is computed as the mean of the individual i values
over the batch:

=
=N

1

i

N

i
1 (32)

where N is the number of samples in the batch. This custom
loss function ensures that the model respects the dynamic
ranges of the experiments used to obtain binding affinity
measurements rather than assuming all labels to represent
exact equalities.
4.2. Parameter Optimization. Optimization was per-

formed using the AdamW optimizer,117 with an initial learning
rate ninitial = 3 × 10−4 and a weight decay coefficient of 1 ×
10−5. Gradient clipping with a maximum value of 0.1 was
applied to ensure training stability.
We used an adaptive learning rate scheduler comprising two

phases. The first phase is a warm-up period over the first
Twarmup = 30 epochs, during which the learning rate increases
linearly from 0.1 × ninitial to the initial learning rate ninitial. The
learning rate at epoch t during the warm-up phase is given by

= × + ×n n t
T

n n0.1 ( 0.1 )t initial
warmup

initial initial

i
k
jjjjjj

y
{
zzzzzz

(33)

Following the warm-up phase, the learning rate is adjusted
using a cosine annealing schedule over the remaining epochs,
decreasing the learning rate from ninitial to a minimum learning
rate nmin = 3 × 10−5 following a cosine curve:

= + +n n n n
t T
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where the total number of training epochs Ttotal = 120.
4.3. Distributed Training and Scaling.We leveraged the

Fully Sharded Data Parallel (FSDP) strategy implemented in
PyTorch Lightning,118 to shard model parameters and

optimizer states across four NVIDIA A100 GPUs. This
approach significantly reduces memory consumption and
scales the training process efficiently, enabling an effective
batch size of 128 (batch size of 32 per GPU).
4.4. Model Selection. We select the model parameters

corresponding to the epoch with the lowest validation loss to
be used inference. Learning curves for each of the trainings
performed in this work are provided in Figures S2−S4 in the
Supporting Information.

5. UNCERTAINTY-AWARE SELF-LEARNING METHOD
FOR PROTEIN-SPECIFIC ALIGNMENT

To improve the ranking ability of compounds by binding
affinity for specific protein targets without requiring additional
experimental data, we propose a self-learning method that
leverages uncertainty estimation and chemical similarity. We
apply this approach to two protein targets, Mpro and EGFR,
each associated with a set of ligands for which binding affinity
data is available. These datasets serve as test sets for evaluating
the proposed method.
The manifold hypothesis posits that high-dimensional data

lies on low-dimensional manifolds embedded within the
higher-dimensional space.119 We hypothesize that structurally
similar compounds are expected to cluster together on these
manifolds, sharing relevant properties that contribute to
protein−ligand binding affinity. To exploit this hypothesis,
we select compounds with similar ECFP4s to those in the test
set, thereby constructing a pseudo-training set focused on the
specific regions of the chemical manifold relevant to the test
set.
Using Monte Carlo dropout, we estimate the uncertainty of

model predictions for these pseudo-training compounds and
then update the model parameters using a weighted loss
function that emphasizes low-uncertainty pseudo-labels. This
approach successfully aligns the model to relevant regions of
the chemical manifold, enhancing its ability to rank test set
compounds by binding affinity for both Mpro and EGFR
(Section 6.4).
5.1. Bayesian and Statistical Learning Theoretical

Inspiration. Our method is inspired by foundational
principles from Bayesian inference and statistical learning
theory. In Bayesian statistics, when dealing with observations
of varying uncertainty, each observation should be weighted
according to its precision (inverse variance) during parameter
estimation. Given a pseudo-labeled input-output pair (xi, yi)
with associated predictive uncertainty σi

2, the likelihood
function for the data point can be calculated as

| =p y x y x( , ) ( ( ; ), )i i i i i
2

(35)

where p(yi|xi,θ) represents the probability of observing yi given
the input xi and the model parameters θ. This probability is
modeled as a Gaussian distribution where the model’s
prediction ŷi (xi;θ) is the mean and the predictive uncertainty
σi
2 is the variance.
The negative log-likelihood over the dataset D composed of

