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ABSTRACT: We introduce a computational framework for simulating nonadiabatic
vibronic dynamics on circuit quantum electrodynamics (cQED) platforms. Our
approach leverages hybrid oscillator-qubit quantum hardware with midcircuit
measurements and resets, enabling the incorporation of environmental effects such
as dissipation and dephasing. To demonstrate its capabilities, we simulate energy
transfer dynamics in a triad model of photosynthetic chromophores inspired by natural
antenna systems. We specifically investigate the role of dissipation during the
relaxation dynamics following photoexcitation, where electronic transitions are coupled
to the evolution of quantum vibrational modes. Our results indicate that hybrid
oscillator-qubit devices, operating with noise levels below the intrinsic dissipation rates
of typical molecular antenna systems, can achieve the simulation fidelity required for
practical computations on near-term and early fault-tolerant quantum computing
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1. INTRODUCTION

The complex interplay between the electronic, vibrational, and
environmental degrees of freedom in organic molecules
underpins efficient photosynthetic processes”” as well as
many other charge and energy transfer phenomena, including
intramolecular energy redistribution® and vibrational-selective
chemical reactions.” Given the ubiquitous role of vibronic
dynamics, the development of computational frameworks for
efficient and accurate simulations of vibronic systems is a
subject of great interest.” Here, we introduce a computational
framework for hybrid oscillator-qubit quantum hardware.
Simulating vibronic dynamics on classical computers is
challenging due to the exponential growth of the Hilbert space
dimension with the number of vibrational modes. Despite this,
numerically exact methods have been developed to propagate
quantum dynamics within a truncated Hilbert space.””'® For
quantum systems with limited entanglement, state-of-the-art
algorithms rely on tensor factorization methods based on
matrix product state or tensor-train represent.altions.g_18 These
approaches enable efficient and accurate simulations by
truncating the bond dimension (or Schmidt rank) to manage
computational costs. Other exact methods, such as the
hierarchical equations of motion (HEOM) and the pseudo-
mode framework, ®~>* simplify the problem by mapping many
vibrational modes onto a smaller set of pseudomodes. This
significantly reduces the Hilbert space dimension. However,
these techniques are generally restricted to systems with linear
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couplings between electronic and vibrational degrees of 44

freedom.

Approximate methods have also been proposed to address
the computational challenges of simulating vibronic dynamics.
These include mapping electronic and vibrational states to
simplified representations’”** and employing many (quasi)-
classical trajectories to model dynamics at reduced computa-
tional costs.”””’ However, assessing the accuracy of these
methods can be challenging.”® A recent study indicates that the
choice of an optimal approximation method is highly system-
dependent: simulation accuracy is influenced by several factors,
including the initial sampling strategy for mapping variables.”®
This underscores the need for developing computational
frameworks for efficient yet rigorous simulations.

Over the past decade, significant advances have been
achieved in the engineering and control of continuous-variable
(CV) bosonic quantum devices,”” > in addition to their
discrete-variable (DV) counterparts.”**> These breakthroughs
suggest that the challenges of simulating complex polyatomic
vibronic dynamics on classical computers could be addressed
by mapping molecular vibrations onto native bosonic
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(a) Photosynthesis Model

(b) Proposed Hardware Layout

Figure 1. (a) Photosynthetic antenna model system, composed of three chromophores representing distinct pigments within a protein. One
elementary problem is to determine if an initial electronic excitation on chromophore A has a dominant energy transfer pathway, and if so, whether
it favors energy transfer to chromophore B or C. (b) Proposed cQED modular hardware for simulating vibronic dynamics of a three-site
chromophore system. High-frequency (red circles) and low-frequency (yellow circles) cavities represent vibrational modes. A SNAIL device
mediates coupling between adjacent cavities. High-frequency cavities are coupled to transmon qubits (shown in purple), representing the ground
and excited electronic states of each chromophore, while ancillary qubits for low-frequency cavities are shown in teal blue.

6s hardware.”*™** With universal control on hybrid oscillator-

66 qubit platforms,”*”** the quantum dynamics of any vibronic
67 Hamiltonian can be simulated, in principle, given sufficiently
68 many high-fidelity bosonic modes.

60 However, several challenges must be addressed to effectively
70 utilize hybrid oscillator-qubit quantum hardware for realistic
71 vibronic simulations. First, the limited connectivity and native
72 gate sets on current quantum hardware raise questions about
73 the computational overhead required to map and compile the
74 Hamiltonian for near-term devices. Second, realistic vibronic
75 dynamics are inherently nonunitary’' due to dissipation
76 induced by the surrounding environment. This calls for the
77 development of systematic approaches to simulate dissipative
78 quantum dynamics on hybrid CV—DV platforms. Finally,
79 quantum hardware is inherently susceptible to noise.”>** The
80 impacts of intrinsic noise on the accuracy and feasibility of
81 quantum simulations using near-term hybrid CV—DV devices
82 remain unclear and require further investigation.

83 In the present work, we address these challenges by
84 codesigning scalable, near-term hybrid oscillator-qubit quan-
8s tum modular hardware for simulating dissipative vibronic
86 dynamics, the first of its kind to the best of our knowledge. We
87 focus on the bosonic circuit quantum electrodynamics (cQED)
g8 platform®** as a case study, yet the approach is broadly
89 applicable to other quantum hardware platforms equipped with
90 native bosonic modes and qubits. We provide a concrete
91 mapping and quantum circuit realization of the dissipative
92 dynamics using a native instruction set architecture for cQED
93 hardware. Additionally, we present a unitary method to
94 simulate Markovian dephasing and amplitude damping
95 processes by appropriately engineering quantum channels for
96 cCQED hardware modules. A detailed gate count for resource
97 estimation is also included, along with an analysis on how
98 various intrinsic cQED hardware noise impact the simulation
99 results. To validate our approach, we perform numerical
100 simulations of energy transfer dynamics in a three-site
101 chromophore antenna model. The results highlight the
102 importance of dissipation in energy transfer dynamics, where
103 we demonstrate how tuning amplitude damping rates on
104 specific chromophores can significantly alter the dominant
105 energy transfer pathway.
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The structure of the paper is organized as follows. Section 2
introduces the Hamiltonian and dissipation model for a
photosynthetic antenna model composed of a one-dimensional
chromophore array. Section 3 presents the main findings,
focusing on the codesign of quantum circuit and layouts to
simulate chromophore dynamics using native operations on
cQED hardware. Section 3 provides extensive numerical
simulations to validate the proposed circuits and explore the
role of dissipation in energy transfer dynamics. Section 4 114
concludes the paper with future outlooks and potential 115
research directions. 116

e

2. METHODS

This section is organized as follows. Section 2.1 introduces the 117
vibronic Hamiltonian for a model photosynthetic antenna and 118
showcases its cQED formulation. Section 2.2 discusses the 119
energy transfer problem of interest. Section 2.3 describes our 120
approach for engineering environment-induced dissipation via 121
channel dilation techniques. We then propose our cQED 122
modular hardware design in Section 2.4, followed by quantum 123
circuit realization with resource estimation to simulate vibronic 124
dynamics in Section 2.5. 125

2.1. Photosynthetic Model. 2.1.1. Vibronic Hamiltonian 126
Model. We consider the model system illustrated in Figure la 127f1
which consists of three chromophores labeled as sites A, B, and 128
C. In the context of photosynthetic antennas, these 129
chromophores represent distinct pigments within a protein, 130
as modeled in ref 1. Each chromophore has one electronic 131
degree-of-freedom (i.e., a two-level system representing ground 132
and excited electronic states) coupled to one high-frequency 133
vibrational mode (labeled as 4, b, c) and only interacts with its
adjacent chromophores. These high-frequency modes repre- 135
sent local vibrations, such as bond stretching or bending, of 136
which the frequencies and equilibrium positions are specific to 137
each chromophore. 138

Additionally, chromophore A also has a low-frequency 139
vibrational mode I, whose equilibrium position depends on the 140
state of chromophore A. Mode [ can intuitively be interpreted 141
as a long-wavelength, vibrational coordinate that strongly 142
couples to two or more chromophores. Furthermore, the 143
(electronically) excited state of chromophore A is dipole- 144
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145 coupled to the excited states of chromophores B and C. These
146 couplings, with strengths ], and J,(, are modulated differently
147 by the coordinates of mode 1.

148 The photochemistry process is shown in Figure la. Initially,
149 chromophore A’s electronic state is excited. The excitation
150 energy is then transferred to chromophores B or C at rates
151 described by the coupling constants [,z and J,c. The excited
152 chromophores B or C can also transfer energy back to A at the
153 same rates. Local vibronic coupling in each chromophore
154 facilitates electronic-to-vibrational energy transfer.

155 We restrict the system Hamiltonian to the ground state and
156 singly excited state manifold. In this construction, at most one
157 of the three chromophores can be excited at a time, while the
158 others remain in the ground state. Thus, double-excitations
159 and triple-excitations are excluded by design. We denote the
160 ground and excited states of an individual chromophore as s =
161 g, e, respectively. The state |G) = lg,gpgc) represents all
162 chromophores in their ground electronic states. The state IR)
163 indicates that the chromophore R = A, B, C is in its excited
164 state while the others are in their ground states. In other words,
165 a local excitation on chromophore A is written as |A) =
166 esgpgcy, while for chromophores B and C, the respective
167 excited states are IB) = Igepgc), and IC) = Igagpec).

