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ABSTRACT: The nexus of quantum computing and machine learning�quantum machine
learning�offers the potential for significant advancements in chemistry. This Review
specifically explores the potential of quantum neural networks on gate-based quantum
computers within the context of drug discovery. We discuss the theoretical foundations of
quantum machine learning, including data encoding, variational quantum circuits, and
hybrid quantum-classical approaches. Applications to drug discovery are highlighted,
including molecular property prediction and molecular generation. We provide a balanced
perspective, emphasizing both the potential benefits and the challenges that must be
addressed.
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1. INTRODUCTION
Quantum Machine Learning (QML) refers to the use of
quantum algorithms to train models by encoding classical or
quantum data into quantum states and adaptively refining the
state to fit the data through methods such as gradient descent or
variational approaches. Post-training, QML models leverage the
learned quantum representations for prediction or data
generation. A useful conceptual framework in the field
categorizes machine learning (ML) approaches based on
whether the data and computational methods involved are
quantum or classical. Within this context, our focus lies on
leveraging quantum algorithms for both quantum and classical
data, which aligns with the core strengths of QML in capturing
quantum-enhanced representations.

While the field has seen many review articles on QML for
chemistry,1−6 significant gaps remain, particularly in the context
of quantum neural networks (QNN) on gate-based quantum
computing frameworks. Existing literature often provides a
broad overview without delving into the specifics of the
algorithms underlying QNNs. Additionally, many reviews limit
their scope to quantum support vector machines (QSVMs) or
generative models such as quantum generative adversarial
networks (QGANs). In contrast, this review concentrates on
QNNs, exploring both predictive and generative architectures in
detail. While quantum reinforcement learning7,8 has been
extended to QNNs in recent studies,9 we focus our review on
supervised and unsupervised learning paradigms. We bridge
gapsby presenting in-depth discussions of variational quantum
circuits, QNN-specific algorithms, and their implementations.
Furthermore, our inclusion of practical toolkits and benchmarks
provides actionable insights for researchers and practitioners,
while offering forward-looking suggestions to address challenges
in the field. This comprehensive approach positions our review
as a resource for advancing QML applications in chemistry and
pharmaceutical sciences.
1.1. Quantum Computing

In this introduction, we discuss the general methodology of
quantum computing based on unitary transformations (gates) of
quantum registers, which underpin the potential advancements
in computational power over classical systems. We introduce the
unique properties of quantum bits, or qubits, quantum
calculations implemented by algorithms that evolve qubit states
through unitary transformations, followed by measurements
that collapse the superposition states to produce specific
outcomes, and last, the challenges faced in practical quantum
computing limited by noise, with hybrid approaches that
integrate quantum and classical computing to address current
limitations. This introductory discussion sets the stage for a
deeper exploration into quantum computing for machine
learning applications in subsequent sections.

Calculations with quantum computers generally require
evolving the state of a quantum register by applying a sequence
of pulses that implement unitary transformations according to a
designed algorithm. A measurement of the resulting quantum
state then collapses the coherent state, yielding a specific
outcome of the calculation. To obtain reliable results, the
process is typically repeated thousands of times, with averages
taken over all of the measurements to account for quantum
randomness and ensure statistical accuracy. This repetition is
essential to achieve convergence, as each individual measure-
ment only provides probabilistic information about the quantum
state.

Quantum registers are commonly based on qubits. Like
classical bits, qubits can be observed in either of two possible
states (0 or 1). However, unlike classical bits, they can be
prepared in superposition states, representing both 0 and 1
simultaneously with certain probability. In fact, the state of a
single qubit can be described using the ket notation, as follows:

| = | + |0 1 (1)

where α and β are complex amplitudes satisfying the
normalization condition |α|2 + |β|2 = 1. Such a state represents
the states |0⟩ and |1⟩ simultaneously with probability |α|2 and
|β|2, respectively.

Quantum registers with n qubits represent states that are
linear combinations of tensor products of qubit states.
Therefore, a register with n qubits represents 2n states
simultaneously, offering a representation with exponential
advantage over classical registers. For instance, the state of a
register with two qubits represents four states simultaneously, as
follows:

| = | | + | | + | | + | |0 0 0 1 1 0 1 100 01 10 11
(2)

with complex coefficients αjk satisfying the normalization
condition |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1, and defining the
probabilities Pjk = |αjk|2 of observing the state collapsed onto
state |j⟩ ⊗|k⟩ when measuring the two qubits.

Quantum gates, analogous to classical logic gates, are used to
represent the effect of the pulses that manipulate the states
according to unitary transformations. Commonly used gates for
the transformation of a single qubit are the gates represented by
the Pauli matrices:
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For example, the X (or, NOT) gate, flips the state of a qubit
from |0⟩ to |1⟩, and vice versa. Another important class of
transformations of a single qubit are the rotation gates Rx(θ),
Ry(θ), and Rz(θ). The rotation around the Y-axis, for instance, is
expressed as
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where I is the identity matrix.
For multi-qubit systems, universal computing can be achieved

with single qubit gates (such as Pauli, rotation, or T gates) and
the two-qubit CNOT (Controlled-NOT) gate, defined as
follows:

=

i

k

jjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzz
CNOT

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0 (5)

The CNOT gate operates with respect to a specific ordering of
qubits, where the first qubit in the pair serves as the control, and
the second qubit acts as the target. This ordering dictates the
action of the gate, ensuring that the target qubit is flipped only
when the control qubit is in the |1⟩ state.

Measurements of individual qubits project the superposition
states onto one of the basis states of the operator used for the
measurement. Averages over many measurements (i.e., many
shots) are required to achieve statistical converge of the
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calculation. For example, for a single qubit prepared in state |ψ⟩,
given by eq 1, measurements with the Z operator yield either 1
when the state is collapsed by the measurement onto state |0⟩
(with probability |α|2), or − 1 when the state is is collapsed into
state |1⟩ (with probability |β|2).

Quantum mechanics introduces concepts such as super-
position and entanglement, enabling computational parallelism.
Quantum superposition allows for the representation and
manipulation of an exponential number of states simultaneously,
offering potential quantum advantage. Likewise, quantum
entanglement, a form of correlation not present in classical
systems, could further enhance this advantage. The simplest
example is a register prepared in the Bell state |ψ⟩ = α00|0⟩ ⊗|0⟩
+ α11|1⟩ ⊗|1⟩ where measurement of one of the two qubits
collapses the state of both qubits in highly correlated way so that
both qubits end-up in the same collapsed state (both |0⟩, or both
|1⟩, but never one |0⟩ and the other |1⟩). These quantum
properties offer great potential for computational advantage
over classical computers and thus could lead to significant
advancements in many areas of chemistry, and beyond.

Quantum algorithms can achieve significant speed up
compared to their classical counterparts. For example, the
Quantum Fourier Transform (QFT)10 can enable exponential
speedup when compared to the best-known classical Fourier
transform algorithms. Algorithms like Quantum Phase Estima-
tion11 and the Shor’s algorithm12,13 can also enable factorization
of large numbers with exponential quantum advantage.
Amplitude amplification techniques, such as those used in
Grover’s algorithm, provide a quadratic speed up for
unstructured search problems, while the Harrow-Hassidim-
Lloyd (HHL) algorithm14 offers logarithmic speed up for
solving linear systems within bounded error, highlighting the
potential of quantum computing to outperform classical
methods in a wide range of applications. The actual
implementation of these quantum algorithms, however, would
require fault-tolerant quantum computers that are not currently
available to achieve quantum advantage over classical
algorithms.

Due to the current limitations of quantum hardware,
including noise and limited qubit counts, significant efforts
have been focused on near-term calculations based on hybrid
quantum-classical approaches where only part of the calculation
is performed on the quantum computer while the rest of the
computation is delegated to conventional high-performance
computers.15 For example, variational algorithms,16 such as the
Variational Quantum Eigensolver (VQE)17 and Quantum
Imaginary Time Evolution (QITE),18−28 implement hybrid
quantum-classical approaches. These algorithms generate
quantum states and employ classical computations to combine
the results of the measurements performed on the quantum
states. This synergy leverages the strengths of both quantum and
classical resources, making it feasible to solve problems with
current noisy intermediate-scale quantum (NISQ) devices.

Despite significant advances in the field, an outstanding
challenge is to achieve advantage over classical high performance
computing. One promising direction is the use of quantum
computers to implement machine learning algorithms. Harness-
ing the speed-up of quantum algorithms could address complex
problems in data analysis and pattern recognition. Given that
quantum computing has many potential applications in
chemistry and biological science, there’s a lot of hope that
quantum machine learning can be extended to these areas of
research.