M points is

| = + +
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where p(D|θ) represents the joint likelihood of all observations
in D given the model parameters θ. Assuming the σi2 are known
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and fixed and ignoring constant terms, the loss function
simplifies to a precision-weighted mean squared error:

= ·
=

L w y y x( ) ( ( ; ))
i

M

i i i i
1

2

(37)

This weighting scheme ensures that data points with lower
uncertainty have greater influence on the loss, thereby
contributing more significantly to parameter updates.
Monte Carlo dropout approximates Bayesian inference in

neural networks by interpreting dropout as a variational
approximation to the posterior distribution P(θ|D).120 For
each data point xi, the predictive mean ŷi and variance σi

2 are
estimated as
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where T = 100 is the number of stochastic forward passes and
ŷi(t) is the model prediction at iteration t.
To implement a numerically stable approximation of the

precision-weighted loss (eq 37), we adopt a smoothed
weighting scheme that transforms variance values σi

2 into
weights to be incorporated into the loss function during
parameter optimization:

Table 3. Performance of T-ALPHA and the Highest-Performing Models in the Literature on the CASF 2016 Benchmarka

model RMSE MAE r2 Pearson r Spearman ρ
T-ALPHA 1.112 0.875 0.738 0.869 0.860
T-ALPHA† 1.134 0.893 0.721 0.857 0.843
EHIGN51 1.150 N/R N/R 0.854 N/R
TopoFormer-Seq60 1.151 N.R N/R 0.864 N/R
MFE73 1.151 0.882 N/R 0.851 N/R
LGN54 1.177 0.936 N/R 0.842 N/R
GIGN39 1.190 N/R N/R 0.840 N/R
HAC-Net33 1.205 0.971 0.692 0.846 0.843
TopBP121 1.210 N/R N/R 0.861 N/R
CurvAGN45 1.217 0.930 N/R 0.8305 N/R
AEScore122 1.22 N/R N/R 0.83 0.64
AK-score32 1.22 N/R N/R 0.812 0.670
PLANET38 1.226 0.924 N/R 0.830 N/R
DeepAtom123 1.232 0.904 N/R 0.831 N/R
GraphscoreDTA37 1.249 0.981 N/R 0.831 N/R
EGNA43 1.258 0.980 N/R 0.842 N/R
PerSpect ML124 1.265 N/R N/R 0.840 N/R
GIaNt40 1.269 0.999 N/R 0.814 N/R
KDEEP

30 1.27 N/R N/R 0.82 0.82
AGL-Score125 1.272 N/R N/R 0.833 N/R
OnionNet25 1.278 0.984 N/R 0.816 N/R
PSH-GBT126 1.280 N/R N/R 0.835 N/R
ELGN47 1.285 1.013 N/R 0.810 N/R
FAST35 1.308 1.019 0.638 0.810 0.807
BAPA127 1.308 1.021 N/R 0.819 0.819
SIGN36 1.316 1.027 N/R 0.797 N/R
TopologyNet23 1.34 N/R N/R 0.81 N/R
DockingApp RF20 1.35 1.09 N/R 0.83 N/R
DeepDTAF128 1.355 1.073 N/R 0.789 N/R
DLSSAffinity129 1.40 N/R N/R 0.79 N/R
DeepBindGCN49 1.41 N/R N/R 0.75 N/R
Pafnucy31 1.42 1.13 N/R 0.78 N/R
Pair130 1.44 N/R N/R 0.75 N/R
GraphBAR41 1.542 1.241 N/R 0.726 N/R
PointTransformer69 1.58 1.29 N/R 0.753 0.751
MGNN131 N/R N/R N/R 0.85 N/R
SE-OnionNet27 N/R N/R N/R 0.83 N/R
PLEC-NN132 N/R N/R N/R 0.817 N/R