168 The vibrational Hamiltonian for a chromophore R in state s
169 = g, e is denoted as hy. Using this notation, the full system
170 Hamiltonian for the four possible electronic states (ground
171 state and three singly excited states), coupled to four
172 vibrational modes with distinct frequencies, is given by

=

—

= IGN(GI ® (b} + hy + hS) + 1)
(Al ® (hy + by +h)
+ BY(BI ® (I} + hy + hS) +1C)
(Cl ® (s + hy + he)
+ Jx(1A)YBl + h.c. ) + ], .(IA)(Cl + h. c. ).
173 (1
174 Here, terms 1—4 describe the Hamiltonians for configurations
175 with at most one excited chromophore. The fifth term
176 accounts for the dipole couplings between the excited state
177 of chromophore A and those of B or C, with coupling
178 constants J,p and J,¢, respectively.
179 Using the bosonic annihilation operators 4, b, ¢ for the high-
180 frequency vibrational modes of chromophores A, B and C, and
181 [ for the low-frequency vibrational mode of chromophore A,

182 the vibronic Hamiltonians are defined, as follows. For
183 chromophore A

N 1 1
hy = ho a(a*a+—)+fzw(ﬂz+—)
184 4 v 2 : 2 ()
h = haw, [aa+%+5 —\/7(11 +a)]
1
+ha)1[ll+—+Sl JSUT+ ]

185 (3)
186 For chromophores B and C (with R = B, C and r = b, ¢)
N 1
he = ha ,(rTr + —]
w o v 2 (4)
ﬁ;—hw [rr+—+S —\/_(r +r)]
188 (3)

pubs.acs.org/JCTC
Here, S, represents the Huang—Rhys factors, which character- 1s9
ize the vibronic coupling strengths.”> The dipole coupling 190
constants between chromophores A and R (R = B, C) are given 191
by 192
=N, M1 M+
]AR ]AR,O[ + HAR( + )] (6) 193

where 7, is a first-order coupling constant. The modulation of 194
Jar by the low-frequency mode position (I + I') reflects the 195
natural influence of vibronic coupling. 196

Additionally, the surrounding environment induces energy 197
dissipation, including amplitude damping and dephasing effects 198
at respective rates Yamp,all and ¥ dep,all- These processes are 199
described by the Lindblad quantum master equation as 200
outlined in Section 2.1.2. Our photosynthetic antenna model 201
system is parametrized with physically relevant values given in 202
Table 2. 203

2.1.2. Dissipative Dynamics. In this subsection, we describe 204
how energy dissipation from the excited chromophore 205
population, under the influence of environmental effects, can 206
be modeled using the spin-boson model and Lindblad master 207
equation. 208

Each chromophore’s electronic state is modeled as a two- 209
level quantum system described by Hg and interacts with its 210
surrounding environment according to the following spin- 211
boson Hamiltonian 212

2
1 C
Hp=Hg+ ). > P+ wj(xa - m—“zos]

(7) 213

Here, H; = —E 0° is the system Hamiltonian, with E; is the 214
energy difference between the excited state le) and ground 215

state lg), while Hy = —Z (p + @’x?) is the harmonic bath

Hamiltonian. On the other hand, H; = —OgY ,c.x, is the 217
coupling between system and bath, with the arbitrary operator 218
in the system Hilbert space Og = 16" + 1,0 + n.,0° + nl 219
expressed as a linear combination of the four Pauli matrices. 220

The environmental effects are captured by the coupling 221
constants c,, introduced in eq 7, that can be obtained from the 222
reservoir correlation function®®™** 223

Ct) = % fo B dw](w)[coth(%‘”) cos(wt) — i sin(wt)
(8) 224

where J(w) = gza ;izﬁ(w — @,) is the bath spectral density

and f = 1/kT is the inverse temperature. 226

Assuming the Born—Markov and rotating wave approx- 227
imations (RWA), the dynamics can be described by the 228
evolution of the reduced density matrix of the system, p(t) = 229

Trp[p1(t)], according to the Lindblad equation®’ 230
dp(t
P — ity o1+ 2 ) @I OL (@)
oo
- L), o)
2 (9) 231
where y(0) = 2 ("j/),” is the damping rate, and .
Llw) = Z (elOgle"Me) (€'l
—e=w (10) 233

https://doi.org/10.1021/acs.jctc.5c00315
J. Chem. Theory Comput. XXXX, XXX, XXX—XXX


pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.5c00315?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

234 are the jump operators in the eigenbasis of Hg, comprised of |
235 0) and |1) with respective eigenvalues —E; and E,j, i.e., Hgl0) =
236 —E(l0) and Hl1) = Eyl1). Substituting these eigenstates into
237 L(w), we obtain three primary jump operators, corresponding
238 to

N
L(w = 0) = 5,67, L(w = £2Ey) = (n, ¥ in)o
239 (11)
240 Here, 6= = (6" £ i0”)/2 are the raising and lowering operators
241 and thus respectively represent the relaxation and excitation
242 environmental effects, while the ¢° operator describes pure

243 dephasing. Table 1 summarizes the derived jump operators
244 alongside their damping rates.

Table 1. Parameters for the Lindblad Equation as Derived
for the Spin-Boson Model”

process jump operator dissipation rate
relaxation ot 2(’7;3 + ’7;) %
excitation o 2(,7; + ’7;) 1] (__25}(;)0
dephasing & ,722 J /;jo)

“The term J'(0) = %} (@), =0 represents the first derivative of the

spectral density J(w) at @ = 0. We note that energy absorption from
the environment, described by the jump operator 6=, becomes
abysmal when E; > kT.

245 By accurately characterizing environmental effects, this
246 dynamical model provides a comprehensive description of
247 essential quantum energy transfer processes in our photo-
248 synthetic antenna model. We also note that the Lindblad
249 equation, as implemented in this study, has been widely used
250 to describe dissipation in a wide range of contexts, including
251 quantum information science.”’ However, it is based on several
252 approximations that limit its applicability to systems that are
253 weakly coupled to their environment.”>***>*'=>* Hence, more
254 rigorous quantum master equations should be used when its
255 applicability is exceeded.

256 2.1.3. Effective Hamiltonian of the cQED Platform. The
257 cQED platform, shown in Figure 1b, enables the simulation of
258 the model system shown in Figure la, upon suitable
259 parametrization of the quantum operations applied. Each
260 microwave cavity of the device corresponds to a vibrational
261 mode of the chromophores, while the ground and excited
262 electronic states of chromophores A, B, and C are mapped
263 onto the ground |0) and excited |1) states of qubits 6, 0, and
264 0, respectively. Therefore, within the single-excitation

o
265 manifold

IG) — 10), ® 10),&®I0),, 1A)—11), ® 10),QI0),
IB) - 10), ® 11),QI0),, IC)—10), ® 10),®I1),
266 (12)

267 Appendix A shows how the system Hamiltonian H in eq 1
268 can be unitarily transformed into the following effective
269 Hamiltonian in the rotating frame

H/h = Hy/h + B/h + Hyyi/h + Hy /B (13)

~

(=}

—

[

-

270

271 The four terms of H are defined as follows:

1. Base Hamiltonian (H,) 272

z
- + . ; ; o
H,/h = a)aaIa + wbeb + wcc‘c + a),l‘l - Aahé’

A
) (14) 273
2. Interaction terms (H,) 274

H/h = _Hagtagt — ébTbabz - écTcaf
2 2 2

a

o, o,
+ gcd,a(a + aT)7 + gcd,b(b + bT)?

z
o,
+ gcd’c(c + cT)Tc

(15) 275
3. XX coupling (H, yy) 276
i Gllz g[l X __X gﬂC X __X
/b =g, (1+ 1) + =2(%o)) + *(o)07)
cd, 4 2 2
+ S (14 1) + 22 o) 1+ 1)
(16) 277
4. YY coupling (H, yy) 278
- _ + Uaz gah gac
Hz‘yy/h = gcd‘l(l +1 ): + T(Uaygby) + Z(Uayacy)
_,_@(yyl 1M 4+ e (oo 4 1
y @)1+ 1) + =S(gie) (I + 1)
(17) 279

2.1.4. Hamiltonian for a 1D Array of Coupled 2s0
Chromophores. In a more realistic photosynthetic setting, 281
we consider multiple chromophores coupled together in a one- 282
dimensional (1D) array, where every three neighboring 283
chromophores interact according to the Hamiltonian described 284
previously. Let each chromophore be labeled by the index ¢, 2ss
each having both a high-frequency mode &; and a low- 286

frequency vibrational mode ¢&;. Using bgy) and bgo(l) to .

represent the bosonic creation and annihilation operators for 2s8
the high(low)-frequency mode of the £th chromophore, the 289
overall Hamiltonian of an N-chromophore 1D array of 290
chromophores can be written in the form 291

N
H= ) HY +HY + HY

&=1 (18) 29,
where the noninteracting part of the Hamiltonian 293
1)
© _ i f %0 2
Hy" = w:b:b bib. —
0 = @gPg0s T WgPs0s — — 70, (19) 10,

describes the free evolution of the vibrational modes the 295
electronic states of each chromophore. The dispersive 296
interactions within each chromophore, primarily involving 297
the high-frequency mode, are captured by 298

X g
¥ _ Soq z cd, & Tz
H1 - _beobfoo- 0 + 2 (bfo +b 0)650

(20) 299
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J. Chem. Theory Comput. XXXX, XXX, XXX—XXX


pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.5c00315?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

P >
0) - R, (6)
(a) Excitation Channel
0) 4 o —t— ) e T = ?
0) "= HR) s i s PN ()
(b) Amplitude Damping Channel (c) Dephasing Channel
1% Trotter layer 27? Trotter layer
_ I - - U, U- —
%i &L = J b | || [ban | Katd &, L &

(d) Spin-boson Model General Dissipation Channel

10) — 0) —
(e) Trotter Evolution

Figure 2. Quantum circuit realizations of different dissipation channels, where the system qubit l¢)) undergoes dissipation via coupling to the
environment, modeled by an ancillary qubit initialized in the ground state 10). (a) Amplitude damping channel, where 6 is obtained from eq 26; (b)
excitation channel, where 0 is obtained from eq 28; (c) dephasing channel, where 0 is obtained from eq 29; (d) general dissipation channel for the
spin-boson model in eq 7. The R, rotation angle @ for each component channel is calculated with ¢ being replaced by the small time step 7 and the
damping rates provided in Table 1. (e) Real-time evolution of the spin-boson model, where each Trotter layer consists of the evolution unitary

U = ¢ ™, followed by the general dissipation channel &..

T

300 Finally, the interchromophore and intrachromophore cou-
301 plings, involving interactions between vibrational modes and
302 electronic transitions are described by

8 8 (-
(&) _ ©d§ T 0,(8-1) + -
H2 = —2 l(bgl + b;)ogo + B AL EA) > 0 (050 0(5_1)0

8
+hoc)+ @(05;0(5“)0_ +h.c.)

8z, (6= 1o -

+ 2 5 2 1(0§0+0(§_1)0 + h. c. )(b‘}:l + bg)
8 (e+1)0l, 4 _ .

+ 2 2_0 1(0'/:0 (f(§+1)0 + h. C. )(bfl + bfl)

(21)

304 where the first line describes the coupling between the low-
305 frequency vibrational mode and the electronic state within the
306 same chromophore. The second and third lines represent
307 nearest-neighbor electronic couplings between adjacent chromo-
308 phores. The fourth and fifth lines describe vibronic couplings,
309 where interchromophore electronic transitions are modulated
310 by the low-frequency vibrational modes.

311 It is important to note that all interchromophore interaction
312 coefficients in eq 21 are divided by a factor of 2 compared to
313 eqs 16 and 17 to avoid double counting interactions.
314 Additionally, each qubit drive frequency @, can be obtained,

303

315 following a relationship analogous to how @, is obtained from
316 @; in eq 66 and Table 3. This dependency reflects the influence
317 of the vibrational modes on the chromophore electronic states.
318 2.2. Energy Transfer Mechanism. Understanding the
319 dominant energy transfer pathways in photosynthetic systems
320 is a fundamental problem with significant implications for both
321 natural and artificial light-harvesting processes. An illustrative
322 example for a three-chromophore system is shown in Figure
323 1a.°>”° Consider an electronic excitation initially generated on
324 molecule A through photoexcitation by sunlight. As molecule
325 A is coupled to both molecules B and C, excitation energy can
326 transfer between these adjacent sites. The rates of energy
327 transfer rates are determined by the specific chemical
328 interactions as described by the corresponding coupling
329 coefficients. The absorbed sunlight energy is subsequently
330 used to drive downstream chemical reactions associated with
331 charge separation and water oxidation.”” Therefore, it is of

great interest to understand how energy transfers through
specific relaxation pathways that are determined by chemical
interactions, quantum interference, and dissipation.