1.2. Machine Learning

Machine learning (ML) algorithms are able to learn from data,
where learning in this context can be defined according to “a
program is said to learn from experience E with respect to some
other class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with
experience E”.29 In practice, machine learning can be used to
approximate a function of the input data to predict some variable
(e.g., predict chemical toxicity from molecular features),30,31 or
can be used to learn the distribution of the input data to generate
synthetic data akin to the training distribution (e.g., generating
virtual compounds with specific drug-like properties).32

There are now many machine learning methods that have
demonstrated exceptional, unprecedented abilities in many
areas of research pertaining to drug development, with
AlphaFold 2 and its later iterations being particularly
recognizable.33,34 AlphaFold is able to predict protein structures
from their input sequences with high accuracy, although it is less
capable in cases where the input sequence corresponds to a
structure that is not well represented in the training distribution.
Nonetheless, there is a lot of excitement and anticipation that
AlphaFold will enable a lot of innovation within the domains of
studying protein dynamics and hit identification in drug
discovery.35

Machine learning has become pervasive in cheminformatics,
and there have been many tools developed to predict molecular
properties, generate compounds with prespecified properties,
and ultimately reduce an incredible vast chemical search space to
something tractable given the specific task at hand.36

Specifically, there are a lot of efforts leveraging machine learning
to reveal molecular mechanisms,37 analyze complex biochemical
data,38 process and optimize chemical data,39 predict protein
structure,33,34 virtual screening and drug design,40,41 protein−
ligand docking,42 as well as many other tasks.43

1.3. Quantum Neural Networks

Machine learning has had a transformative effect on all facets of
modern life and has led to increasing computational demands,
thus motivating the development of QML methods. The
promising capabilities of quantum computing have already
motivated the development of quantum analogs for a wide range
of classical machine learning methods. Bayesian inference,44

least-squares fitting,45 principal component analysis,46 and
support vector machines47 are some of the algorithms for
which quantum counterparts have already been developed.
While quantum analogs for these traditional ML methods have a
demonstrable quantum speed-up,48 some of the most awe-
inspiring advances are due to artificial neural networks (ANNs).

Perhaps the earliest discussions of quantum neural networks
(QNNs) were motivated by studies of neural function through
the lens of quantum mechanics.49 Since then, the field has
evolved to exploiting the computational parallelization enabled
by superposition states and entanglement.50 In the early stages
of research for QNNs, much effort was dedicated toward
developing quantum systems that preserved the mechanisms of
classical ANNs.51−53 However, those efforts have largely failed
to reconcile the linear dynamics of a quantum state evolving
through a circuit and the nonlinear behavior of classical neural
networks.54 One notable attempt to overcome this issue is the
development of Sigmoid Quantum Perceptrons (SQPs), which
are parametrized quantum gates designed to emulate the
nonlinear activation functions of classical perceptrons.55 While
SQPs theoretically exhibit a universal approximation property
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similar to classical perceptrons, numerical experiments have
shown that, at low qubit and gate counts, they do not perform
well. In fact, simpler quantum circuits consisting of standard
gates (such as Y-rotations and CNOTs) often outperform
networks of SQPs in these cases. This highlights the challenge of
using SQPs in the NISQ era, where the available quantum
resources are limited. Additionally, researchers are developing
methods to approximate nonlinear activation functions56,57 to
alleviate this concern. Increasingly, the field has consolidated
around the use of variational quantum circuits to learn data
representations58 rather than directly creating a quantum analog
of a neural network. Accordingly, quantum versions of the most
popular classical neural network architectures, such as convolu-
tional neural networks (QCNNs), graph neural networks
(QGNNs), variational autoencoders (QVAEs), and generative
adversarial networks (QGANs) have been realized and centered
around variational quantum circuits.

QNNs require data encoding, variational quantum gates with
learnable parameters θ, and measurements, as depicted in Figure
1. Data encoding converts classical data into a quantum state.

The choice of strategy for data encoding can be of paramount
importance in QNNs, as it can significantly affect performance
and impact the underlying computational complexity. While
other data encoding strategies exist,59,60 three of the most
popular methods are discussed in the following subsections.
1.3.1. Basis Encoding. Basis encoding is a straightforward

and inexpensive method to encode binary data into a quantum
system. Explicitly, let be a classical binary dataset such that
each element xm is an N-bit binary string of the form
xm=(b1

m,b2
m,···,bNm), with bjm=0 or 1. Then the classical dataset can

be represented by the quantum state | of N qubits, where M is
the total number of basis states used for the encoding:

| = |
=M

x1

m

M
m

1 (6)

where xm corresponds to the m-th element of the dataset. For
encoding a specific element (e.g., the binary string [1,0,1]) we
simply place a Pauli X gate on the qubits that should be one (e.g.,
on the first and third qubits, as shown in Figure 2a).
1.3.2. Angle Encoding. Unlike basis encoding where the

data is restricted to binary values, angle encoding allows data to
take the form of real, floating point numbers. This encoding
method entails rotating the state of a qubit around an axis of the
Bloch sphere by an angle corresponding to the classical data.
Explicitly, for an element xm of a classical dataset where xm ∈

[0, 2π], then the value of xm may be encoded into a single qubit
by a rotation operator:

| = |x R x e( ) 0 0k
ix /2k (7)

where k indicates the rotation axis (e.g., k = y).
Classical datasets seldom satisfy the 2π-periodicity require-

ment of rotation gates. Nevertheless, the data can always be
normalized such that xm ∈ [0, 2π], or commonly xm ∈ [0, π]. For
example, suppose the task is to encode the vector x = [0, 5, 2]
into a quantum state via angle encoding with a maximum
rotation angle of π. The vector is first normalized to the range [0,
π]:

= · =
Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑx

x x
x x

min( )
max( ) min( )

0, ,
2
5angles

(8)

After scaling, the angles can be encoded with the Rx or Ry gates,
as shown in Figure 2b.
1.3.3. Amplitude Encoding. Amplitude encoding allows

one to encode complex valued floats into the amplitudes of a
quantum state. Thus, for a given classical dataset , an L2-
normalized complex vector x of length N can be encoded
into log(N) qubits. Namely,

| = | = |
=

x U x k0x
N

k
k

log( )

0

2 1N

(9)

Many quantum neural networks rely on this encoding
strategy, as it enables an exponential reduction in the number
of required bits to represent data, and thus has the potential to
allow for a speed-up that is not possible on classical computers.
Despite this, the unitary operator Ux shown in eq 9 may demand
a significant number of gates - a challenge discussed further in
section 6.2.
1.3.4. Variational Quantum Circuits and Readout.

Variational quantum circuits (VQCs), also commonly known
as parametrized quantum circuits (PQCs), are typically used to
introduce learnable parameters θ of unitary gates (Figure 3).
After the VQC, measurements are performed. Measurements
typically undergo classical post-processing to obtain averages.
The set of parameters θ are iteratively adjusted by a classical

Figure 1. Structure of a typical quantum neural network. The input is
encoded into a quantum state, followed by a variational quantum circuit
and measurements.

Figure 2. Data encoding methods. (a) Quantum circuit to prepare the
[1,0,1] vector with basis encoding. (b) Quantum circuit to prepare the

prescaled
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ0, , 2

5
vector with angle encoding, choosing the x-

rotation axis. (c) Amplitude encoding is equivalent to quantum state
preparation.

Figure 3. Generic three qubit quantum neural network using x-axis
angle encoding (blue), a variational quantum circuit (orange), and
measurements (pink).
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computer to minimize a cost function C(θ) defined by the
average expectation values | |†U OU( ) ( ) , as follows:

= | |†C f U OU( ) ( ( ) ( ) ) (10)

where |ϕ⟩ are the encoded states andU(θ) is the ansatz of choice
with learnable parameters and the function f is any classical post-
processing function. The overall hybrid quantum-classical
machine learning scheme is depicted in Figure 4.

2. PREDICTIVE QUANTUM MACHINE LEARNING

2.1. Quantum Graph Neural Networks
Graph neural networks (GNNs) are popular models in
applications of machine learning methods to chemistry because
molecules can be intuitively represented as graphs where nodes
are atoms and edges are bonds (Figure 5). In a typical GNN,
messages (i.e., features used to describe each node) are passed
between neighboring nodes, ultimately resulting in an
aggregated graph-level encoding which can subsequently be
processed to predict some value (e.g., protein−ligand binding
affinity, hERG activity, etc.)61

QGNNs were first introduced with the Networked Quantum
System.62 In this system, a graph = { }, with the set of
nodes and edges is defined as tensor products of Hilbert
subspaces representing nodes and edges. The Hilbert space
representing nodes, = v v and the space represent-
ing edges = e e are joined to create the full networked
Hilbert space =H that comprise the space for the
complete graph. Since then, various quantum theoretical
formulations of QGNNs have been introduced.63−66 Alongside
quantum graph convolutional networks, quantum learning on
equivariant graphs has also been demonstrated,67,68 which has
been of increasing interest in classical ML for drug
discovery.69−71

Equivariant QGNNs and hybrid quantum-classical QGNNs
have been used to predict the HOMO−LUMO gap in the QM9
dataset, which can provide insights on molecular stability.72 An

interesting observation from this work is that comparisons of
their QGNN models to their corresponding classical models
with the same number of parameters shows that the quantum
models typically outperform the classical counterparts. Addi-
tionally, training of the quantum model is generally more
efficient. These are exciting results that suggest favorable
scalability and generalization of QGNNs, as previously
suggested.73 Another study,74 has implemented a hybrid
QGNN to predict the formation energy of perovskite materials.
While their method underperforms compared to the fully
classical GNN, it has been pointed out that advantages will
emerge once state preparation techniques improve due to their
usage of amplitude encoding.