aThe table reports Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (r2), Pearson correlation
coefficient (r), and Spearman rank correlation coefficient (ρ) for each model. T-ALPHA† represents the performance of T-ALPHA evaluated on
protein−ligand complex structures generated by Chai-1 rather than the crystal structures. The best value for each metric is shown in bold. Models
are sorted by RMSE value in ascending order. Error metrics (RMSE and MAE) are reported in units of pKi/pKd. N/R indicates not reported in the
literature. Values are reported with the number of significant figures provided in the original work.
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where σmin2 and σmax2 are the minimum and maximum variances
in the pseudo-training dataset, respectively, and s = 10 is a
scaling factor. This transformation ensures that weights
smoothly decrease with increasing variance, promoting stability
and preventing any single data point from disproportionately
influencing the optimization process (Figure S5 in the
Supporting Information).
5.2. Implementation Details. For each of the test ligands

for a given protein target, we compute the Tanimoto similarity
between the corresponding Extended Connectivity Fingerprint
with a diameter of 4 (ECFP4) and those of compounds in the
pretraining set (∼5 million entries) used for the SMILES-
based transformer encoder (Section 2.3.2.3). The Tanimoto
coefficient T between two ECFP4s A and B is calculated as

= ·
+ ·

T A B A B
A B A B

( , )
(42)

where A·B denotes the dot product of the binary vectors, and
∥C∥ represents the sum of the elements in C. For each test set
ligand, we select the 10 compounds from the pretraining set
with the highest Tanimoto similarity, resulting in a pseudo-
training set of N′ = 10 × N compounds, where N is the
number of data points in the test set.
For each pseudo-training compound, we generate a

protein−ligand complex structure using Chai-1 (see Section
9 for Chai-1 implementation details). We then compute the
pseudo-label and uncertainty-based weight for each pseudo-
training data point as described in Section 5.1.
5.3. Experimental Setup and Validation. We imple-

mented the self-learning method via two training strategies:
fine-tuning a pre-trained T-ALPHA model and training the T-
ALPHA architecture from scratch. Fine-tuning is performed
with a learning rate of 3 × 10−5 for 200 epochs to ensure
convergence. When training from scratch, we utilize the same
procedure described in Sections 4.2 and 4.3, with the
distinction that the model is trained for 200 epochs.
To validate the method, we performed control experiments

where the uncertainty-based weights wi were excluded from the
loss function (eq 37), allowing us to directly assess the
contribution of uncertainty-based weighting to improved
ranking performance on test set compounds.
Model parameters for inference are selected based on

validation performance. Specifically, a validation set is created
using the original N test compounds. Pseudo-labels and
weights are computed for each validation data point using the
procedures described in Section 5.1. The model’s performance
is then evaluated on this validation set using the weighted loss
function (eq 37), and the parameters from the epoch achieving
the lowest validation loss are chosen for inference.

6. RESULTS
T-ALPHA was evaluated across multiple benchmarks to
demonstrate its robustness in predicting protein−ligand
binding affinity. We benchmarked on the CASF 2016 test
set, widely regarded as the standard dataset for protein−ligand
binding affinity scoring function assessment. While its
popularity enables straightforward comparisons to existing
models, we acknowledge the dataset’s flaws, such as significant
data leakage between training and test sets, which artificially

inflates performance metrics. To address these shortcomings,
we also benchmarked T-ALPHA on datasets designed to
mitigate data leakage and improve generalizability assessments:
LP-PDBbind and BDB2020+ test sets. Additionally, we
evaluated T-ALPHA on two protein-specific test sets
corresponding to Mpro and EGFR to assess its applicability
in scenarios that require high accuracy for specific protein
targets.
6.1. Comparative Performance on the CASF 2016

Benchmark. T-ALPHA was benchmarked on the CASF 2016
test set and demonstrated superior performance across all
evaluated metrics compared with every model reported in the
literature to date (Table 3). T-ALPHA achieves the lowest
Root Mean Square Error (RMSE: 1.112), the lowest Mean
Absolute Error (MAE: 0.875), the highest Pearson correlation
coefficient (r: 0.869), the highest coefficient of determination
(r2: 0.738), and the highest Spearman rank correlation
coefficient (ρ: 0.860). These results establish T-ALPHA as
the current state-of-the-art deep learning model for predicting
protein−ligand binding affinity (Figure S6 in the Supporting
Information).
In real-world drug discovery applications, experimental