Traditionally, tackling this problem requires solving the
quantum master equation (QME),”*™®" which poses signifi-
cant computational challenges, especially for complex systems
with a large number of degrees of freedom.”' The situation
becomes even more demanding when the vibrational modes
must be treated quantum mechanically, as accurate simulation
of such bosonic quantum dynamics is computationally intensive
on both classical and qubit-based quantum hardware.®>**
Given the rapid advancements in cQED hardware, we propose
an alternative approach that leverages the mapping of system
Hamiltonians onto cQED hardware modules, integrated with
novel quantum algorithms and advanced simulation techni-
ques. This CV—=DV hybrid framework offers the potential to
efficiently tackle the energy transfer pathway problem,
providing deeper insights into the fundamental mechanisms
governing photosynthetic energy conversion.

2.3. Engineering Dissipation Channels for Chromo-
phores. The dissipation dynamics described by the Lindblad
equation in Section 2.1.2 can be modeled using damping and
dephasing channels, represented by the jump operators 6%, 67,
and o6 In this section, we show how the damping rates listed
in Table 1 correspond to the quantum circuit parameters for
the Markovian dissipative channels derived in Appendix B.
This connection enables the simulation of colored bath effects
on the system qubit via ancilla qubits, employing unitary
dilation techniques.

2.3.1. Amplitude Damping Channel. Consider the
amplitude damping channel associated with the ¢* jump

operator. The corresponding Lindblad equation is
1
(1) = *o(t)o™ — ={o7o", p(t
P(t) = 7,00 P(D)0 2{aa,p()} (22)
with the initial state
Poo(0) 1, (0)
p(0) =
P1o(0) py,(0) (23)
The analytical solution can then be derived in the form
E https://doi.org/10.1021/acs.jctc.5c00315
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Figure 3. Proposed modular cQED architecture for simulating vibronic dynamics in a 1D molecular chain. Each colored box represents a hardware
unit corresponding to a single chromophore. For the two boundary chromophores (¢ = 1, N), only the high-frequency vibrational modes are
considered. Intermediate chromophores £ € [2, N — 1] are modeled with both high- (red circles) and low-frequency (orange circles) cavities,
coupled with SNAILs for efficient cavity—cavity interactions. Transmon qubits (shown in purple) represent the electronic states, while ancillary

transmon qubits are depicted in teal blue.

1 — e ip,(0) e 2 ' (0)
p)=]

— Py -yt
368 e 2 ,010(0) emrp,,(0) (24)

369 Alternatively, the amplitude damping channel derived from eq
370 78, with damping probability p, is characterized by the Kraus

JPI0)(1l and A = 0)(0l+/T = pl1)(1,

372 yielding the analytical solution for the density matrix evolution

p(t) = X Ap(0)A]
k

1= (1=p)p,(0) J1-pp,(0)
JI=pp(0) (1 =p)p,(0) (25)

374 Comparing eqs 24 and 25, the damping probability p relates to

371 operators A, =

373

37s the Lindbladian damping rate y,y,, through 1 — p = e ' or
376 equivalently
c08(6,np/2) = € Ham/2

(26)

377

378 allowing the determination of the appropriate rotation angle
379 Oamp for the amplitude damping channel &, channel shown in

380 Figure 2b.

381 2.3.2. Excitation (Inverse Amplitude Damping) Channel.
382 The excitation process from 10) to I1), corresponding to the 6~
383 jump operator, is similarly described by an amplitude damping
384 channel with the Lindblad equation

. _ 1, -

p(t) =y Jop(t)e™ — —{c67, p(t)}
385 e 2 ’ (27)
386 Its quantum circuit implementation, shown in Figure 2a, is
387 simply an extension of the relaxation channel (Figure 2b).
388 Similarly, the Lindbladian excitation rate y., relates to the R,
389 rotation angle 0, via
cos(,, /2) = e Tad/?

exc

(28)

391 2.3.3. Pure Dephasing Channel. The dephasing channel
392 associated with the ¢° jump operator leads to a decay of off-
393 diagonal coherence elements. The relation between the
394 dephasing rate yq,, and the R, rotation angle 0y, in the
395 dephasing channel &, (Figure 2c) is given by

390

of Gep | (1 — e7)
sm|—|=————
2 2

Defining the dephasing probability as p = sin*(6/2) from eq

—Zydept .

(29)

83, we obtainl — 2p =e

2.34. Quantum Circuit for the Spin-Boson Model. By
combining quantum operations from the three dissipation
channels, we can construct a quantum circuit that emulates
dissipative effects of the spin-boson model for a small time step
7, as shown in Figure 2d. The order of the three different
dissipation channels may be important in the general case;
however, for small values of 7 (such as in a single Trotter step),
the order in which they appear is of less significance.”* We
have now arrived at the quantum circuit for evolving the
Lindblad equation of the spin-boson model, provided in Figure
2e.

2.4, cQED Modular Hardware Design. This section
outlines the proposed cQED modular hardware designed to
implement our computational framework using available
quantum gates.

The simulation of a 1D array of chromophores is mapped
onto a corresponding 1D cQED hardware layout, as shown in
Figure 3. This architecture employs SNAIL (Superconducting
Nonlinear Asymmetric Inductive eLement) couplers to enable
efficient coupling mechanisms between resonators.”> Each
hardware unit (indicated by a colored box) consists of two
cQED devices, including high-frequency (red circle) and low-
frequency (yellow circle) modes realized as microwave
resonators dispersively coupled to individual superconducting
transmon qubits. In this configuration, each chromophore in
the 1D chain is mapped to a hardware module, with the full
time-evolution decomposed into native operations for the
cQED platform.

2.4.1. Instruction Set Architecture (ISA). We briefly review
the cQED ISA* employed for simulating vibronic dynamics.
In addition to the basic Pauli gates, arbitrary single-qubit
rotations can be performed for 8 € [0, 47)

0
R}-(Q) = exp(—lgo’] (30)

where ¢ represents the Pauli matrices (j = x, y, z). This enables
native implementation of the Hadamard gate
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ps
H =¢"R (—]
434 2 (31)

435 For entangling nearest-neighbor qubits, we utilize the native
436 XX-rotation gate, which can be generalized to the YY-rotation
437 via single-qubit gate conjugation with 6 € [0, 4x)

R(0) = exp(—igax ® Gx) 32)

438

Ryy(6)

exp(—igay ® ay)

&[-5)ox(-5)

439 RXX(Q)[RZG) ® Rz(%)} (33)

440 Additionally, we assume access to Controlled-NOT (CNOT)
441 gates, where nonnearest-neighbor interactions are mediated via
442 nearest-neighbor SWAP operations, each decomposable into
443 three CNOT gates.

444 For continuous-variable (CV) operations, two fundamental
445 gates are diiﬁlacement and rotation in the phase-space
446 formulation®®

D(B) = exp(pb’ — p*b),
- R(0) = exp(i6h) = exp(i6b'b) (34)

448 where b and b’ are the bosonic annihilation and creation
449 operators, satisfying the canonical commutation relation [b, b’
450 = 1. We note that R(6) rotates the oscillator wave function by
4s1an angle @ € [0, 27), while D(f) displaces its Wigner
452 quasiprobability distribution by Re(f) along the position axis
453 and Im() along the momentum axis.

4s4 The Fock states {In)},cy are eigenstates of the number

4ss operator i = b'b and comprise a computational basis

Iny = L'(b*)"m

456 \/_ > (35)

457 Nonlinear phase-space transformations (also referred to as
4ss nonGaussian operations) enable phase-control over individual
459 Fock states, such as the SNAP gate()8

oo

SNAP(p) = Z e " n)(nl
460 n=0 (36)

4 Parametrized by ¢ = (goo, P Py e gon) for ¢, € [0, 2x).
462 This gate effectively imparts a different phase to each Fock
463 level of the oscillator.

464  For entangling two oscillators, the beam splitter gate is
465 employed®®® 7!

BS(0, ) = exp —ig(e"”bsz + e bb))

466 (37)

467 parametrized by the transmittivity @ € [0, 47) and phase angle
468 @ € [0, 7).

469 In addition, advances in hybrid continuous—discrete variable
470 (CV=DV) systems have enabled gates that couple the
471 oscillator with its auxiliary qubit in the weakly dispersive
472 regime, like the conditional displacernent‘m’72

CD(B) = explo” ® (Bb" — D)) (38) 43

with # € C. Conditional phase-space rotations are implement- 474

able and can be fine-tuned with SNAP gates33 475
CR() = exp[o” ® (i0b'D)] (39) 46
for 6 € [0, 2x). 477

Universal quantum computation on hybrid CV—DV devices 478
can be realized with the gate set {CD(/3), BS(6, @), R(6)}. For 479
universal oscillator control, the set4s0

{SNAP(&), BS(0, ¢), D(B)} suffices.”® Based on these gate 4s1
sets, the time-evolution governed by the chromophore 4s2
Hamiltonian in eq 18 can be efliciently compiled and 483
simulated on cQED devices. 484

2.5. Compiling Hamiltonian Simulation with cQED ass
ISA. We now describe how to simulate the time-evolution of 486
the system Hamiltonian H from eq 13, generalizable to eq 18. 487
In this framework, HS" in the rotated frame is decomposed 4ss

into I:Iz(ggx and I:IZ(‘(Y)},, as outlined in Appendix A for N = 3 44
chromophores. This decomposition implements only the 49

cQED ISA described in Section 2.4. 491
Given a discrete time step 7, the objective is to compute the 492
time evolution of the system at each time ¢ 493

i~
P(t+ 1)) = exp(——Hr)l‘P(t)>

h (40) 404
where [¥(t)) denotes the full state-vector of the N-site 495
chromophore system at time f. In our notation, the &th 496
chromophore consists of a pair of electronic states with high 497
and low frequency, represented as qubits lgp:) and Ig; ), 4oq
respectively. Each electronic state is coupled to an associated 499
vibrational mode, encoded as a qumode in states ly:) and g

Iy ). 501

For the decomposition of e into elementary gates so2

suitable for cQED implementation, we leverage established s03
techniques from Hamiltonian simulation. These include gate so4
decompositions for (i) qubit-centric systems, such as the sos
Heisenberg spin chain model”’* and Kitaev’s honeycomb so
model,”> where interactions are mapped onto sequences of 507
single- and two-qubit gates; (ii) qumode-centric systems sos
including the multisite Bose—Hubbard model;”® and (iii) s09
hybrid qubit—qumode systems, notably recent developments 510
in the simulation of gauge fields.”” These prior works provide si1
the foundational strategies for gate decomposition applied to s12
the unique structure of our chromophore model. 513

2.5.1. Real-Time Evolution via Trotterization. To simulate s14
the real-time evolution of the system, we employ a Trotter— sis
Suzuki decomposition, which enables the approximation of the 516
time-evolution operator by sequentially applying exponentials 517
of Hamiltonian terms that are natively implementable on s18
quantum hardware. The key challenge lies in properly s19
decomposing the total Hamiltonian H into separate terms, 520
each compatible with available operations on the cQED s21
platform. However, these terms generally do not commute, so 522
the Baker—Campbell-Hausdorft formula for Trotterization 523
introduces errors. 524

We refer the readers to the established error analysis of 525
Trotterization,®* including recent extensions to bosonic 526
devices.”” While the Hamiltonian decomposition can, in 527
principle, be optimized to minimize Trotter error, practical 528
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hardware constraints often impose limitations. For example,
terms such as %(aaxahx) and %(aaxabx)(l +1") in eq 16 cannot
currently be implemented as a single native operation. Instead,
they must be decomposed into separate operations, increasing
Trotter error. This trade-off between leveraging native
hardware capabilities and minimizing Trotterization error is a
key consideration in quantum simulation.