Quantum isomorphic graph networks and quantum graph
convolutional networks have been used to predict protein ligand
binding affinities, showing that hybrid models already perform
on par with state-of-the-art models.75 In this work, features are
amplitude encoded into a quantum state and a PQC replaces the
classical multilayer perceptron (MLP) to perform convolutions.
The models provide a good balance between number of
parameters and generalization.

QGNNs are truly promising methods. For example, Liao et
al.66 has analyzed quantum implementations of the Simple
Graph Convolutional network76 and the linear graph convolu-
tional network77 that exhibit quantum advantage in terms of
both space and time complexity. As the utility of graph networks
is extended to both small molecules and large protein structures
alike, solutions with complexity advantages are expected to be
the dominant driver of the success of QGNNs.
2.2. Quantum Convolutional Neural Networks

Convolutional neural networks (CNNs) gained initial popular-
ity for their success in image detection and classification.78 They
have been applied in chemistry to predict molecular properties,
interaction strengths, and other chemically significant tasks.79

The most fundamental architectural components of CNNs are
the kernels of convolutional layers.80 Each kernel creates a linear
combination of the values in the spatial neighborhood of a given
voxel (i.e., a pixel in the 2D case or a point in a 3D grid) of the
input data and then propagates the resulting scalar to a
corresponding spatial index in the output array. The coefficients
for this linear combination are learned throughout training and
constitute the weights of the kernel, which are applied uniformly
across the input voxels.

QCNNs were first introduced for quantum phase recog-
nition,81 outperforming existing approaches with a significantly
reduced number of variational parameters, scaling as O(log(N))
with N the number of qubits. This initial success sparked
significant interest, leading to the development of many QCNN
variants,82−86 tutorials,87−90 and applications to a large range of
complex tasks in many fields of science and technology. For
example, in high energy physics, QCNNs have been used to

Figure 4. Training a general variational quantum circuit (blue) via
classical post-processing and optimization (orange).

Figure 5. A classical graph neural network for extracting features from a molecule.
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classify particles with a level of accuracy and speed of
convergence that surpasses classical Convolutional Neural
Networks (CNNs) with the same number of learnable
parameters.91 In the field of biochemistry, they have shown
the ability to generate protein distance matrices92 and predict
protein−ligand binding affinities,75,93 demonstrating their
potential to contribute to our understanding of complex
biological systems.

The appeal of QCNNs over many quantum counterparts of
classical neural networks is multifaceted. In a QCNN, the
classical convolutional filters are replaced by quantum circuits
(Figure 6). In CNNs, the computation involves the discrete

convolution between a relatively small kernel and the input data.
This is attractive, as it allows the quantum approach to load only
a small amount of information at a time onto quantum devices,
as determined by the kernel size, which is of paramount
importance during the NISQ era. This feature of QCNNs can be
particularly useful in a biological context, as full-size feature
maps would be too demanding.

Broadly speaking, there are two classes of QCNNs that could
offer quantum advantage. This first class is akin to the general
structure shown in Figure 6.81 QCNNs with that structure
incorporate pooling layers that halve the number of active qubits
with each successive layer. This architectural choice involves
only O(log(N)) parameters and effectively circumvents the
issue of barren plateaus − a significant challenge discussed
further in Section 6.2. The second class can be termed Hybrid-
QCNNs (HQCNNs). HQCNN models replace the forward
pass of a convolutional filter with a quantum circuit, but perform

pooling layers classically after a measurement. HQCNNs are
popular choices since they allow for more classical control over
the network, with the mixing of quantum and classical
components potentially offering performance gains at the
expense of trainability and complexity brought by the original
QCNN architecture.

QCNNs and HQCNNs offer distinct advantages that are
attractive for chemical and pharmaceutical applications. While
QCNNs require only O(log(N)) parameters and avoid barren
plateaus, this by itself does not deem them to be advantageous
over classical CNNs. In a rigorous analysis of QCNNs (to which
they later extend to all QML models), the generalization bounds
of these models were investigated.73 The reported analysis offers
a guide to determine whether a QML model can exhibit better
performance on unseen (test) data when compared to their
classical counterpart. It is shown that when a QML model
achieves a small training error on a given task, while the classical
model with the same training error is significantly more complex,
then the QML model will most likely outperform the classical
model on unseen data.

This simple guide is particularly useful for drug discovery
applications where datasets can often be limited but good
generalization is paramount for discovery of life-saving
compounds. Given that in the NISQ era QML models can
only include a limited number of parameters, it is commonplace
and intuitive when designing QML models to compare their
performance to a classical network of equal parameters.
Therefore, it is important to temper claims of advantage in the
event of comparing a quantum and classical models, wherein the
classical model might be heavily restricted for the sole purpose of
fair comparisons with equal number of parameters. Instead, it is
more significant to identify tasks which satisfy the criteria which
guarantee good generalization bounds.73 Shifting focus to this
task identification, we anticipate that applications that are more
likely to benefit from demonstrable quantum advantage are
those for which the training data is scarce.

HQCNNs operate differently and more flexibly than QCNNs.
So, the ways in which quantum advantage might be
demonstrated is likely different from QCNNs. While the
above criteria to identify potential generalization quantum
advantage would still apply to HQCNNs94, this becomes less
straightforward as HQCNNs do not necessarily operate with
O(log(N)) parameters like their fully quantum counterparts.
HQCNNs have been proposed to enable quantum speed-up in
the CNN architecture (and neural network architectures in

Figure 6. QCNN architecture introduced by Cong et al.81 with log(N)
parameters, where N is the number of qubits.

Figure 7. Hybrid Quantum-Convolutional Neural Network (HQCNN). The full architecture contains a quantum VQC layer, followed by classical
pooling and classical convolutional layers. Adapted with permission from Smaldone and Batista.30 Copyright 2024 American Chemical Society.
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general) by directly calculating the inner product of the filter and
input data (Figure 7).30,95,96 These approaches are attractive
when searching for quantum advantage, as they are task-agnostic
and the potential for realization on quantum hardware is
dictated almost exclusively by data representation - a much more
straightforward litmus test of advantage compared to that
required for a generalizability advantage.

The success of classical CNNs in drug discovery has
prompted the exploration of QCNNs, as in the domain of
biophysics where the relatively large input data can be broken up
into tractable quantum circuits using the HQCNN method-
ology. An early biophysical application of HQCNNs has
involved a model capable of predicting protein structure,92

where the sequence lengths of the protein chains range from 50
to 500 residues and 50 to 266 residues in the training and testing
sets, respectively. The reported results indicate commensurate
performance to predictions by the popular classical model
DeepCov97 for protein contact maps while offering faster
training convergence. Both Domingo et al.93 and Dong et al.75

trained HQCNNs to predict protein−ligand binding affinities.
Domingo et al. demonstrated that their HQCNN architecture is
able to reduce the number of parameters by 20% compared to
the equivalent classical counterpart while maintaining perform-
ance. They noted that depending on the hardware, including a
quantum layer into the CNN architecture resulted in a 20% to
42% reduction in training times to achieve the same perform-
ance as a fully classical network. Similarly, Dong et al.
demonstrated competitive results with force field-based MM/
GBSA and MM/PBSA calculations while reducing the overall
number of parameters to their classical counterparts. In the work
by Smaldone and Batista,30 a HQCNN has been trained to
predict drug toxicity (Figure 8). This work has demonstrated a

method where the weights of a convolutional layer are learned
via quantum circuits while performing the underlying matrix
multiplication of discrete dot products with quadratic quantum
speed-up. This strategy performs at the level of classical models
with equal number of parameters and can be transferred to a
classical CNN mid-training to allow for noiseless training
convergence. While this model and those presented by
Domingo et al.93 and Dong et al.75 rely on an assumption of
noiseless and efficiently prepared quantum states, they provide
insights as to where quantum advantages may lie as the quantum
hardware is concurrently improved.
2.3. Looking Ahead: Quantum Machine Learning for Large
Molecules
mRNA and antibody-based biotherapeutics are critical for the
development of next-generation therapies, yet both pose
complex challenges, such as determining mRNA structures
and understanding antibody−antigen interactions. Quantum
computing has already shown promise by predicting mRNA
secondary structures (see Figure 9),98 and quantum neural

networks are now being applied to tackle antibody−antigen
interactions. Notably, Paquet et al.100 introduced Quantum-
Bound, a hybrid quantum neural network designed to predict
the physicochemical properties of ligands within receptor−
ligand complexes. Furthermore, Jin et al.101 developed a QNN
model to predict potential COVID-19 variant strains using
available SARS-CoV-2 RNA sequences. These early successes
highlight the potential of quantum neural networks to address
key challenges in biotherapeutics.

3. GENERATIVE QUANTUM MACHINE LEARNING

3.1. Quantum Autoencoders
The primary motivation behind the development of autoen-
coders is to compress data into a latent space, reducing
dimensionality while preserving essential information of the

Figure 8. Quantum CNN summary. (Top) Quantum circuit by
Smaldone and Batista30 employed to train a QCNN that predicts drug
toxicities with a quadratic quantum speed-up for matrix multiplication,
assuming efficiently prepared quantum states. (Bottom) Learning curve
for the prediction of drug activity to the androgen receptor. The yellow
region indicates epochs where the model was trained with reduced
complexity using quantum circuits, and the green region shows where
the weights were derived and training was continued using a classical
CNN. Adapted with permission from Smaldone and Batista.30

Copyright 2024 American Chemical Society.