structures are often unavailable or incomplete. To evaluate
the robustness of T-ALPHA in such scenarios, we assessed its
performance on protein−ligand complex structures generated
by Chai-1 (T-ALPHA†). The results indicate that T-ALPHA†

maintains excellent performance (RMSE: 1.134, MAE: 0.893,
r2: 0.721, Pearson r: 0.857, Spearman ρ: 0.843), outperforming
all existing models in the literature that were evaluated using
crystal structures (Figure S7 in the Supporting Information).
Moreover, we observe that the predictive accuracy of T-
ALPHA† is not significantly dependent on the confidence score
of the Chai-1-generated structures (Figure S8 in the
Supporting Information).
6.2. Assessing Generalizability Using LP-PDBbind

and BDB2020+ Test Sets. To evaluate the ability of T-
ALPHA to generalize to protein−ligand complexes signifi-
cantly distinct from those in the training and validation
distributions, we benchmarked its performance on two
complementary test sets developed to assess the general-
izability of protein−ligand binding affinity scoring functions:
LP-PDBbind, which was designed to evaluate internal
generalizability by minimizing overlap between training,
validation and test sets constructed from PDBbind data, and
BDB2020+, which was curated to assess external general-
izability to data obtained independently of PDBbind and
collected after the training and validation data (more details in
Section 2.1.1).
On the LP-PDBbind test set, T-ALPHA outperforms all

previously evaluated models (Table S9 and Figure S10 in the
Supporting Information).
On the BDB2020+ test set, T-ALPHA achieves an RMSE of

0.969, significantly outperforming all other models that have
been evaluated (Table 4; Figure S11 in the Supporting
Information). When using the Chai-1-generated structures of
the test set protein−ligand complexes rather than the crystal
structures, the RMSE is also lower than that of any model
previously evaluated on the crystal structures (Table 4; Figure
S12 in the Supporting Information).
6.3. Protein-Specific Benchmarking Using Mpro and

EGFR Test Sets. In many real-world drug discovery scenarios,
ranking compounds by binding affinity against a specific
protein target is a critical step in prioritizing candidates for

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c02332
J. Chem. Inf. Model. 2025, 65, 2395−2415

2408

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c02332/suppl_file/ci4c02332_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c02332/suppl_file/ci4c02332_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c02332/suppl_file/ci4c02332_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c02332/suppl_file/ci4c02332_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c02332/suppl_file/ci4c02332_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c02332/suppl_file/ci4c02332_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c02332/suppl_file/ci4c02332_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c02332/suppl_file/ci4c02332_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c02332/suppl_file/ci4c02332_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c02332/suppl_file/ci4c02332_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c02332/suppl_file/ci4c02332_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c02332/suppl_file/ci4c02332_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c02332/suppl_file/ci4c02332_si_001.pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c02332?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


further investigation. In this context, a key metric is the
Spearman rank correlation coefficient (ρ), which quantifies the
monotonic relationship between the rank values of the
predicted and experimentally determined binding affinities.
To assess T-ALPHA’s effectiveness in protein-specific

applications, we independently tested its performance for
two highly relevant protein targets: SARS-CoV-2 main
protease (Mpro) and epidermal growth factor receptor
(EGFR). For the Mpro test set, T-ALPHA achieved a
Spearman ρ of 0.737, outperforming all other models that
have been evaluated (Table 5; Figure S13 in the Supporting

Information). Even with the Chai-1-generated structures (T-
ALPHA†), the model maintained a Spearman ρ of 0.733
(Figure S14 in the Supporting Information).
For the EGFR test set, T-ALPHA achieved a Spearman ρ of

0.791, significantly exceeding that of all other models evaluated
(Table 6; Figures S15 and S16 in the Supporting Information).
6.4. Enhancing Target-Specific Performance with the