2.5.1.1. Hamiltonian Decomposition and Trotterization
Scheme. For our system, we rewrite the total Hamiltonian

from eq 13 as a sum of four distinct terms
H=H,+ H + H,xx + H, v (41)
This can be reorganized as
H=(1- w - 2W2)H0 + (W1H0 + H1)
H, H,
+ (w,H, + Hz,xx) + (w,H, + Hz,yy)
H, H; (42)

where w, € [0, 1] and w, € [0, 1/2] are tunable weights used
to distribute the free evolution term H, across different Trotter
steps. Each term represents different physical interactions and
demands distinct implementation strategies. The terms in H,
can be toggled on or off at will during the simulation on cQED
devices while the terms in H, can only be turned on and off
simultaneously in an analog manner. I:IZ, xx and Hz,YY pose the
greatest challenge, as they are not directly implementable on
cQED hardware and must be synthesized/compiled from
native gates.

To simulate the time evolution over a small time step 7, we
apply the second-order Suzuki—Trotter formula”®
i 7 3 i > i
e H e_ZWPT/ZH e w7 4 0 pt)
p=0 q=0 (43)

where the leading-order error term arises from the non-
commutativity of the Hamiltonian components. The Trotter
error coefficient, @ymy, quantifies this error and is given by®*

Q,

1
comm = E{”[Wl + 7“{2 + 7—{3} [7{1 + 7'{2 + (}-{3; 7'{()]]”
+ I[H, + H;, [H, + Hy, HiTI
+ [I[Hy, [Hy, HONI}

1
+ a{”[(]_{o; [7.{0; (]_{1 + (]_{2 + 7.{3]]”

+ [I[H,, [Hy H, + H
+ [I[H,, [H,, HlIY
(44)
where ||-|| denotes the spectral norm. This expression captures
the dominant error contributions arising from nested
commutators of the Hamiltonian components.
2.5.1.2. Error Mitigation and Parameter Selection. In
principle, the weights w, and w, can be optimized to minimize
Qcomm and thereby reduce Trotter errors. However, for the
purpose of this work, we focus on high-accuracy simulations by
setting w; = w, = 0, effectively simplifying the decomposition.
To ensure the Trotter error remains negligible, we select a
sufficiently small time step 7 such that @, << 1, or
equivalently

1
V aC omm

This condition guarantees that the accumulated error over the
simulation remains reasonably bounded, balancing computa-
tional efficiency with the desired accuracy.

2.5.2. Compiling Quantum Circuits to Simulate Dispersive
Vibronic Couplings. To simulate the generalized multisite
Hamiltonian in eq 18, we compile each term into its quantum
circuit native implementation. In this subsection, we only focus
on the terms

T
(45)

(05 "0, ) (b + b2)

(46)
which describe dispersive vibrational—electronic coupling
between adjacent chromophores. The readers are referred to
Appendix C for the full compilation of the remaining terms in
eq 18. Following Appendix A, the simulation of %6~
interactions is split into separate ¢”¢*- and ¢’¢’-interaction

terms, compiled via Trotterization with parametrized angles
g = g‘fo;(fil)or‘flr
2 (47)

for the XX- and YY-rotations.

2.5.2.1. Compiling 66" Interactions. To simulate the ¢"¢™-
interaction terms, we conjugate a conditional displacement
operation with CNOT and SWAP gates, yielding

iy x _x t
e'96§0”(5+1)0( b51+ bs‘l)

i06Z(b, +b]
= (HgH(gy 1)) SWAP, 1) o[Co NOT, ealtatts)
CNOT, ISWAP ;) ¢ (H Hizy )

= (HeHep), )SWAP (1), [C,NOT,Cy
D‘f\ (1€)C50NOT51]SWAP(5+1)051(H‘foH(5+1)(\)
(48)
alongside an alternative decomposition, as shown in Figure 4a

iy x _x t
eleﬁs‘o”(ﬁf 1)0( b51+ bs‘l)

= (HéoH(‘f_ 1)0) C(é_ 1)(\NOT‘§(\[SWAP5()§1
i0o (b, +bs)
e 05\Y¢ 1 SWAP&OG]C(é_1)0NOT§0(H§(\H(§_1)(\)

= (HeHe1),)Ce-n)NOT, [SWAP, - C. D, (i6)
SWAP&()‘;]C(g_l)nNOTgo(H‘foH(é_1)(\)
(49)
In eqs 48 and 49, H denotes the Hadamard gate, and the
SWAP gates mediate interactions between nonnearest-
neighbor qubits in the cQED architecture. Equation 48
describes vibronic interactions with the next chromophore in
the array, requiring nearest neighbor SNAIL couplings
between &, — &, and &, — (€ + 1),. Equation 49 describes
interactions with the previous chromophore, requiring three
mediations: (& — 1)o — (§ = 1)y, (§ = 1); = &, and &, — &;.
2.5.2.2. Compiling ¢’¢’ Interactions. The ¢’¢-interaction
terms can also be simulated in a very similar manner to ¢*c™-
interaction terms, using the identity
S P L) (50)
which implies
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(a) Compiling o”c”® Interactions
[beo) - | R.(5)
|Z§11 i e_%Hé,Q/YT _: e‘)’éHé,ﬁ})(XT
&/ ~
|Seno) - HR.(F)

(b) Compiling o¥c¥ Interactions

Figure 4. (a) Two circuit compilations for ¢%¢* interaction terms
between adjacent chromophores. These circuits reduced to qubit
operations and transmon—cavity dispersive interactions on the low-
frequency mode &£;. The second circuit implicitly requires a pair of
conjugate SWAP operations to mediate nonnearest-neighbor CNOT
gates. (b) Circuit compilation for ¢?¢” interaction terms between
adjacent chromophores. The H, yy block is implemented as shown in
(a). For the cQED hardware layout in Figure 3, the (¢ — 1), qubit
shall be placed before the &, qubit.

002,00 (E£ 1)) (eigag; ® eigaéi%)[eieag)a(gﬂ)o(bﬁwgl)]

iLo? Lok
e 4 % e 4 (éx1)o
(57 ® (s1)

607

608 This results in the circuit as shown in Figure 4b.

609 2.5.3. Resource Estimation from Hybrid ISA. In this
610 section, we estimate the resources required to simulate the
611 Trotterized 3-site chromophore model. Specifically, we count
612 two-qubit and qubit—qumode gates based on the hybrid cQED
613 ISA.

614  The first three terms of eq 15 require 3 SNAP gates, while
615 the remaining three terms need 3 CD operations. For the
616 circuit shown in Figure 11d, each SWAP operation
617 decomposes into three CNOT gates, implying that a single
618 transmon—transmon coupling requires 7 nearest-neighbor two-
619 qubit gates. The four two-transmon interaction terms in eqs 16
620 and 17 cumulatively demand 28 nearest-neighbor two-qubit
621 gates.

622 For the circuit in Figure 1llc, the gate requirements are
623 equivalent to one CD gate and 6 nearest-neighbor CNOT
624 gates. Therefore, the two ¢°(1 + I') terms in eqs 16 and 17
625 require 2 CD operations and 12 CNOT gates.

626 In Figure 4a, the first circuit requires 1 CD gate, 2 CNOT
627 gates for entangling transmons a and /, and 6 CNOT gates for

SWAP operations between transmons b and . The second 628
circuit requires 1 CD gate, 6 CNOT gates for the two SWAP 629
operations between transmons a and [, plus 8 CNOT gates to 630
account for the two CNOT operations between transmons a 631
and b. The latter gates, separated by the low-frequency cavity 632
coupled to b, require two additional nearest-neighbor SWAP 633
operations. 634

Considering both ¢°c*(I + ) (Figure 4a) and &@’(l + I') e3s
terms (Figure 4b), the gate count amounts to 2 CD and 28 636
CNOT gates for a—c interactions, and 2 CD and 16 CNOT 637
gates for a—b interactions. This results in a total of 4 CD and 638
44 CNOT gates for two-transmon-one-cavity operations. 639

Summing the contributions, the 3-site chromophore model 640
requires per Trotter step: 84 CNOT gates, 9 CD gates, and 3 641
SNAP gates. For a generalizing 1D array of N-chromophores, 642
assuming negligible low-frequency modes at the boundaries 643
and mapping to 2N — 2 transmon qubits and 2N — 2 cavities, 644
the total gate count per Trotter step is 645

Ngye = (N — 2) X (84CNOT + 9CD + 3SNAP)  (53) .