Figure 9. Optimal folded mRNA structure of the 42-nucleotide
sequence computed using the VQE algorithm with 80 physical qubits
on the IBM quantum processor Heron. Reproduced with permission
from ref 99. Copyright 2024 IEEE.
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training data. Similarly, the original motivation for development
of Quantum Autoencoders (QAEs) is to compress quantum
data (Figure 10). Variational Autoencoders (VAEs), a specific
type of autoencoders, have gained popularity for molecular
generation due to their ability to learn compact representations
of molecular structures and generate new molecules with similar
properties. QVAEs can compress quantum states and could
therefore enable new avenues for molecular generation, though
the exact benefits of QVAEs in this domain require further
investigation.

There are two primary types of QAE, both utilizing hybrid
quantum-classical schemes where classical computers are used
for parameter optimization. The first type employs a quantum
circuit as the model architecture,102−108 aiming to leverage
quantum gates and operations to encode and decode quantum
states (see Figure 10a). The second type, known as the Hybrid
Quantum Autoencoder (HQA),109 employs measurement
outcomes as the latent representations. This approach combines
classical networks with QNNs in a hybrid model architecture,
where classical vectors derived from quantum measurements are
accessible for further analysis and processing (see Figure 10b).
Note that the compression is effective (with no loss of
information) only if the set of states to be compressed has
support on a subspace (lower dimension) of its Hilbert space.110

For example, the success of the Hubbard model example from
Romero et al.102 is due to the fact that these physical states
exhibit certain symmetries.

A proposal for QVAE111 involves the model architecture of
the first type of QAE shown in Figure 10a and a latent
representation regularized as in classical VAE. The regularized
latent space can enhance classification performance compared to
QAE. However, the regularization process requires mid-circuit
quantum state tomography, which may represent a practical
challenge for fully characterizing the state and scaling up.

Despite the promising aspects of QAE, several challenges
remain. First, training relies on classical optimization algorithms,
which can obscure statements about the overall computational
complexity. Second, these models assume that input states can
be efficiently prepared, a relatively straightforward task for
quantum data but challenging for classical data (see Figure 10c).
The encoding of classical data into quantum states might negate
the computational benefits offered by quantum computers.
Consequently, no immediate advantage can be claimed for QAE
on classical data over classical methods at present. However,
advancements in quantum computing hardware and more
efficient optimization schemes could lead to significant
improvements, making QAE a more viable and efficient tool
in the future, particularly as the training optimization and data
encoding complexity becomes comparable to the quantum
components of the models.
3.2. Quantum Generative Adversarial Networks

Generative Adversarial Networks (GANs) are machine learning
models designed to generate new data samples that mimic
samples from a given distribution. GANs consist of three
primary components: the prior distribution/noise sampling, the
generator, and the discriminator. The generator creates data
samples from random noise sampling, while the discriminator
evaluates the authenticity of the generated samples by
comparison against real data. This adversarial training process
helps the generator improve over time, creating increasingly
realistic samples. GANs have found applications in molecular
generation, much like VAEs, and have been shown to generate
novel molecular structures that adhere to desired proper-
ties.112−115

A QGAN was proposed by Dallaire-Demers and Killoran.116

This work introduced the concept of using quantum circuits
within the GAN framework, specifically leveraging quantum

Figure 10. Different types of Quantum Autoencoders (QAEs). (a) QAE utilizing a fully quantum circuit as the model architecture. (b) Hybrid
Quantum Autoencoder (HQA) with classical latent representation. (c) QAE with classical data as the input and output.
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circuits to measure gradients. Romero and Aspuru-Guzik117

extended the concept of QGANs by modeling continuous
classical probability distributions using a hybrid quantum−
classical approach. While their results were promising, they
noted that further theoretical investigations were necessary to
determine whether their methodology offers practical advan-
tages over classical approaches.

QGANs have been applied to generation of small
molecules,118 in a study that applied QGANs to the QM9
dataset.119 That study reported better learning behavior due to
the claimed superior expressive power and fewer parameters
required by the quantum models. However, these QGANs
struggled to generate valid molecules, and subsequent tests by
other researchers indicated that these QGANs struggled to
generate train-like molecules.120

Kao et al.120 explored the advantages of QGANs in generative
chemistry by testing different components of the GAN
framework with quantum counterparts. They demonstrated
that using a quantum noise generator (prior distribution
sampling) could yield compounds with better drug properties.
However, they found that quantum generators struggled to
generate molecules that resembled those in the training set and
encountered computational restrictions during further training.
Additionally, they showed that a quantum discriminator with
just 50 parameters could achieve a better KL score than a
classical discriminator with 22000 parameters, indicating that
quantum components can enhance expressive power even with a
much fewer number of parameters. Nevertheless, these
advancements often compromised the validity and uniqueness
of the generated molecules, potentially undermining the
efficiency of the sampling and generation processes.

Anoshin et al.121 introduced a hybrid quantum cycle
generative adversarial network for small molecule generation,
utilizing the cycle-consistent framework from prior re-
search.122,123 Their approach featured a hybrid generator
where a quantum circuit processed the noise vector (prior
distribution) and connected to a MLP to generate molecular
graphs. This method demonstrated comparable, or even
improved, performance across various metrics, including
uniqueness, validity, diversity, drug-likeness, as well as
synthesizability and solubility, highlighting the potential of
hybrid quantum-classical architectures in enhancing generative
models. However, the study did not provide a detailed
comparison of the total number of parameters used, limiting
claims about its expressive power.

While QGANs show some promising results in molecular
generation, particularly in areas like enhanced drug properties
and the potential for better expressive power in discriminators,
significant challenges persist. The expressive power derived from
full quantum discriminators may come at the cost of
compromising other crucial metrics in molecular generation.
Additionally, when hybrid networks achieve improvements in
drug properties and other metrics, the exact contribution of
expressive power offered by the quantum component becomes
less clear. Thus, an outstanding challenge is to achieve enhanced
expressive power without sacrificing performance across other
critical metrics.
3.3. Looking Ahead: Quantum Transformers

Much of the AI revolution is due to the transformer architecture
introduced in the “Attention is All You Need” paper out of
Google DeepMind.124 This architecture was originally devel-
oped for language translation, and consisted of encoder and

decoder components which are connected via a cross-attention
mechanism. The encoder alone is useful for learning a context-
rich representation for a given input sequence by masking some
of the sequence and learning to predict the masked parts. The
decoder is useful for generating new sequences by learning to
predict the next parts of some sequence given a context. Within
the realm of biochemistry and drug discovery, transformer
encoders have been developed to extract feature vectors from
SMILES strings to be used for downstream predictive tasks, and
transformer decoders have been used to generate SMILES
strings with prespecified characteristics.125−129 The fundamen-
tal capabilities of the transformer architecture are due to the self-
attention mechanism where query, key, and value vectors are
computed for each input token (e.g., a subword in text or a
character in a SMILES strings), attention scores are derived via a
scaled dot product of query and key vectors, and softmax
normalizes these scores to obtain weights that modulate the
aggregation of the value vector, effectively capturing the
magnitude with which each token will attend to every other
token in the sequence. The self-attention mechanism is often
executed multiple times in parallel through what is referred to as
multi-head attention.

The overwhelming success of the classical transformer in ML
has naturally piqued the interest of QML researchers. Most
implementations of quantum transformers have been adapted as
Vision Transformers (ViTs) rather than for Natural Language
Processing (NLP).130−133 While classical ViT models have been
utilized in predictive tasks in chemistry and biophysics,134−136

the primary role of transformers in the context of drug discovery
has remained with transformer-based generative models.

Quantum-based attention for generative pretrained trans-
formers (GPTs) are still in their infancy, and while many of the
results presented thus far have been largely theoretical, the field
is rapidly advancing. In 2022, DiSipio et al.138 discuss the
beginnings of quantum NLP, and highlighted that the
underlying mathematical operations of the transformer’s self-
attention mechanism all have implementable quantum for-
mulations. In 2023, both Gao et al.139 and Li et al.140 show
implementations for a quantum self-attention mechanism. Guo
et al.141 and Liao et al.142 independently present full end-to-end
GPT quantum algorithms. Notably, the work from Guo et al.
presents a rigorous complexity analysis and demonstrates a
theoretical quantum advantage for numerous normalization
operations throughout the architecture.

The success of the transformer architecture can be attributed
to its self-attention mechanism, which has motivated researchers
to explore quantum analogs for potential performance gains.
The traditional classical self-attention mechanism scales n d( )2

for sequence length n and embedding dimension d. This arises
from multiplying the query and key matrices QKT as well as
applying the resulting pairwise attention matrix to the value
matrix V. Unfortunately, the current quantum implementations
that potentially achieve a complexity advantage rely on
algorithms that are unsuitable for quantum hardware in the
NISQ-era. Smaldone et al.137 presented a quantum-classical self-
attention mechanism in a transformer for molecular generation
that reduces the complexity of the attention score calculation to

n d( log )2 without relying on unrealistic assumptions of state
preparation or matrix sparsity. Their model performs similarly to
the equivalent classical analog and is able to generate molecules
conditioned on physicochemical properties. The workflow of
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their model is outlined in Figure 11 and is available as an
application tutorial on the CUDA-Q documentation page.143

Some classical techniques try to avoid the n d( )2 complexity
of scaled dot-product attention through alternative meth-
ods.144−146 Similarly - instead of scaled dot-product attention -
Quantinuum released an open-source model, Quixer,147 that
proposes a quantum analog of the k-skip-n-gram NLP technique
for learning relationships between tokens. Quixer mixes
embedded tokens by using linear combination of unitaries
(LCU),148 and further computes skip-bigrams between words
using quantum singular value transformations (QSVT).149

Quixer’s model scales O(log(nd)) in the number of qubits and
O(n log d) in the number of gates. In contemporary transformer
applications, sequence length n is often much larger than the
embedding d which makes the logarithmic scaling in the number
of qubits with respect to n a promising look into the future of
transformers.