Self-Learning Method. We assessed the effectiveness of the
proposed self-learning method by comparing T-ALPHA’s
performance on the Mpro and EGFR test sets before and

after its application. For the Mpro test set, the newly trained
model and fine-tuned model demonstrate significant improve-
ments in Spearman ρ compared to the baseline, with increases
of 9.91% and 5.43%, respectively (Table S17 in the Supporting
Information). Importantly, the control experiments exhibit
minimal change compared to the baseline, confirming that the
observed improvements are attributable to the self-learning
method rather than other factors. Similar trends are observed
for application of the method to EGFR, with increases in
Spearman ρ of 3.41% for the newly trained model and 1.14%
for the fine-tuned model (Table S18 in the Supporting
Information). These results highlight the effectiveness of the
proposed method in enhancing the protein-specific ranking of
compounds by binding affinity, although the magnitude of
improvement varies depending on the specified target.
An interesting and somewhat unintuitive observation is that

although Spearman ρ and Pearson r values increase for the
applications of the method to both Mpro and EGFR, the
RMSE and MAE values also increase. This discrepancy arises
due to the systematic biases inherent in the pseudo-labels
generated by the model. As absolute metrics, RMSE and MAE
are sensitive to these biases, whereas correlation metrics such
as Spearman ρ and Pearson r, which measure relative
relationships, are largely unaffected.
6.5. Architecture Component Contributions to Per-

formance. To validate the design choices underpinning the T-
ALPHA architecture, we conducted an ablation study in which
we systematically removed individual components and
characterized the relative contribution of each component to
the overall performance on the CASF 2016 benchmark (Table
7).
Removing the protein−ligand complex E(n) EGNN led to

the most significant decline in performance among all
components, with an RMSE of 1.247 (Table 7). This
component explicitly models the interactions between the
protein and ligand atoms, and the performance decline due to
its exclusion demonstrates that capturing these intermolecular
relationships is critical for accurately predicting binding
affinity.
Excluding the protein quasi-geodesic convolutional layer

resulted in an RMSE of 1.238 (Table 7), underscoring the
importance of capturing the topography and curvature of the
protein binding pocket. This layer provides critical insights into

Table 4. Performance of T-ALPHA and Competing Models
on the BDB2020+ Test Seta

model RMSE MAE r2 Pearson r Spearman ρ
T-ALPHA 0.969 0.768 0.259 0.683 0.531
T-ALPHA† 0.939 0.740 0.310 0.681 0.544
AutoDock Vina 1.54 N/R N/R 0.29 N/R
IGN 1.01 N/R N/R 0.54 N/R
RF-Score 1.18 N/R N/R 0.51 N/R
DeepDTA 1.26 N/R N/R 0.26 N/R
MMPD-DTA 1.206 0.969 N/R 0.488 N/R

aThe table reports Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), coefficient of determination (r2), Pearson correlation
coefficient (r), and Spearman rank correlation coefficient (ρ) for each
model. T-ALPHA† represents the performance of T-ALPHA
evaluated on protein−ligand complex structures generated by Chai-
1 rather than the crystal structures. The best value for each metric is
shown in bold. Error metrics (RMSE and MAE) are reported in units
of pKi/pKd. N/R indicates not reported in the literature. Values are
reported with the number of significant figures provided in the
original work.

Table 5. Performance of T-ALPHA and Competing Models
on the Mpro Test Seta

model RMSE MAE r2 Pearson r Spearman ρ
T-ALPHA 0.650 0.511 0.397 0.715 0.737
T-ALPHA† 0.741 0.574 0.172 0.668 0.733
AutoDock Vina 0.86 N/R N/R 0.66 0.68
IGN 1.06 N/R N/R 0.61 0.65
RF-Score 1.20 N/R N/R 0.52 0.58
DeepDTA 0.65 N/R N/R 0.64 0.65

aThe table reports Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), coefficient of determination (r2), Pearson correlation
coefficient (r), and Spearman rank correlation coefficient (ρ) for each
model. T-ALPHA† represents the performance of T-ALPHA
evaluated on protein−ligand complex structures generated by Chai-
1 rather than the crystal structures. The best value for each metric is
shown in bold. Error metrics (RMSE and MAE) are reported in units
of pKi/pKd. N/R indicates not reported in the literature. Values are
reported with the number of significant figures provided in the
original work.