2.5.3.1. Cavity-Only Architecture. In an alternative scenario 647
where transmon connectivity is absent, we consider a cavity- 648
only approach. Here, we assume native access to CD 649
operations via weak dispersive interactions between each sso
cavity and its coupled transmon. Each CNOT gate can be 651
analytically decomposed into four native beam splitter (BS) 652
gates between adjacent cavities and four CD operations.” 653
Consequently, simulating the 3-site chromophore model 654
requires 336 BS gates, 345 CD gates, and 3 SNAP gates per 655
Trotter step. Extending this to an N chromophore 1D array, 656
the total gate count per Trotter step is 657

N = (N = 2) X (336BS + 345CD + 3SNAP) (53) 4ss

3. RESULTS

3.1. Validation against Exact Lindbladian Dynamics. 650
To assess the accuracy of the proposed quantum circuits in 660
capturing environmental effects (Section 2.3), we compare the 661
simulation results with exact Lindblad dynamics for the spin- 662
boson model. Specifically, we consider a Debye spectral 663
density 664

(1)

J(@) =

0"+ @ (54) 65
using parameters representative of photoinduced charge 666
transfer in solution:*”"”*" system-bath coupling strength 7 = 667
0.3 eV, spectral width @, = 30 cm™, site energy E, = 0.2 eV, 68
and temperature T = 77 K. The environmental coupling is 669
assumed to be equally distributed among all Pauli operators 670
(1. = m, = n, = 1/3), and the system is initialized in the 671
superposition state p(0) = +){+I. 672

Figure 5 compares the population dynamics obtained from 673 s
the quantum circuit simulations using AerSimulator (from 674
Qiskit Aer)®' to those obtained with the exact Lindblad 67s
dynamics computed the QuTiP solver.””*> This result 676
confirms that the circuit in Figure 2e accurately captures the 677
general characteristics of environmentally induced dissipative 678
effects within the validity regime of the Lindblad formalism. 679

3.2. Nondissipative Simulations. To assess the accuracy 6so
of the compiled quantum topology introduced in Section 2.5, 681
we benchmarked its performance by propagating the system es2
Hamiltonian (eq 13) using the numerical solver method 6s3

https://doi.org/10.1021/acs.jctc.5c00315
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Figure S. Population dynamics of the spin-boson model. The results
compare Lindblad dynamics simulated using QuTiP with the
Trotterized quantum circuit in Figure 2e. P, and P, denote the
probabilities of measuring 10) and I1), respectively, for the system
qubit. Each data point represents the average measurement from 2000
shots.

implemented in QuTiP.*”*’ This corresponds to numerically
solving the Liouvillian part of the Lindblad equation in the
absence of dissipation, i.e., all damping rates are set to zero (y;
=0).

Given the presence of both electronic and vibrational
transitions in the chromophore system, we utilized Bosonic-
Qiskit,”* an extension of Qiskit that enables Trotterized
simulations of hybrid CV—DV systems via Qiskit Aer
simulators. Figure 6 compares the exact quantum evolution
with the Trotterized quantum simulation, where each time step
corresponds to approximately 10 fs. The close agreement
between both simulations validates the accuracy of our
approach.

1.0 —— Exact A
—— ExactB
— ExactC
0.8 1 A+ Trotter A
g " & Trotter B
e} A Trotter C
£
3 0.6
Qo
o
o
g04
0.
—
g
<
0.2 A1
0.0 1

0.00 025 050 0.75 1.00 1.25 1.50 1.75 2.00
Time (ps)

Figure 6. Population dynamics of the 3-site chromophore system
without dissipation over a 2 ps time scale, comparing exact evolution
computed with QuTiP (solid lines) and Trotterized quantum
simulation using Bosonic-Qiskit® (markers). Each data point
represents the average measurement from 10,000 shots, with a Fock
space truncated to 8 levels applied in both simulations.

3.3. Dissipative Simulations. Dissipation is a fundamen-
tal aspect of real-world quantum systems and must be
incorporated into physically relevant simulations. Here, we
combine amplitude damping and dephasing channels to
effectively capture key features of environmentally induced
dissipation in the 3-site chromophore model system. To
emulate quantum dissipative channels, we implement a gate-
based approach following ref 85 where we measure the ancilla
qubits and reset them to the ground state after each Trotter
step (Section 2.5.2). The overall structure of this approach is
illustrated in Figure 7, where low-frequency qubits I¢; ) are

1% Trotter layer  2"¢ Trotter layer

o) T = -
g, &,
|¢11> = ‘0> ] | I~ |O>reset_ 1 —
: Ur| Ur|
|Ono) £ c
6n) =10) L F [O)e—t L

Figure 7. Generalized quantum circuit topology for simulating a
dissipative 1D-array of n chromophores. In each Trotter step 7, the
full system Hamiltonian from eq 18 is first propagated, followed by
the quantum dissipative channels &, as in Figure 2d, to the low-
frequency qubits l¢; ). The symbols 10, indicate that these qubits

are then incoherently reset to |0) state after each dissipation step,
independent of measurement outcomes.

used to implement the dissipative channels. These qubits serve
to control the evolution of the low-frequency qumodes Iy )

rather than evolving in real-time themselves (see compiled
circuits in Figure 2). These channels are parametrized in terms
of the dissipative Lindbladian damping rates and associated
jump operators of the system, as discussed in Section 2.1.3.

Given a Trotter step of duration 7, the damping rates for the
amplitude damping and dephasing channels are given by y,,,7
and yq,7, respectively. The corresponding R, rotation angles
for these dissipative channels are determined by

O,mp = 2 arcsin /}/ampr (5)
Hdep = 2 arcsin /}/dep’l' (36)

where y,,, and 74, are the damping rates. Further details on

718

719

720

performance and convergence analysis, including the choice of 721

Trotter step size 7 = 10 fs, a Fock truncation of 8 levels, and
10,000 shots per simulation, are provided in Appendix D.

To investigate the impact of environmental dissipation on
the 3-site chromophore system, we analyze population
dynamics under varying amplitude damping and dephasing
rates. These simulations help elucidate how energy and
quantum coherence evolve in open quantum systems and
provide insight into how environmental effects can be tuned to
control energy transfer pathways.

3.3.1. Amplitude Damping Effects. Figure 8 depicts the
population dynamics under different amplitude damping rates
for the three chromophores, modeled using the Lindblad jump
operator ¢*. The top panel compares a system-wide damping
rate of ¥,y a1 = 3.15 X 10" Hz (defined in Table 3 against a
nondissipative reference evolution (dashed lines)).

These results indicate a substantial decrease in the
chromophore excited state population, with only 21% and

https://doi.org/10.1021/acs.jctc.5c00315
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Figure 8. Population dynamics of the 3-site chromophore system
under various damping rates. The top graph shows the population
dynamics of the 3-site chromophore (Vmpar = 3.15 THz) under
amplitude damping, plotted against a nondissipative system. The
middle and bottom graphs demonstrate the effects of tuning damping
dissipation on chromophore B, with the middle graph showing the
effects of a 3X increase (Yamp,b = 9.45 THz) and the bottom graph
showing the effects of a 3X reduction (Y, = 1.05 THz). 10,000
shots are performed for each case.

739 4% of the initial population remaining at 0.5 and 1 ps,
740 respectively. These values closely match the theoretical
741 expectation: after t/7 Trotter steps, the undamped population
742 follows

=]

(1- Eimp,all)t/f = (e Tema™)/T = ¢ Hamparl

(87)

743

744 also yielding 21% and 4% at 0.5 and 1 ps, respectively.

745 Furthermore, adjusting individual chromophore damping
746 rates (e.g, changing the local chemical environment of the
747 chromophore) offers a potential mechanism for controlling
748 energy transfer pathways. The middle and bottom panels of
749 Figure 8 illustrate the effects of increasing and decreasing the
750 damping rate of chromophore B by a factor of 3 (Vympp = 945
751 X 10> Hz and Yampp = 1.05 X 10" Hz, respectively). As
752 expected, increasing (decreasing) the damping rate leads to a
753 lower (higher) excited-state population for chromophore B.
754 Notably, this tuning also temporarily enhances (suppresses)
755 the excited-state populations of chromophores A and C,
756 suggesting a transient redistribution of energy before ultimate
757 dissipation. We hypothesize that a reduced damping rate on B
758 allows energy to accumulate and subsequently transfer to A
759 and C before environmental dissipation dominates.

760 3.3.2. Dephasing Effects. Dephasing, the second dissipation
761 mechanism under investigation, leads to quantum coherence
762 loss without energy dissipation,*® causing the system to evolve
763 toward a mixed state over time.

764 At higher temperatures, dephasing rates increase, accelerat-
765 ing the relaxation of the system.®” For instance, in the spin-
766 boson model discussed in Section 2.1.2, the dephasing rate is
767 inversely proportional to the inverse temperature, f = 1/kT
768 (Table 1). For this analysis, we select a physically relevant

dephasing rate of y4,, = 9.0 X 10" Hz, corresponding to an
experimental system temperature of approximately 77 K.***
Applying this rate on the 3-site chromophore system and
comparing it to the dissipationless (top panel of Figure 9), we
observe that the system decays as expected to a mixed state
while maintaining the total excited-state chromophore

population.
1.01 Deph. A
0.8 1 Deph. B
0.6 - Deph. C
’ Pure A
0.4 4 Pure B
0.2 Pure C
S
g 0.0
] 1.01 Incr. A
r—:r‘; 0.8 1 Incr. B
Q | Incr. C
g 0.6 Deph. A
o 0.4 Deph. B
[e)] Deph. C
g 0.2 P
3: 0.0
1.01 Decr. A
0.8 Decr. B
0.6 1 Decr. C
’ Deph. A
0.4 4 Deph. B
0.2 Deph. C
0.0 1

0.00 025 050 0.75 1.00 1.25 1.50 1.75 2.00
Time (ps)

Figure 9. Population dynamics of the 3-site chromophore system
under different dephasing rates. The top panel shows dephasing
dissipation ygep 1 = 0.9 THz at 77 K, plotted against a nondissipative
system. The middle and bottom panels demonstrate the effects of
tuning dephasing rate on chromophore B, with the middle panel
showing a 3X increase (Vdep,b = 2.7 THz at 231 K) and the bottom
panel showing a 3X reduction (}/dep,b = 0.3 THz at 25.6 K) with
respect to a reference dephasing simulation (dashed lines in the
middle and lower panels). 10,000 shots are performed for each case.

To explore the effect of selective dephasing, we vary the
dephasing rate of chromophore B (middle and bottom panels
of Figure 9). A higher dephasing rate accelerates relaxation
while reducing the transient population of excited-state
chromophore B, whereas a lower dephasing rate results in
slower relaxation and higher transient excited-state popula-
tions. This behavior can be attributed to the nature of phase
damping: since dephasing does not dissipate energy into the
environment, the excited-state population redistributes across
the chromophores as coherence is lost.

3.3.3. Combined Amplitude Damping and Dephasing. To
achieve a more comprehensive and physically relevant
simulation, we incorporate both amplitude damping and
dephasing effects in the 3-chromophore system, as shown in
Figure 10. Comparing the damped—dephased system with the
damped-only case highlights the additional influence of
environmental dephasing. The results indicate that the
presence of both amplitude and phase damping suppresses
most oscillations in the excited-state population, leading to a
single peak for chromophores B and C. This suggests that
dephasing accelerates relaxation, reducing the coherence-
driven oscillations observed in purely damped systems.

3.4. Noise Tolerance and Analysis. Current state-of-the-
art quantum hardware is subject to three primary sources of
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Figure 10. Population dynamics of the 3-site chromophore system
under both dephasing and amplitude damping, compared to a system
with amplitude damping only. The damping rates used are Y,mpa =
3.15 X 10 Hz and Ydepat = 9.0 X 10" Hz, as defined in Table 2. Each
data point represents an average over 10,000 measurement shots.