While the present models largely do not claim an explicit
complexity quantum advantage, this should not dissuade future
researchers from utilizing the available methods for their
pharmacological applications. The nascency of the field presents
an opportunity for researchers in academia and pharmaceutical
industry alike to hunt for advantages elsewhere. Presently with
few current works in the literature applying quantum trans-
formers to chemical, biological, or pharmaceutical tasks, this
should inspire researchers to investigate if these quantum
transformers can learn hidden features inaccessible to classical
learning styles as indicated by Li et al.140 In this event,
combining features extracted from both a quantum transformer
component and a classical transformer component could
present a model with a richer understanding of chemical and
biological function, leading to exciting downstream effects in
drug design. Beyond quantum transformer architectures, hybrid
generative models that incorporate quantum components in
other neural architectures have demonstrated early experimental
success. Vakili et al.150 demonstrated that a hybrid QCBM−
LSTM model can generate valid SMILES strings for KRAS
inhibitors, two of which showed micromolar activity in cell-
based assays. This highlights the practical promise of quantum
generative models even outside transformer architectures.

4. POTENTIAL OF BOSONIC QUANTUM PROCESSORS
FOR QUANTUM MACHINE LEARNING

Nearly all gate-based QNNs are performed on qubit-based
quantum processors, however the potential to extend these
models beyond this platform remains relatively unexplored.
There has been some recent efforts building quantum machine
learning models with the multilevel discrete151,152 and
continuous153,154 representation of a quantum harmonic
oscillator, also known as a qumode. In this section, we discuss
the potential of a new paradigm of quantum computing
consisting of qubits coupled with qumodes for quantum
machine learning.
4.1. Basics of Bosonic Quantum Computing

Hybrid qubit-qumode devices155−157 have the potential to
augment the power of qubit architectures by allowing for data
encoding in a much larger Hilbert space with hardware
efficiency. For example, qumodes could amplify the impact of
VQCs in applications to QML beyond the implementations
discussed in Section 1.3.4.

An arbitrary qumode state |ψ⟩, corresponding to the state of a
quantum harmonic oscillator, can be expanded in its Fock basis
state representation as a superposition of a countably infinite set
of orthonormal photon-number states {|n⟩}. In practice,
however, the expansion is truncated with a Fock cutoff d, as
follows:

| = |
=

c n
n

d

n
0

1

(11)

According to eq 11, a qumode generalizes the two-level qubit
into a d-level state (also known as qudit158), thus offering an
expanded basis set. Beyond the expanded basis, the hardware of
bosonic modes are relatively weakly affected by amplitude
damping errors,157 which leads to extended lifetimes, and the
possibility of implementing efficient error correction
codes.159−161

Recent advancements in bosonic quantum hardware have
significantly progressed, enhancing the implementation of
qumodes across various architectures155 However, achieving
universal quantum computing remains challenging when relying
solely on native qumode operations. This is where hybrid qubit-
qumode hardware have made notable strides. For example, in
the circuit quantum electrodynamics (cQED) framework, a

Figure 11. Overall workflow of the quantum−classical hybrid transformer model for molecular generation, proposed by Smaldone et al.137 Attention
scores are generated with quantum circuits and used inside a classical transformer decoder model to generate SMILES strings.
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microwave cavity coupled to a transmon qubit has demonstrated
considerable potential (Figure 12).162 The interplay between
qubit and qumode dynamics enables the development of hybrid
qubit-oscillator gate sets, which are efficient in achieving
universality.157,163,164

Additionally, photonic processors offer programmability that
facilitates the simulation of bosonic systems.165,166 In contrast,
qubit based hardware is inherently suited for simulating
Fermions through the Jordan-Wigner transformation.167−169

Therefore, a hybrid qubit-qumode architecture is particularly
attractive, since qubit-only or bosonic-only native gates might
require deeper circuits for specific applications, although
methods have been developed to represent bosons using qubits
and vice versa.170−172

Incorporating efficient bosonic representation could enable
practical simulations beyond the capabilities of conventional
qubit-based quantum computers, as already shown for example
in calculations of vibrational spectra of small polyatomic
molecules.173 This can be achieved with photonic quantum
processors,174−176 cQED devices,173 and even hybrid qudit-
boson simulators.177

Another unique feature of qumodes is that they can also be
represented by continuous variable (CV) bases corresponding
to position and momentum operators of a quantum harmonic
oscillator,178 with no counterpart for qubits. For example, in the

position representation, an arbitrary qumode state |ψ⟩ can be
expressed, as follows:

| = |
+

dx x x( )
(12)

where ψ(x) = ⟨x|ψ⟩ is the oscillator complex valued amplitude at
x. As state and process tomography are necessary to calibrate
and model hardware noise, hybrid processors offer simple
protocols to determine the Wigner function of qumode
states,179−183 allowing further development of abstract machine
models.157

4.2. Potential Advantages of Qubit-Qumode Circuits in
QML
Hybrid qubit-qumode circuits, such as the one shown in Figure
12, can be used to approximate any unitary transformation of the
qubit-qumode system. An attractive choice of a circuit
structure164 applies repeating modules of a qubit rotation gate,

= +R e( , ) i /2( cos sin )x y (13)

where σx and σy are Pauli X and Y matrices, followed by an
echoed conditional displacement (ECD) gate,

= | | + | |

= *†

D D

D e

ECD( ) 1 0 ( /2) 0 1 ( /2) (14a)

( ) (14b)a a

Figure 12. (Top) Schematic representation of a superconducting cavity resonator coupled to a qubit transmon. (Bottom Left) Visual schematic of a
two-level qubit (transmon) coupled to a multilevel oscillator (superconducting cavity). (Bottom Right) Example of a qubit-qumode circuit that allows
for universal control, where the qubit rotation gate R(θ, φ) is defined in eq 13 and the echoed-conditional displacement (ECD) gate is defined in eq 14.
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where †a and a ̂ are bosonic creation and annihilation operators,
respectively.

The qumode Hilbert space may offer advantages over qubit-
based registers since it allows for more efficient representations
for predictive and generative tasks.151,152,158 For example, a
system with 8 qubits involves a Hilbert space with 28 = 256 basis
states, which could be represented by two qumodes with control
over d = 16 Fock states (each mode offering a Hilbert space
equivalent to the space expanded by 4 qubits).173 Therefore,
encoding of complex molecular information that typically
requires many qubits would potentially benefit from hybrid
qubit-qumode circuits, as these systems offer significant
hardware efficiency compared to qubit circuits with a similarly
sized Hilbert space. Additionally, the circuits of qumode states
can be based on efficient or shallow circuits that bypass the need
of deep circuits based on elementary logic gates.158,173

4.3. Encoding Classical Information in Qubit-Qumode
Circuits
We introduce two possible methods for encoding classical (or
quantum) data in the form of quantum states of a qumode
coupled to a qubit. Similar to amplitude encoding for qubit
systems, we can adapt the method discussed in Section 1.3.3 for
qumodes. We simply modify eq 9 to encode a vector of length d
into the amplitudes αk of a d-level qudit, as follows:

| = | = |
=

x U x k0x d
k

d

k
0

1

(15)

where Ux is the unitary transformation that encodes the data
provided by the amplitudes in the form of the qumode state |x⟩.
Here, |0⟩d is the initial vacuum state of the qumode
corresponding to an empty cavity without photons. Preparing
Ux requires parameterization of a circuit with universal qumode
control such as the one with blocks of a qubit rotation gate

followed by an ECD gate (R-ECD circuit) outlined in Figure 13
and Section 4.2.164 Other circuit structures are also available
which can be parametrized to encode any arbitrary dataset by
amplitude encoding in the form of a qumode state.157,163

Another practical method for encoding molecular informa-
tion (e.g., a list of tokens defining a specific molecule) in a qubit-
qumode state involves a generalization of phase encoding. A
dictionary is used to correlate the input tokens to the values of
parameters used in the circuit. When using the R-ECD circuit
structure defined by eq 13 and eq 14, specific parameters θ, φ,
and β of each module are assigned to each specific token of the
input. So, the sequence of tokens defining the input molecule is
encoded as a specific parametrization of the R-ECD ansatz. This
generalization of phase encoding is not limited to molecular
encodings, or the specific choice of circuit structure, and can be
applied for a wide range of studies, including the encoding of
tokens in qubit-qumode devices.