Table 6. Performance of T-ALPHA and Competing Models
on the EGFR Test Seta

model RMSE MAE r2 Pearson r Spearman ρ
T-ALPHA 0.694 0.572 0.403 0.702 0.791
T-ALPHA† 0.842 0.670 0.093 0.593 0.665
AutoDock Vina 1.17 N/R N/R 0.38 0.36
IGN 0.70 N/R N/R 0.65 0.62
RF-Score 0.71 N/R N/R 0.52 0.45
DeepDTA 0.77 N/R N/R 0.44 0.43

aThe table reports Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), coefficient of determination (r2), Pearson correlation
coefficient (r), and Spearman rank correlation coefficient (ρ) for each
model. T-ALPHA† represents the performance of T-ALPHA
evaluated on protein−ligand complex structures generated by Chai-
1 rather than the crystal structures. The best value for each metric is
shown in bold. Error metrics (RMSE and MAE) are reported in units
of pKi/pKd. N/R indicates not reported in the literature. Values are
reported with the number of significant figures provided in the
original work.
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potential interaction hotspots and steric compatibility, which
inform the other components of the protein channel through
cross-attention mechanisms. Removing the ligand physico-
chemical property-based embedding neural network led to an
RMSE of 1.235, demonstrating that molecular-level properties
of the ligand are informative of its binding behavior. Moreover,
in the baseline model, the output of this component informs
the other components of the ligand channel through cross-
attention mechanisms.
The other components, including the protein and ligand

E(n) EGNNs, as well as the protein and ligand sequence-based
neural networks, each contributes meaningfully to the model’s
performance (Table 7). The observed declines in performance
due to their removals highlight the importance of connectivity-
based structural features of both the protein pocket and the
ligand, patterns describing chemical and functional relation-
ships of the ligand, and global evolutionary and functional
information about the entire protein for predicting binding
affinity.
The ablation study reveals that all components contribute to

the overall performance of T-ALPHA, with certain modules
having a more substantial impact when excluded. These results
confirm that the multimodal feature representations and
hierarchical transformer architecture of T-ALPHA are critical
to its state-of-the-art performance. Each component captures
distinct aspects of protein−ligand interactions, and their
integration enables the model to account for the diverse
factors that determine binding affinity.

7. DISCUSSION
In this work, we introduced T-ALPHA, a novel deep learning
model designed to predict protein−ligand binding affinity by
integrating multimodal feature representations through a
hierarchical transformer framework. Our extensive evaluations
demonstrate that T-ALPHA achieves state-of-the-art perform-
ance across multiple benchmarks, highlighting its applicability
to early-stage drug discovery workflows.

On the widely recognized CASF 2016 benchmark, T-
ALPHA outperforms all existing models reported in the
literature, underscoring the effectiveness of our architectural
approach in capturing the characteristics and interactions that
determine binding affinity. Notably, even when using predicted
protein−ligand complex structures rather than crystal
structures, the model maintains a performance superior to
that of existing models. This robustness is particularly
important in real-world drug discovery projects, where
experimentally determined structures are often unavailable or
incomplete.
In addition, T-ALPHA demonstrates effective general-

izability via the LP-PDBbind and BDB2020+ benchmarks,
which were specifically designed to evaluate performance on
protein−ligand complexes outside of the training distribution,
outperforming all of the models that were previously evaluated.
T-ALPHA also achieves state-of-the-art performance on

protein-specific test sets corresponding to SARS-CoV-2 main
protease (Mpro) and the epidermal growth factor receptor
(EGFR), effectively ranking compounds by binding affinity to
each of the respective targets�a key requirement in
prioritization and lead optimization in drug discovery pipe-
lines. Moreover, we proposed an uncertainty-aware self-
learning method for protein-specific alignment that does not
require additional experimental data and demonstrated that it
enhances the ability of T-ALPHA to rank compounds by
binding affinity to both of the targets.
The ablation study performed revealed that each component

of the architecture contributes to the overall accuracy of the
model, validating the architectural design of T-ALPHA and
highlighting the importance of multimodal feature integration
for state-of-the-art performance.