800 error: gate infidelity, decoherence from thermal relaxation and
so1 dephasing, and state preparation and measurement (SPAM)
so2 errors.”” However, in the context of the 3-site chromophore
803 system, the dominant hardware challenges arise from noisy
804 controlled-NOT (CNOT) and conditional displacement (CD)
80s operations, as indicated by eqs 52 and S3.

8os In Appendix E, we simulate the population dynamics of both
807 the dissipative and nondissipative 3-chromophore systems in
808 the presence of various CNOT infidelity levels. We then
809 demonstrate that the dominant energy transfer pathway can
810 still be determined if the infidelity is approximately no larger
s11 than 107%. In Appendix F, we show that the parameter regime
812 describing vibronic couplings in eq 13 is compatible with
813 hardware implementation of high-fidelity CD operations that
814 does not notably affect the population dynamics of the 3-site
815 chromophore system. Thus, our proposed framework for
816 vibronic dynamics simulation is robust against hardware noise
817 that can be achieved with near-term quantum devices.

4. CONCLUSION AND OUTLOOK

818 We have introduced a general framework for simulating
819 vibronic dynamics in chromophore arrays using programmable
820 hybrid oscillator-qubit quantum hardware. Our approach
821 incorporates energy dissipation into the simulation via
822 engineered quantum channels, paving the way for codesigning
823 gate-based quantum circuits applicable to both open and
824 closed quantum systems. This work strengthens the link
825 between high-level quantum algorithms and low-level hardware
826 constraints, advancing toward a demonstration of quantum
827 advantage in practical applications.

828  Starting with a trimer chromophore Hamiltonian inspired by
829 photosynthetic antenna systems, we mapped the molecular
830 Hamiltonian to the Hamiltonian of a cQED platform. We then
831 generalized it to a one-dimensional multiple-site array. By
832 encoding vibrational states in qumodes, we emulated the
833 dynamics of bosonic modes involved in energy transfer, a
834 computationally demanding task for quantum computers that
83s rely solely on qubit platforms.

For the hybrid CV—DV platform we demonstrated how s36
amplitude damping and dephasing channels can be encoded to 837
implement Lindblad dynamics. Based on this, we proposed a 838
modular ¢cQED hardware design and compiled the system s39
Hamiltonian using a native instruction set architecture. Our 840
numerical simulations confirmed that the vibronic population 841
dynamics remained robust even in the presence of 0.01% s42
CNOT gate infidelity. 843

This work opens several avenues at the intersection of 844
hardware-algorithm codesign and chemical physics. On the 845
chemistry side, analogous quantum mappings could enable s46
efficient simulations of reaction dynamics near conical 847
intersections where the Born—Oppenheimer approximation 848
breaks down.”®" At the algorithmic level, while we focus on 849
Trotterization and product formulas, investigating alternative sso
approaches such as quantum signal processing and linear ssi
combination of unitaries will be necessary to determine the ss2
most efficient algorithms for specific hardware. 853

On the hardware front, novel platforms that enable scalable 854
qumode implementations, such as multimode cavities,”” sss
present promising opportunities for vibronic simulations. 856
Optimizing instruction set architectures for these platforms 8s7
will be essential.”> While our results demonstrate viability sss
under intermediate gate error rates, long-time simulations will 859
require integrating error correction and mitigation strategies 860
into the codesign process.”” " Finally, as chemical systems s61
and quantum hardware grow increasingly complex, automated ss2
quantum compilers will become essential for scalable and s63

efficient circuit design.%’97 We look forward to future se4
developments along these directions. 865
H APPENDIX 866

A. Derivation of the cQED Effective Hamiltonian

In this Appendix we provide a detailed derivation of the cQED s67

effective Hamiltonian, given in eq 13, corresponding to the sss

model system Hamiltonian introduced by eq 1 with the 869

parameters as provided in Table 2. 870 12
We regroup eq 1 as follows 871

H = (IGYGI+IB)BI+IC)(Cl) @ h; + IA)(Al @ hy
H.

a

+ (IG)GI+IAY(AI+ICY(CI) & hy + IB)(BI ® hy
#,

+ (IG)(GI+IA)(AI+IB)(BI) ® hS + 1C){(Cl @ h,
#,

+ J,,(IAY(BI + h.c. ) + ], (IAXCl + h. c.)
J

(58) 872
We reorder H,, defined by the first line of eq 58, as follows g73
H =1® h; +1ANAl ® (hy — 1Y)
. 1 PO
=1 h + (1= ) ® (I — )

1 N ~e 1 ~e n
1 (hs + hy) — 50'; Q (hy — 1)

(59) g74

where we used the closure relation I = IG){Gl + [A){Al + IB)(BI 875
+ IC){Cl in the single-excitation manifold. 876
Equations 2—4 allow us to expand eq 59, as follows 877
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J. Chem. Theory Comput. XXXX, XXX, XXX—XXX


https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.5c00315?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as

Journal of Chemical Theory and Computation pubs.acs.org/JCTC
Table 2. Parameters for the Three-Chromophore Antenna (i-{a . . of . ,
Model, Relevant to Energy Transfer in the Photosynthetic Y =waa+wll-y 7‘1 a— ()( lol” + ; —2gv

Process”

parameters values values (converted) (Hz)
Wgq 1650 cm™ 4.95 x 10"
W, 1545 cm™ 4.63 x 10"
wgp 1660 cm™ 4.98 x 10"
. 1540 cm™ 4.62 x 10"
W 1640 cm™ 492 x 10"
o, 1550 cm™! 4.65 x 10"
, 200 cm™ 6.00 x 102
Jano 100 cm™ 3.00 X 10"
Jaco 90 cm™ 2.70 X 10"
MaB —0.1
Nac 0.15
S, 0.005
Sy 0.004
S, 0.006
M 0-0.1 (tunable)
Yampall 105 cm™ 3.15 x 10"
Ydepal 30 cm™! 9.00 x 10"

“Most values are adapted from the dimer chromophore analogue
model in ref 1. Parameters for chromophore C are selected at the
same order of magnitude with those in the dimer chromophore model
within a physically relevant regime.

H W, +a)' 1 1
— = u(tﬁa + —) + wl(ZTl + —)
n 2 2 2

“u

).
N o, .S, + S,
2

1 1
- \/S_aa)e,az(aT +a) - \/gza’z;(l +1)
8

8l

’ c” c”
T, 0+ Fa

o; o;
_(a)e,a—wg)z(aa+ )_( Sa+wlsl)?a
Zy
878 (60)
879 We first omit the global phase terms in eq 60 during the time
evolution exp(—%Ht). Then, we perform a (time-independ-

880
8s1 ent) displaced frame transformation associated with the unitary

g2 U= DJ(U) = exp(v™a — U“T) (61)

883 Effectively, this transformation displaces chromophore A’s

8s4 high-frequency vibrational mode in the phase-space coordi-

8ss nates alongside its ladder operators by v
a—)UZzaU;L:a+U, aT—>U;aTUJ=aT+U*

886 (62)

887 and modifies the Hamiltonian as

H, » H, = UHU + (ih)(0,U) Ul = D (v)H,D,(v)
—

0
888 (63)

889 That is, for real values of v

z

Ua
@, aSa + wlsl 7

z

A o; +
+ (g, - )(au)y(a +a) + ggyl?(l + 1)
ga + cd,l /4t
+lop — 2| +a) - 231 +1
(a0 - %) + 0 - 22074
(64) 890

By choosing v = g“, we have (numerically) canceled the .

classical part of the oscillator a’s phase-space trajectory so2
described by the term proportional to (a’ + a) in the first o3
term of the last line of eq 64. Similarly, we perform a second so4
displaced frame transformation on the low-frequency vibra- gos

tional mode ! of chromophore A, associated with 896
g
L]l _ DIT( cd,l]
2w, (65) go7
we can also cancel the classical part of oscillator I's phase-space sog
trajectory, simplifying eq 64 to 899
4 — ga'a + o'l - )(—aa+ g il z‘l(a + a)
a
8cd,a
z
o,
+g, l—“(lT +1)
t2
2 2 2
Z, 8 8 Sailo
|08+ oS+ = +—5 ——“—i;l -
' 2 4w, y o |2
o
(66) 900
Repeating the similar process for H, and H. yields the o9,
displaced-frame Hamiltonians 902
H,
L =awb'b -y, —bTb +yg (bT +b)
h wb
S
4. & &%
b b b | %%
St Tt |
K0 (67) 903
H of W, . of
T c T 8¢ “c T
—=wgcc—)y—cc+g— —(c +¢
P & 2 ( )
Sed,c
2 2\ .
X & & |
— S+ =+ - ==
2 4w; . |2
e (68) 904

Then, within the single-quanta excitation manifold for the gos
three qubits 906
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LA)RI + IR)(Al = le); (gly ® Ig)r(ely + Ighilely @ le)p
(glr
907 =00y +0, 0" (69)

908 for R = B, C, from which the energy hopping terms in 7,
909 combined with eq 6, are equivalent to

J _ _
? = Z (]AR,O(GA 6R+ + GA+O-R )
R=B,C
010 + ]AR,OUAR(UA_(’R+ + O-A+O-R_)(ZT +1)) (70)

911 Equations 66—68 and 70 have led us to the displaced full
912 system Hamiltonian

a H, H H
i 1 + 2 + =+ l
n n n n n
o’ o/
=waa+ wb'b+ acc+ wll - W — Wy, b
o 2 2
— ch
Z X V4
- 240" — 2b'bof — Zicleo?
2 2 2
+ gab(UA_UB+ +0,%057) + gac(UA_Uch +0,%0.)
o’ oy
4 + Ob
gyt a) g, (b +)=x
o’ o;
+g, (c+ = + g+ H—=
’ 2 ’ 2
+ gabl(oA_aB+ + 0, 6571 + )
+ gacl(gA_UC+ + 0, o) (1 + 1
913 (71)

914 We now transform this Hamiltonian into the first rotating
915 frame where the qubits a, b, ¢ rotate at frequencies Bygpy Dypy
916 and @, respectively. This results in the detuning frequencies
917 of A, = 0 for all qubits r = g, b, ¢ and effectively transforms

+ + i, t
o18 OR 7 Or €7 (72)

919 for R = A, B, C. The Hamiltonian now has become

3“|I1

Z.
=waa+ wb'b+ acc+ wll - ?“aTaa;

X X
- _bbTthz - 2o
2 2

c

z z

) % %%

+ gcd,a(a +a )7 + gcd,b(b +b )7
z

"% ) %
+ gcd’c(c +c )? + gcd’l(l +1 )?