One technical challenge of these generalized phase encoding
methods is that the encoded states for different states could
partially overlap with each other, unless an orthogonalization
procedure is enforced. The partial overlap could lead to some
level of confusion due to ambiguity of the encoding. To address
this challenge, the parameters assigned to each token can be
made learnable parameters such that the encodings are
optimized to be as different as possible.

5. EFFICIENT CIRCUIT SIMULATION FOR NEAR-TERM
RESEARCH AND COMPUTING UNIT INTEGRATION

Despite recent progress, current Quantum Processing Units
(QPUs) remain limited in size and computational capabilities
due to noise and scaling challenges, which impedes progress in
algorithmic research. To address this challenge, circuit
simulation techniques are meeting the critical need to advance
research boundaries. An open-source platform for seamlessly

Figure 13. Circuit diagrams for the R-ECD encoding method. (a) General encoder architecture with a set of θ, φ, and β assigned to each unique token
in the dictionary, encoding a string of length L. (b) Specific circuit for the encoding of ethylamine, where the R-ECD block corresponding to N is
applied, followed by two blocks of R-ECD corresponding to C.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.4c00678
Chem. Rev. XXXX, XXX, XXX−XXX

L

https://pubs.acs.org/doi/10.1021/acs.chemrev.4c00678?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.4c00678?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.4c00678?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.4c00678?fig=fig13&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.4c00678?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


integrating and programming QPUs, GPUs, and CPUs within a
single system is provided by NVIDIA’s CUDA-Q184 (see Figure
14). Various quantum computing frameworks, including Cirq,
Qiskit, TorchQuantum, and Pennylane,185−188 utilize GPU-
accelerated simulation through the cuQuantum libraries189

featured in the CUDA-Q simulation backend. By employing the
CUDA-Q compiler alongside cuQuantum APIs as simulation
backends, users can achieve near-optimal GPU acceleration and
exceptional performance at scale.

In this section, we demonstrate how CUDA-Q can be utilized
to accelerate and scale up quantum circuit simulations. This is
applicable to various fields including quantum machine learning
for chemistry. We use CUDA-Q v0.8 for simulations and show
how the compute resources scale with the size of the simulation.
Examples used to reproduce the results presented in this section
are available in GitHub.190

5.1. Circuit Simulator with State Vector and GPU
Acceleration

Desktop CPUs can handle the simulation of small numbers of
qubits; for instance, on a laptop with at least 8 GB of memory,
noiseless simulations can reach up to 24 qubits, while noisy
simulations are feasible with up to 18 qubits.191 However, as the
memory required to store the full state vector grows
exponentially with the number of qubits, GPUs are needed for
larger simulations. For example, an NVIDIA DGX A100 can
simulate 20 qubits with exceptional speed, while a CPU would
be very slow at performing the state vector simulation of similar
size, as shown in Figure 15.

Figure 15 compares the logarithmic (log10) runtime for
computing the expectation value of a quantum circuit similar to
the one shown in Figure 16 using a state vector simulator on one
CPU (AMD EPYC 7742 64-Core Processor) as compared to
one NVIDIA A100 GPU. The quantum circuit in Figure 16 is a
standard parametrized quantum circuit employed in QNNs for
different applications such as QGANs applied for drug discovery
and molecular generation.120,192 Specifically, Figure 15 shows
the comparison of the runtime on a single CPU as compared to a
single GPU for data points of 10,000 (i.e., 10,000 expectation
values) as a function of the number of qubits. It is shown that the
runtime on the CPU significantly increases as we increase the
number of qubits while increases only modestly on the NVIDIA

A100 GPU. For example, for the 18 qubit circuit, there is a
≈150× speed up on the single GPU. When increasing the
number of qubits to 20, the speed up is ≈530×. These results
emphasize the need for GPU supercomputing to accelerate
simulations of quantum algorithms and applications to research
and development. Such simulations would enable studies
beyond small-scale proof-of-concept calculations in application
studies to real-world scenarios.

Figure 14.CUDA-Q software stack. CUDA-Q builds off of a core MLIR-based intermediate representation for representing hybrid quantum−classical
code with control flow. The compiler workflow lowers to target specific code for backend QPU execution. This state-of-the-art compiler stack is
exposed to programmers via a library-based C++ language extension and a JIT compiled language representation in Python.

Figure 15. Logarithmic (log10) execution time for one “observe” call
(i.e., measure the observable operator applied to the state vector/
wavefunction, also known as expectation value) for each data point
(10,000 data points; i.e., in total there are 10,000 expectation values) on
a single CPU versus a single GPU for a one layer of the parametrized
quantum circuit (PQC) similar to the PQC shown in Figure 16. The
code used to generate the data in this figure is available on GitHub.193

Figure 16. An example of a parametrized quantum circuit employed in
QNNs.
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Another example demonstrating the capabilities of CUDA-Q
are the implementations of the VQE-Quantum approximate
optimization algorithm (VQE-QAOA) algorithm for simula-
tions of molecular docking194 and protein folding.195 For
example, the VQE-QAOA algorithm has been applied to find the
optimal configuration of a ligand bound to a protein,
implementing the molecular docking simulation as a weighted
maximum clique problem.194 Simulations were performed with
up to 12 qubits. The CUDA-Q tutorial196 reproduces the results
using DC-QAOA and compares the CPU and GPU runtimes
(Table 1). For 12 qubits, a 16.6× speed up is observed on a
single GPU when compared to a single CPU.

CUDA-Q also allows for gate fusion to enhance state vector
simulations with deep circuits, thereby improving perform-
ance.197,198 Gate fusion is an optimization technique that
combines consecutive quantum gates into a single gate (see
Figure 17), which reduces the overall computational cost and

increases the circuit efficiency.199,200 By grouping small gate
matrices into a single multi-qubit gate matrix, the fused gate can
be applied in one operation, eliminating the need for multiple
applications of small gate matrices. This optimization reduces
memory bandwidth usage, as applying a gate matrix G to a state
|Ψ⟩ = G|ϕ⟩ involves reading and writing the state vector. The
memory bandwidth (in bytes, including reads and writes) can be
calculated, as follows:

= ×memory bandwidth 2
svSizeBytes

2ncontrols (16)

where ‘svSizeBytes’ represents the state vector size in bytes and
‘ncontrols’ is the number of control qubits (e.g., a CNOT gate
has one control). Applying two gates, G2G1|ϕ⟩, requires two
reads and two writes, whereas applying the combined gate
(G1G2)|ϕ⟩ only needs one read and one write.

Gate fusion can significantly enhance simulation performance
for deep circuits which are crucial for quantum applications in
chemistry. A notable example is the unitary coupled cluster
singles and doubles (UCCSD) ansatz, widely used in quantum
computational chemistry calculations. For instance, when
running a single observation call (i.e., computing one expect-
ation value) for the C2H4 molecule using the UCCSD ansatz

with 24 qubits on an NVIDIA A100, the total elapsed time is
30.02 s without gate fusion. In contrast, with gate fusion, the
elapsed time is reduced to 12.44 s, demonstrating a 2.4×
speedup. The code for this comparison is available on
GitHub.201

5.2. Parallelization and Scaling
NVIDIA’s CUDA-Q platform provides a clear overview of the
various devices in a quantum-classical compute node, including
GPUs, CPUs, and QPUs. Researchers and application
developers can work with a diverse array of these devices.
Although the integration of multiple QPUs into a single
supercomputer is still in progress, the current availability of
GPU-based circuit simulators on NVIDIA multi-GPU archi-
tectures enables the programming of multi-QPU systems today.
5.2.1. EnablingMulti-QPUWorkflows. CUDA-Q enables

application developers to design workflows for multi-QPU
architectures that utilize multiple GPUs. This can be achieved
using either the ‘NVIDIA-mQPU’ backend202 or the ‘remote-
mQPU’ backend, which we discuss further in Section 5.2.3. The
‘NVIDIA-mQPU’ backend simulates a QPU for each available
NVIDIA GPU on the system, allowing researchers to run
quantum circuits in parallel and thus accelerating simulations.
This capability is crucial for applications such as quantum
machine learning algorithms. For example, in training QNNs,
computing expectation values for numerous data points is often
required to train the model. By batching these data points, they
can be processed simultaneously across multiple GPUs.

Figure 18 compares results obtained by running a QNN
workflow running on a single GPU versus those obtain by

distributing the workflow across four GPUs (in a single CPU
node with 4 GPUs). The code for this comparison is available in
GitHub.203 For an application using 20 qubits, we find that the
runtime with four-GPUs is approximately 3.3 times faster than
using a single GPU. Although parallelization requires some
synchronization and communication across the GPUs, which
slightly limits the speedup to being less than 4x, this still
demonstrates strong scaling performance. It highlights the
efficient utilization of GPU resources when available.

Another example of a commonly used application primitive
that benefits from parallelization using the ‘NVIDIA-mQPU’
backend is the Hadamard test. The Hadamard test is crucial for

Table 1. Execution Time of One “Observe” Call (i.e.,
Expectation Value) Using DC-QAOA Ansatza

qubits CPU time (s) GPU time (s)

6 0.322 0.160
8 1.398 0.390

12 6.863 0.412
aSimulations were run with 3, 8, and 13 layers for 6, 8, and 12 qubits,
respectively.

Figure 17. Gate fusion fuses multiple gates into one larger gate.