8. OUTLOOK AND FUTURE DIRECTIONS
While T-ALPHA advances the field of protein−ligand binding
affinity prediction, several challenges and opportunities remain.
One of the foremost challenges is the availability of high-
quality, standardized datasets that comprehensively cover the
vast chemical and biological space. Current datasets suffer from
inconsistencies in experimental techniques used to obtain
binding affinity measurements, and limited coverage of diverse
chemical structures and protein targets. Improving data quality
through standardized experimental protocols, as well as
expanding datasets to include a wider range of chemical
entities and protein families, will significantly improve the
capabilities of these models.
Despite progress, models often struggle to generalize to

chemical and biological spaces beyond those represented in the
training data. Developing methods to enhance generalizability,
including leveraging transfer learning, zero-shot learning, and
incorporating domain knowledge to guide predictions, is
critical for advancing the field.
Reproducibility remains an area of ongoing improvement in

the field, as many published models lack accessible or
functional code, making it difficult to validate or build upon
prior work. To address this gap, researchers should release fully
functional code with clear documentation alongside their
publications. To promote transparency and reproducibility, we
have made all of our code and trained models openly available
at https://github.com/gregory-kyro/T-ALPHA, enabling re-
searchers to run T-ALPHA and reproduce all of the results
presented in this paper.

Table 7. Impact of Excluded Components on T-ALPHA’s
Performance on the CASF 2016 Benchmarka

excluded component RMSE MAE r2 Pearson r Spearman ρ

baseline 1.112 0.875 0.738 0.869 0.860
protein amino acid se-
quence-based embed-
ding neural network

1.132 0.888 0.728 0.866 0.858

ligand E(n) equivariant
graph neural network

1.159 0.897 0.715 0.858 0.851

ligand SMILES se-
quence-based embed-
ding neural network

1.212 0.933 0.688 0.866 0.852

protein E(n) equivariant
graph neural network

1.233 0.967 0.678 0.865 0.860

ligand physicochemical
property vector neural
network

1.235 0.970 0.676 0.849 0.845

protein quasi-geodesic
convolutional layer

1.238 0.940 0.675 0.842 0.830

protein−ligand complex
E(n) equivariant graph
neural network

1.247 0.973 0.670 0.854 0.842

aThe table reports Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), coefficient of determination (r2), Pearson correlation
coefficient (r), and Spearman rank correlation coefficient (ρ) for each
model. Models are sorted by RMSE value in ascending order. Error
metrics (RMSE and MAE) are reported in units of pKi/pKd.
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Additionally, although T-ALPHA has been extensively
validated for binding affinity scoring and ranking, its
applicability to protein−ligand docking and virtual screening
has not been explored in this study. These tasks are distinct
from affinity prediction but are critical components of early-
stage drug discovery pipelines. Future work could extend T-
ALPHA to incorporate structure-based docking methodologies
or adapt its ranking capabilities for virtual screening
applications.

9. SOFTWARE AND IMPLEMENTATION
The implementation of T-ALPHA was conducted using
PyTorch (v2.4.1+cu121)133 and PyTorch Geometric
(v2.6.0).134 Training was performed with PyTorch Light-
ning.118 Model training employed features such as Mod-
elCheckpoint for saving the best-performing models and
CSVLogger for logging training metrics. Data handling
leveraged PyTorch Geometric’s DataListLoader to batch and
process graph-based datasets efficiently.
The E(n) EGNNs utilized PyTorch’s core modules (torch

and torch.nn) to define custom neural network layers. The
dMaSIF-based component combined PyTorch, PyTorch
Geometric, and KeOps.135 The meta transformer architecture
was implemented using PyTorch’s TransformerEncoder and
TransformerDecoder modules, with graph-level pooling oper-
ations handled by PyTorch Geometric’s global_mean_pool.
Training optimization incorporated learning rate schedulers
including a combination of LinearLR for warm-up and
CosineAnnealingLR for gradual learning rate decay. Metrics
such as Pearson correlation coefficient were computed using
SciPy136 for model evaluation.
Chai-1 was run with three trunk cycles and 200 diffusion

steps. The predicted structure with the best score was selected
for downstream processing.
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