— 4 byt + byt
+g, (o oy e + 070y &™)

- _+ At
+g,.(04 7o

- - At
e+, 70 e)

+ gabl(oA_aB+ et 4 o, 05" e (1 + 17

—iA,t

- — iA
+ gacl(UA UC+ e "+ O-A+UC el u[t)(l + ZT) (73)

920
921 where A,, = @, — ®,. We remark from this transformation
922 that only the relative difference between qubit frequencies are
923 relevant for the system dynamics at stake. With this in mind,

we now make a second rotating frame transformation, to “re- 924
absorb” the time dynamics into a static Hamiltonian where we 925
consider qubits b and ¢ at relative frequencies A, and A, 926
respectively. The composition of this rotating frame and the 927
previous one is equivalent to a rotating frame transformation 928
from the original system Hamiltonian H with frequency w,, for 929

all qubits. We then obtain the static Hamiltonian 930
H o, of
i wa'a + wb'b + ac’c + wll - AabTh - A“C?C

Cc

Z X x
- 2%4'ac? — ;hbTbiz - ;CCTCGZ

+ gab(O'A_O'B+ +0,705 ) + gm(O'A_UC+ +0,70)
o’ oy
+ gcd’a(a + aT)jZ + gcd’b(b + bT)?
z z
+ O. + O
+ gcd’c(c +c )75 + gcd’l(l +1 )7“

+ guhl(aA_GB+ + 0, 0371 + 1
+ gacl(O'A_O'C+ + 0, 6.7) (1 + 1
(74) 931
Finally, using the fact that 932
oot = oo, + olo;
A B 2 (75) 933

we arrive at the final rotating frame Hamiltonian given in eq 934
13, with Table 3 summarizing the experimental parameters of 935 3
the system as described by these equations (frequencies are 936
scaled for compatibility with the microwave domain). 937

B. Engineering Dissipation via Channel Dilation

The discussion of Lindbladian dynamics in Section 2.1.2 sets 938
the stage for constructing quantum channels, which we now 939
detail within the framework of gate-based quantum hardware. 940
Consider the amplitude damping channel characterized by a 941
damping probability p. The corresponding Kraus operators are 942

Ay = Jplox1], A, = 10)0l + /T = pl1)(1l
(76) 943

Here, A, represents the relaxation of the excited state I11) to the 944
ground state 10) while A; accounts for the partial preservation 94s
of the excited state population on the ground state. To ensure 946
the map is physically valid, the set of Kraus operators {A;} 947
must satisfy the completely positive and trace-preserving 948
(CPTP) condition 949

DAl =1
k (77) 950

where I is the identity operator. To derive an isometric 951
extension of this channel, we define an isometry U,  ; that 952
maps the system A to a larger Hilbert space BE comprising the 953

system B and the environment E 954
Ui = (T = pI1)(1l + 10)(0) ® 10); + (Jpl0)(1l)
03 |1>E (78) 955

This isometry (rectangular matrix) can be embedded into a 9s6
unitary operation V,; (square matrix) on the combined 957
system-environment space by extending the isometric matrix to 958
a full unitary matrix through the addition of (two more) 9s9
orthogonal columns 960
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Table 3. Experimental Parameters of the Effective Vibronic [1 00 0
Hamiltonian in the cQED Framework”

R 00 5 1=

cQED model exp. value Vig=

, (Wga + @,0)/2 479 x 10" 00 J1 \/—

w, (g + @)/2 4.80 x 10' 01 0 0

, (wy + w,0)/2 479 x 10"

, , 6.00 X 102 100 0

X w,, — @, —3.20 x 10" 0 0 sin(8/2) cos(6/2)

T @, — Wy —3.60 x 10" = .

Y o — o 270 % 10 0 0 cos(6/2) —sin(8/2)

c e,c 8¢ .
Wy see eq 66 -1.30 x 10" 0 1 0 0 (79) 961
g see eq 67 —1.80 x 10"

_ 12

©e see eq 68 1.35 % 10 where the second equality holds for p = sin?(6/2). This

Ay Wy — Wy 5.00 x 10! 962

A, P 4.99 X 101° parametrization facilitates an efficient gate-based realization of 063

Seda NERCCWWICS 3.38 x 10" the amplitude damping process. The corresponding quantum 064

&edb Sy @, 40, 4/ @, 3.03 x 10'2 circuit implementation is depicted in Figure 2b, where the 06s

e JS a0, /0 370 x 1012 system qubit l¢h) interacts with an ancilla qubit initialized in the 066

gl JSio, 134 % 10 ground state 0), representing the environment. 967

. Taso 3.00 % 10 A dephasing channel can be constructed analogously, 068

ac Jaco 2.70 x 10" defined by the map 969

8abl JasoMas —3.00 x 10"

Sacl Jacoac 4.05 X 1011 p— (1 =p)p + popc® (80) 7o

7amp,all J/amp,all 3.15 X 1012

9.00 x 10" . . s . -,

Vaepal Vaepal where the phase flips with probability p.*® From this definition,
“Frequencies are in Hz; scaling assumes a base rate of 10° Hz on 971
cQED hardware, so the actual frequencies on experimental devices are we derive the CPTP set of Kraus operators 972
obtained by dividing the values of the last column by 10° to place
them in the MHz mlcrowave regime, which is implementable with K. = \/— c* = /1 =»I

0 po, v p 81
state-of-the-art devices.'® Relevant values are calculated with S; = 0.05. (81) 973
corresponding to the isometric extension 974
N
Uispe = {1 = ply)®I0); + o Jply,)®I1); (82) o7s
which can be extended to the full unitary representation 976
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Figure 11. (a) Compiling simulation of the term Hég) for the ¢éth chromophore. (b) Compiling simulation of the term Hg‘f) for the ¢&th
chromophore. (c) Compiling simulation of dispersive intrachromophore interactions between the high-frequency electronic state I¢; ) and the low-

frequency vibrational mode ly; ) within the &th chromophore. The interaction e

iob

e tbiof . o .
4*"a% is decomposed into a conditional displacement gate

CD(if) on the low-frequency mode, conjugated by SWAP operations that exchange the states of the high- and low-frequency transmons to
facilitate the interaction. (d) Compiling simulation of interchromophore ¢*6" interactions between high-frequency electronic states l¢ ) and |

@(es1),)- Vibrational states encoded in qumodes Iy ) and lyc,,) ) are omitted for brevity. The ¢’¢” interactions follow a similar structure, replacing

the Ryx operation with Ryy.
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as we have introduced the substitution p = sin*(6/2).
The corresponding quantum circuit, denoted as &g, is

0 0

0 0

(83)

shown in Figure 2c. Here, the rotation Ry(H) can be
decomposed as Ry(—e) = GzRy(—H) when acting on the
environment in the ground state 10), since
Ry(€)|0> = dzRy(—H)IO) (84)
C. Compiling Quantum Circuits per Trotter Step
In this Appendix we provide the full compilation to simulate
each Trotter step 7 for all the terms in eq 18, except those that
describe dispersive vibronic coupling which are already
covered in Section 2.5.2.
Compiling H§. The compilation of H{ (eq 19) is
straightforward, involving only single-qubit and single-qumode
gates. The time-evolution of the terms involving the bosonic

number operators @b gob ¢, and w;b gl bs is implemented via

phase-space rotation operations on the high- and low-
@,
frequency modes, respectively. The qubit term, —%&’ago ,

corresponds to a Pauli-Z rotation applied on the high-

frequency transmon qubit. The combined time-evolution
operator is
—ipgr l%(rz —Lo, bib —Lo.bib
e A T Nen 2 R e h‘fos‘oio@ﬂé ® e nPa’a’n
1

=R (1) ® Re(—70) ® Iy ® Re(—wg)
(83)
where ; denotes the identity operation on the low-frequency

transmons. Figure 1la shows the corresponding quantum
circuit for each chromophore & evolving under H,.

Compiling HY. The term H) (eq 20) describes the
vibronic interactions within the high-frequency mode of each
chromophore, corresponding to dispersive couplings between
states l¢p: ) and Iy ). In the circuit topology (Figure 3), these
states have direct connectivity, allowing eficient gate
compilation.

b2
The term —i“bgﬂbéoag] is implemented as a CR gate. The
& + . .
interaction %(b&) + b&))dgo is then compiled as a CD

operation. The approximate time-evolution operator, justified
via the Trotter—Suzuki decomposition for small 7, is

: - 8 e T B c X T

ig08) i ©d,é t i%0" 1
SEREN (eh 2 (etbe)7g oo h:ob:o”fo) ® I,
1

R Ze,®
= |CD 1= CR | - ®1:

Here, [ indicates that no operation is performed on the low-

(86)

frequency cavity and transmon. Figure 11b shows the
corresponding circuit for each chromophore £ evolved with H,.

Compiling HY. The term HE (eq 21) describes vibronic
transitions between adjacent chromophores, involving both
intra and intersite couplings. In the cQED framework (Figure
3), these interactions are mediated via SNAIL couplers, which
support only nearest-neighbor couplings. We consider the

dispersive intrachromophore coupling term
g;d &
= (bs + b))o?
2 ( 4 51) % (87)
which couples the high-frequency qubit l¢p;) and the low-

frequency vibrational mode iy ) of the £th chromophore. This

interaction is implemented using a conditional displacement
on the low-frequency mode, sandwiched between the SWAP

operations that exchange the states of the high- and low-
frequency transmons
005 +b2)0% — GWAD, , o5 ® (b5 +b4). GWAD.
&b bt
= SWAR, ;-CD, (i6))- SWAF, ; (38)

gcd,s‘lr

where 0 = — S The corresponding quantum circuit is

shown in Figure 1lc.

High-Frequency Electronic Coupling. We now focus on the
term
gfo; (f‘*’l)o + -
) (O-fo O-(f‘*'l)o ) (89)

which describes the high-frequency electronic coupling.

Deriving how its time evolution can be simulated using an
XX-rotation followed by another YY-rotation, both para-
metrized by

g = San’

2 (90)
is provided in Appendix A. However, since the two high-
frequency electronic states (qubits) are separated by a low-
frequency mode, a pair of conjugate SWAP gates is required

0095 ey — SWAPD, (¢ 1), eig(”%”?l”:yo”fyx)
SWAPs ¢+,
A SWAP; (1) Ry, x, (O)Ry, y, (O)SWAP: ¢, ),
= [SWAR; (¢41), R, x, (0)SWAD; ¢, 1) ]
[SWAR: (¢1.1) Ry, y, (O)SWAP; (¢ 1 ]
(o1)

where the approximation is justified via Trotterization for small
0. Hardware constraints prevent simultaneous implementation
of the Rxy and Ryy operations, requiring the separation into
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Hz,Xx/h (eq 16, compiled in Figure 11d), and Hz,w/h (eq
17) for the 3-site chromophore model. Finally, The term

8e(e-1),

+ —
> (0%, 6e-1), )

(92)
is compiled analogously by decrementing & in eq 91.

D. Simulation Performance and Convergence

Several parameters influence the performance of Trotter-based
simulations on a cQED device, including the Trotter step size,
Fock truncation level, and shot count. In this section, we
systematically vary these parameters to assess their effects on
the simulation accuracy and performance, ultimately determin-
ing optimal parameters.