Figure 18. Execution time for an “observe” call (expectation value)
made for 10,000 data-points for a one layer of the parametrized
quantum circuit similar to the one shown in Figure 16. All simulations
were run on an NVIDIA DGX A100 GPU device. For a single GPU, the
total 10,000 data-points are dealt within a single GPU (i.e, 10,000
“observe” calls in sequence on a single GPU). For the four GPU case,
the data points are split into four batches, each containing 2500 data-
points (i.e., 2500 “observe” calls on each GPU).
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computing the overlap between different states, as necessary to
evaluate correlation functions, and expectation values which
involve calculating O(n2) independent circuits in a wide range of
applications, including prediction of drug toxicity30 and
determining the electronic ground state energy of mole-
cules.204,205 By leveraging parallelism, these O(n2) circuits can
be efficiently executed across as many QPUs − whether physical
or simulated− as are available.
5.2.2. Scaling Circuit SimulationswithMulti-GPUs.The

conventional state-vector simulation method requires storing 2n

complex amplitudes in memory when simulating n qubits. This
results in exponentially increasing memory requirements for
circuits with a large number of qubits. If each complex amplitude
requires 8 bytes of memory, the total memory required for an n
qubit quantum state is 8 bytes × 2n. For instance, with n = 30
qubits, the memory requirement is approximately 8 GB, while
for n = 40 qubits, it jumps to about 8700 GB. CUDA-Q
addresses this challenge by enabling the distribution of state-
vector simulation across multiple GPUs via the ‘NVIDIA-
mGPU’ backend.202 For detailed information of the algorithm,
see Sec. II−C in ref 189. Additionally, examples of using the
‘NVIDIA-mGPU’ backend are available on GitHub.206

The ‘NVIDIA-mGPU’ backend combines the memory of
multiple GPUs within a single DGX compute node and across
multiple DGX compute nodes in a cluster. DGX compute nodes,
part of NVIDIA’s DGX platform, are high-performance
computing (HPC) servers, specifically designed for HPC and
artificial intelligence workloads, leveraging NVIDIA GPUs to
accelerate intensive computations. By pooling GPU memory,
this backend allows for greater scalability and eliminate the
memory limitations of individual GPUs. Consequently, the
capacity to simulate larger numbers of qubits is constrained only
by the available GPU resources in the system.

Intra-node NVlink207 is a powerful tool for large-scale
simulations. An NVLink-based system enables greater perform-
ance optimization by providing direct access to the full NVLink
feature set, bypassing the CUDA-Aware MPI layer. CUDA-Q
v0.8 introduces an improved algorithm for intra-node NVLink,
leveraging CUDA Peer-to-peer (P2P) communication.208 Table
2 compares the performance of CUDA-Q 0.7 (using CUDA-

aware MPI) and CUDA-Q 0.8 (using P2P) on an NVlink-
enabled DGX H100 system. In these simulations, the state
vector was distributed across a single node with 8 GPUs. Four
large-scale quantum algorithms were benchmarked using the
MPI and P2P API in CUDA Runtime. As shown in Table 2,
CUDA-Q v0.8 with P2P achieves up to 2.5x speedup for H-gates
compared to CUDA-Q v0.7 with CUDA-aware MPI.

Additionally, developers can now use CUDA-Q to fully
exploit the performance of the NVIDIA GH200 AI superchip,209

further enhancing the capabilities of quantum simulation in
CUDA-Q. With a combined CPU and GPU memory of 1.2TB,
the GH200 AI superchip significantly accelerates quantum
simulations, reducing the number of required nodes by 75%.
This reduction is particularly crucial for quantum applications
research, which is often constrained by memory limitations.

Table 3 compares the performance of the GH200 superchip
and the DGX H100 for running a quantum algorithm using a

state vector simulator. In this comparison, we employed 37
qubits and distributed the state vector across 8 GPUs on four
nodes in the GH200 superchip and a single node in the DGX-
H100. Our findings show that the GH200 superchip achieves up
to 2.58x speed up for the quantum Fourier transform (QFT) and
a 4x speed up for H-Gates.
5.2.3. Combining Backends For Large Scale Simu-

lations. Quantum circuit simulations can be scaled up using the
‘NVIDIA-mGPU’ backend and parallelized with the ‘NVIDIA-
mQPU’ backend, as described in the previous section. CUDA-Q
provides the capability to combine both backends through the
‘remote-mQPU’ backend, enabling large-scale simulations
(Figure 19). In this configuration, multiple GPUs comprise a
virtual QPU. A practical example of using ‘remote-mQPU’ for
QNNs is available on GitHub.210

5.3. Quantum Circuit Simulator With Tensor Networks
The state vector method is effective for simulating deep
quantum circuits, however, it becomes impractical for
simulations of circuits with large numbers of qubits due to the
exponential growth in computational resources required −
making them unmanageable even on the most powerful
supercomputers available today. As an alternative, the tensor
network method represents the quantum state of N qubits
through a series of tensor contractions (see Figure 20). This
approach allows quantum circuit simulators to efficiently handle
circuits with many qubits.

Tensors (see Figure 21) generalize scalars (0D), vectors
(1D), and matrices (2D) to an arbitrary number of dimensions.

Table 2. Quantum Algorithm Performance Improvements
Enabled by NVLink Optimizationsa

algorithm qubits speed up (in simulation time)

H-Gates 35 2.47
QAOA 32 1.28
QFT 35 1.13
UCCSD 32 1.30

aThe speed up in time is reported for CUDA-Q v0.8 with CUDA P2P
compared to CUDA-Q v0.7 with CUDA-aware MPI. Simulation
times accounts for a single VQE execution. H-Gates refers to applying
one Hadamard gate per qubit. All simulations were run on a DGX
H100 device.

Table 3. Comparison of Performance of the GH200
Superchip and the DGX H100 for Running a Quantum
Algorithm Using a State Vector Simulationa

algorithm qubits speed up (in simulation time)

H-Gate 37 4.10
QFT 37 2.58

aSimulations were run with 37 qubits, and the state vector was
distributed across 8 GPUs in a single node in the DGX H100 and four
nodes in the GH200 superchip. H-Gates refers to applying one
Hadamard gate per qubit.

Figure 19. An example of multi-QPU backend with multi-GPU. Here,
there are two virtual QPUs (vQPU), and each virtual QPU is made of
two GPUs.
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A tensor network consists of a set of tensors connected together
through tensor contractions to form an output tensor. In
Einstein summation notation, a tensor contraction involves
summing over pairs of repeated indices (see Figure 21). For
example, a rank-four tensor M can be formed by contracting two
rank-three tensors C and B, as follows: Mijlm = ∑kCijk Bklm. Here,
the contraction is performed by summing over the shared index
k. Identifying an efficient contraction sequence is essential for
minimizing the computational cost of the tensor networks.189,211

The contractions between the constituent tensors define the
topology of the network.212,213

CUDA-Q offers two GPU-accelerated tensor network
backends: ‘tensornet’ and ‘tensornet-mps’.214 For a detailed
explanation of tensor network algorithms and their performance,
see refs189, 215.

The ‘tensornet’ backend represents quantum states and
circuits as tensor networks without any approximations. It
computes measurement samples and expectation values through
tensor network contractions.216 This backend supports the
distribution of tensor operations across multiple nodes and
GPUs, enabling efficient evaluation and simulation of quantum
circuits.

The ‘tensornet-mps’ backend utilizes the matrix product state
(MPS) representation of the state vector, exploiting low-rank
approximations of the tensor network through decomposition
techniques such as QR and singular value decomposition. As an
approximate simulator, it allows truncation of the number of
singular values to keep the MPS size manageable. The
‘tensornet-mps’ backend supports only single-GPU simulations.
Its approximate nature enables it to handle a large number of

qubits for certain classes of quantum circuits while maintaining a
relatively low memory footprint.

As hybrid quantum-classical workflows and scalable simu-
lation frameworks continue to evolve, tools like CUDA-Q
provide a vital foundation for real-world deployment of
quantum machine learning models. Yet despite these techno-
logical advancements, key challenges remain across quantum
hardware, algorithms, and scalability. The next section outlines
these broader limitations and critical areas of research required
to unlock the full potential of quantum machine learning.

6. CHALLENGES AND OUTLOOK

6.1. Hardware
When evaluating the physical implementation of quantum
computers, it is essential to consider the widely recognized five
criteria proposed by DiVincenzo:217

(1) Scalable physical systems with well-characterized
qubits: The system should contain qubits that are not
only distinguishable from each other but also manipulable
either individually or collectively. This requirement
ensures that qubits can be controlled with precision for
complex quantum computations.

(2) Ability to initialize qubits to a simple, known state:
Typically referred to as a “fiducial” state, this criterion
emphasizes the importance of preparing qubits in a well-
defined, simple initial state, such as the zero state. This
initialization process is crucial for the reliability and
predictability of subsequent quantum operations.

(3) Decoherence times much longer than gate operation
times: Quantum systems must exhibit long coherence
times relative to the time it takes to perform quantum gate
operations. This ensures that quantum information is
preserved long enough to complete computations before
being lost to decoherence.