Accuracy Assessment. To quantify accuracy, we compute
the root mean square error (RMSE) for each parameter set by
comparing five independent simulations against another set of
five simulations, forming a fully connected bipartite graph with
a total of 25 comparison points. These RMSE values are
averaged and normalized against the average RMSE of the
(intuitively) most accurate parameter in each class, yielding the
normalized RMSE values presented in Table 4. The reference
data set is chosen as a median of all the comparison points,
with a Trotter step size 7 = 10 fs, 10,000 measurement shots,
and a Fock truncation of 8 levels.

Table 4. Normalized RMSE for Various Simulation
Parameter Sets”

comparison chromo. A (%) chromo. B (%) chromo. C (%)

5-5 fs* 1.8 2.6 3.7
5—10 fs 2.2 3.6 4.6
5—20fs 2.4 S.5 6.9
5—40 fs 6.0 11 13

20,000—20,000 shots* 1.4 3.7 32
20,000—10,000 shots 1.8 3.8 3.5
20,000—5000 shots 3.1 5.0 4.5
20,000—2500 shots 3.0 7.2 6.9
16—16 Fock levels* 1.5 2.6 4.5
16—8 Fock levels 2.1 3.4 4.1
16—4 Fock levels 1.7 4.0 4.4
16—2 Fock levels 1.9 4.3 4.7

“The first column presents results for varying Trotter step sizes,
followed by shot counts and Fock truncation levels. All simulations
include environmentally induced dissipation, as in Figure 10 and are
performed on the Lafayette College High Performance Cluster. We
use * to denote the normalized RMSE calculated amongst itself,
which provides a baseline.

Additionally, to provide a baseline for general simulation
errors, we compute the normalized internal average RMSE
(visualized as a fully connected graph of comparison points)
for simulations using the most accurate parameter in each
category.

Parameter Scaling and Optimization. We benchmark
Trotter step sizes ranging from S to 40 fs (corresponding to
200 to 25 steps per ps). Since the RMSE variance is
significantly influenced by 7, minimizing the step size is
desirable. Notably, the average normalized RMSE nearly halves
when reducing 7 from 40 to 20 fs, whereas the improvement
from 20 to 10 fs is less pronounced but still substantial. While
larger step sizes can provide a qualitative understanding of the
system dynamics, a smaller 7 should be chosen whenever it is

computationally feasible. In the presence of hardware intrinsic
noise, an optimal trade-off between Trotter error and
hardware-induced errors should be considered in future
experimental implementations.

Measurement Shots. Shot count influences simulation
variance, as more measurements reduce statistical fluctuations.
The error reduction trend is noticeable, though less significant
than that observed with Trotter step size refinement. We
observe that computational runtime scales linearly with shot
count, yet multiple simulations can be averaged to achieve
equivalent effects, i.e., optimizing shot count is not as critical.

Fock Truncation Level. Intuitively, Fock truncation level
directly impacts the simulation accuracy, as a low truncation
level can exclude essential aspects of the system dynamics
while a high truncation level is computationally expensive. We
observe from Table 4 that, with the exception of chromophore
B, lower Fock truncation levels do not significantly impact the
normalized RMSE specifically in our 3-chromophore dis-
sipative system.

E. CNOT-Noisy Numerical Simulations

In this Appendix we explain how noisy CNOT operations are
simulated and demonstrate that infidelities no larger than 107*
suffice to determine the dominant energy transfer pathway in
the 3-site chromophore system.

We conducted noise sweep simulations using Qiskit’s Noise
Models module. Figure 12 show the population dynamics of
both pure and dissipative 3-site chromophore systems under
various levels of CNOT infidelity. This infidelity is modeled by
an amplitude damping channel with error ecnor,amp followed
by a dephasing channel with error ecnor,aep Based on the
relative photon loss and dephasing rates in the qubit
(Appendix F), we set ecnor = €cnoTamp = 2EcNOTdep a0
analyze the noisy population dynamics for ecyor values
ranging from 107 to 107>, Since each SWAP operation can be
decomposed into three consecutive CNOT gates, the
cumulative infidelity per SWAP operation is given by

egwap < 1 — (1 = ECNOT)3 (93)

As expected, when ecyor = 1075, the excited population
dynamics closely match the ideal simulation. For larger error
rates, the effects of noise become more pronounced. Notably,
at ecnor = 1074 the qualitative structure of population
dynamics—particularly the relative excitation distribution
among chromophores—remains discernible, albeit with some
distortion. However, for £cyor = 1073, the noise overwhelms
the system, rendering the dynamics unrecognizable. These
results suggest that achieving a CNOT error rate of
approximately 107 (0.01% infidelity) or lower is essential
for practical implementation of the chromophore dynamics
simulation on circuit quantum electrodynamics (cQED)
hardware.

F. Estimating Fidelity, Idling Error of the Conditional
Displacement Gate with Numerical Simulations

The primary sources of infidelity in the conditional displace-
ment (CD) gate arise from physical errors in both the cavity
and qubit during the gate execution. We model the composite
system evolution under the Hamiltonian

z

c
Hen/h = ya'a— + y(aa + a*a)o”
cp ya'a~ x( ) (94)

where y/2m =~ 50 kHz is the weakly qubit-cavity dispersive
coupling frequency, and a@ < 30 is the displaced-frame
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Figure 12. (a) Population dynamics of the 3-site chromophore system under varying levels of CNOT infidelity, with ecyor = 107% 1073, 1074,
1075, Each data point represents an average over 10,000 measurement shots. (b) Dissipative population dynamics of the 3-site chromophore system
with amplitude damping under varying levels of CNOT infidelity. The error rates tested are ecyor = 1072, 1073, 107, 107>, Each data point

represents an average over 10,000 measurement shots.

amplitude to implement the CD operation®® at a rate of gcp, =
ay.

Error Sources. We consider the following dominant sources
of infidelity: photon loss in the cavity at a rate k;, ~ (1 ms)~’,
photon loss in the qubit at a rate x;, ~ (100 us)™', qubit
dephasing at a rate k,,, ~ (200 ps)~" (assuming the qubit has
T, = T, as a reasonable assumption), and qubit heating
characterized by the thermal excited-state population ny =
0.001—-0.01. Here ng, represents the steady-state of heating and
loss. Together with k,,, it fully describes the heating of the
qubit and loss channels via detailed balance: x, ; = k; , + k| (1
— nth)KM = ngK ;- These mechanisms apply to all idling times
under the dispersive coupling Hamiltonian

o
H/h = ya'a 5 (95)
In particular, qubit heating induces dephasing in the cavity at a
characteristic rate of k;. & ngk;, which holds under the
condition y > K, ensuring that single loss or heating events
fully dephase the cavity.”® We also note that the phase-flip (¢°)
errors on the qubit commute with the Hamiltonian. Therefore,
they do not directly affect the fidelity of the CD gate itself but
instead propagate to subsequent operations, i.e., we can either
simulate the phase-flip error with the single-qubit o° gate
(assuming idle time) or perform quantum error correction.”

Analysis of CD Gate Errors. The probability of CD gate
error, £cp can be estimated as

&cp = Ky X Tgate

(96)

where K, is the total photon loss and dephasing rate (in Hz),
and 7y, is the execution time of the CD gate on a physical
quantum processor.

To estimate k,;, we add up the rates in times per second for
each of the four error sources mentioned above. As K, is
highly variable and at least 2 orders of magnitude less frequent
than some of the other error rates, we can safely ignore cavity
dephasing from our calculations for brevity to obtain k,; &~ 16
kHz. The time necessary to perform the gate, 7y, can also be
calculated by dividing the displacement parameter by the CD
operation rate (gcp = ay) of the hardware. For each Trotter

step, the displacement parameters are of the form g,.7/2
(Appendix C). Hence, eq 96 can be rewritten as
gcd xT
ep R (Kt K, + Ky )——
CD ( 1, Lq ‘/11‘1) 2&){ (97)
For x = I, we present the range of expected error
probabilities for our CD gate on chromophore A’s low-

frequency cavity in Figure 13a. These calculations are based on
a Trotter step size 7 = 10 fs and various values of S; € {0.10,
0.05, 0.00}, which correspond to the CD rates g,;; € {1.90 X
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Figure 13. (a) Calculated error probability for an individual CD(8) gate with varying f and a range of a = [15, 40] defined in eq 94. The red region
captures realistic values of o that can be achieved on hardware, with an upper bound of & < 30 (900 photons), whereas the gray region is indicative
of the ranges of error probabilities that are possible for various values of g4;. (b) Population dynamics of the 3-site chromophore system where the
noisy CD gate’s displaced-frame amplitude is & = 30. The top panel considers the nondissipative system, whereas the bottom panel incorporates
amplitude damping and dephasing with dissipative rates Ympan and Yuepan respectively. 10,000 shots are performed for each case.

1183 102, 1.34 X 10'2, 0.00}, respectively. We observe that the error
1184 probabilities are relatively low, namely between 1.14 X 107(a
1185 = 30) and 1.71 X 107°(a = 20). However, it is important to
1186 keep in mind that these errors are per Trotter step and per
1187 chromophore, and thus can compound as we evolve the system
1188 further. While our error analysis only covers ff = g, other
1189 coupling strengths including g.4, gap g Will also introduce
1190 additional error to the simulation results. We finally observe
1191 from eq 97 that probability error increases proportionally with
1192 the coupling strengths g ;.

1193 Finally, we perform vibronic simulations incorporating CD
1194 infidelity, as modeled using eq 97, with a = 30, which
1195 represents the maximum displaced-frame amplitude achievable
1196 on hardware. To account for this infidelity, eq 97 is compiled
1197 as one dephasing and two amplitude damping channels acting
1198 on the cavity and its auxiliary qubit with probabilities

_ gcd,xT _ gcd,xT
pCD,a.mp,q - Kl.q 2(1){ ’ pCD,amp,c =K. 20{){ )
gcd,xT

pCD,dep,q = K¢;‘1 2(1){

1199 (98)
1200 For details on implementing amplitude damping and
1201 dephasing channels for qubits, we refer the readers to
1202 Appendix B, and for modeling Markovian amplitude damping
1203 in bosonic modes, ref 100.

1204  The results shown in Figure 13b indicate minimal deviation
1205 between noisy and ideal simulations. This aligns with the
1206 analysis from Section 2.5.3 where the number of CD gates per
1207 Trotter step is significantly smaller than that of CNOT
1208 operations, leading to negligible overall impact. Moreover, we
1209 observe that the cavity amplitude damping channels do not
1210 influence the population dynamics measured in the high-
1211 frequency qubits: the terms in eqs 14—17, when compiled into
1212 CD gates, only modify the phase of the controlled qubits.
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repository:®” https://github.com/yuanliul/cqed-vibronic-
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