(4) A universal set of quantum gates: The hardware must
support a set of quantum gates capable of performing any
quantum computation. This typically includes a variety of
single-qubit gates along with a two-qubit entangling gate,
such as the CNOT gate, enabling the construction of
complex quantum circuits.

(5) Qubit-specific measurement capability: The system
should allow for accurate measurement of individual
qubits’ states after computation. This criterion is essential
for retrieving the final output of quantum computations.

Gate-based quantum computer designs generally adhere to
these criteria, yet achieving the most optimal performance

Figure 20. Single-qubit and two-qubit gates translate to rank-2 and rank-4 tensors, respectively. The initial single-qubit states |0⟩ and single-qubit
measurement operations can be viewed as vectors (projectors) of size 2. The contraction of the tensor network on the right yields the wavefunction
amplitude of the quantum circuit on the left for a particular basis state.

Figure 21. Tensor diagram (left) and example of matrix-like
contractions (right).
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remains a significant challenge. For QML, these hardware
requirements introduce additional complexities.

QNNs often claim superior expressive power compared to
classical neural networks. This advantage typically necessitates
high connectivity among qubits, aligning with the need for well-
characterized and scalable qubit systems described in Criterion
(1). Ensuring such connectivity while maintaining system
scalability and qubit fidelity is a nontrivial challenge in current
hardware implementations.

Moreover, QML algorithms frequently utilize amplitude
encoding, a technique that effectively encodes classical data
into quantum states. This approach, however, is equivalent to
preparing arbitrary quantum states, which goes beyond the
simpler requirement of initializing qubits to a fiducial state as
outlined in Criterion (2). Consequently, specific QML
applications may require either modifications to the existing
hardware criteria or the development of more advanced state
preparation algorithms to achieve the desired outcomes.

Finally, when the final output of a QNN necessitates precise
amplitude measurements of quantum states, the hardware must
extend the measurement capabilities described in Criterion (5).
Specifically, accurate and scalable quantum state tomography
becomes essential to extract the necessary information from the
quantum system. This represents another area where current
quantum hardware may need further refinement to fully support
the demands of QML.
6.2. Algorithms

Loading classical data into a quantum state is the often first step
in a QNN, and is a step that will largely dictate the performance
of the model, the potential advantages the quantum model
possess over the classical, and the model’s quantum resource
complexity. For example, angle encoding (eq 7) is inexpensive to
implement on quantum hardware, but it is difficult to extract a
complexity advantage. Alternatively, amplitude encoding easily
enables a complexity advantage due to the exponentially larger
Hilbert space in which information can be stored, but at the
expense of quantum resources to prepare such quantum state. In
particular, state preparation techniques to prepare arbitrary state
vectors scale exponentially with respect to the number of two-
qubit gates required to prepare the quantum state.218,219 While
this problem of state preparation may be daunting, promising
data encoding workarounds are being developed. Data
reuploading is a strategy that allows circuits to handle more
complex data by breaking the information into smaller quantum
circuits.220 Shin et al. presents a method for QML that utilizes a
quantum Fourier-featured linear model to exponentially encode
data in a hardware efficient manner.221 The authors demonstrate
the method achieves high expressivity and exhibits better
learning performance compared to data reuploading, notably
when learning the potential energy surface of ethanol. These
promising directions should motivate QML researchers to
identify tasks where their input data exists in or can be
transformed into a form that is known to be efficiently
prepared222−224 or where the exact input vector does not need
to be known a priori and is learned through training.
Furthermore, as QPUs evolve to include more qubits and
improved interconnected topologies, state preparation algo-
rithms that utilize ancillary qubits will help address the
challenges associated with poor decoherence times and
prolonged gate execution times, as they are capable of preparing
arbitrary states with shallower depths.225

Similar to how classical ML architectures have the potential to
suffer from vanishing gradients, VQCs have the potential to
suffer from barren plateaus. Barren plateaus occur when the loss
differences used to compute quantum weight gradients
exponentially vanish with the size of the system. Larocca et al.
presents a comprehensive review where the authors outline
strategies to avoid and mitigate the problem of barren
plateaus.226 Some of these methods that an aspiring QML
researcher should be aware of are shallow circuits and clever
weight initialization strategies. Notably, Ragone et al.227 present
a theorem to determine exactly if any noiseless quantum circuit
will exhibit barren plateaus regardless of the circuit’s structure.
The authors note that among the implications of their work, it is
possible to design variational quantum circuits that exhibit high
entanglement and use nonlocal measurements while still
avoiding barren plateaus, going against conventional wisdom.
This lifts restrictions and gives researchers a much deeper insight
into the trainability of their circuits. On the other hand,
researchers should seek possible ways to obtain structured
optimization landscapes and linear/superlinear loss conver-
gence with inspiration from quantum chemistry simulations to
avoid barren plateaus.228,229 Recent evidence indicates that
models capable of avoiding barren plateaus can often be
simulated classically.230,231 This does not mean that para-
metrized quantum circuits (PQCs) lack value; rather, it invites
us to reconsider the unique advantages they might provide. For
instance, there may still be a trade-off between accessing a
broader Hilbert space and maintaining trainability.

In addition to the difficulties of determining quantum
gradients, updating the quantum weights can prove difficult as
well. Classical neural networks have had tremendous success
using backpropagation to update the model’s weights, however
methods for updating quantum weights is still being intensely
researched. QNNs most commonly employ the parameter-shift
method232,233 to estimate quantum gradients for each weight,
however this can prove expensive as it requires running at least
2M quantum circuits for M trainable parameters during the
backward pass computation, giving a total time complexity of
O(M2). New methods for quantum backpropagation are
emerging that is making the evaluation of quantum gradients
more efficient, most recently the work by Abbas et al.234 that
reduces the complexity from quadratic parameter-shift method
to O(Mpolylog(M)) time. The expensive nature of required
quantum resources to update weights encourage many to
explore different optimization methods. Many quantum neural
networks in the literature often employ the Constrained
Optimization by Linear Approximations algorithm235 for weight
optimization, however this method is only applicable for models
with few trainable parameters. Work is being done to improve
gradient-free based optimization of VQC parameters that are
more efficient than the parameter-shirt method. Kulshrestha et
al. devise an optimization scheme with good scalability potential
that trains at the level of classical optimizers while out-
performing them in computation time.236 Weidmann et al.
present an optimization method that significantly improves
convergence of QNNs compared to the parameter-shift
method.237

6.3. Outlook

In this review, we have examined the use of QNNs implemented
on gate-based quantum computers for applications in chemistry
and pharmaceuticals. While the integration of quantum
computing into these fields holds the potential for significant
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advancements, it also presents unique challenges that must be
addressed.

As discussed in the previous subsections, the hardware and
algorithmic challenges for QML are substantial. The require-
ments for coherence, qubit connectivity, and state preparation
introduce significant hurdles that have yet to be fully overcome.
QNNs often require precise qubit control and extended
coherence times, which current quantum hardware struggles
to provide consistently. On the algorithmic front, issues such as
state preparation, barren plateaus, and efficient quantum
gradient computation remain critical bottlenecks that demand
innovative solutions.

Recent progress in quantum error correction, highlighted by
Google Quantum AI’s breakthrough,238 and Brock et al.’s
demonstration of qudit-based error correction beyond the
break-even point239 marks a significant milestone. This
achievement suggests that we are nearing the development of
more reliable quantum systems, which is crucial for the practical
implementation of QML in real-world scenarios. However, there
remains a pressing need for improved scalability of quantum
hardware and the development of more robust error correction
protocols.

Looking ahead, as quantum technology continues to mature,
we anticipate the emergence of more sophisticated applications,
such as the discovery of new drugs and materials, the
optimization of chemical reactions, and the exploration of
molecular structures with unprecedented accuracy. The
intersection of quantum computing and machine learning offers
a unique opportunity to transform how we tackle some of the
most complex challenges in science and industry.
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(64) Tüysüz, C.; Rieger, C.; Novotny, K.; Demirköz, B.; Dobos, D.;
Potamianos, K.; Vallecorsa, S.; Vlimant, J.-R.; Forster, R. Hybrid
quantum classical graph neural networks for particle track reconstruc-
tion. Quantum Machine Intelligence 2021, 3, 29.

(65) Beer, K.; Khosla, M.; Köhler, J.; Osborne, T. J. Quantum machine
learning of graph-structured data. arXiv 2021, 2103.10837
DOI: 10.48550/arXiv.2103.10837.

(66) Liao, Y.; Zhang, X.-M.; Ferrie, C. Graph Neural Networks on
Quantum Computers. arXiv 2024, 2405.17060 DOI: 10.48550/
arXiv.2405.17060.

(67) Mernyei, P.; Meichanetzidis, K.; Ceylan, s. l. Equivariant
Quantum Graph Circuits. arXiv 2022, 2112.05261 DOI: 10.48550/
arXiv.2112.05261.

(68) Skolik, A.; Cattelan, M.; Yarkoni, S.; Bäck, T.; Dunjko, V.
Equivariant quantum circuits for learning on weighted graphs. arXiv
2023, 2205.06109 DOI: 10.48550/arXiv.2205.06109.

(69) Chen, S.; Tang, Z.; You, L.; Chen, C. Y.-C. A knowledge
distillation-guided equivariant graph neural network for improving
protein interaction site prediction performance. Knowledge-Based
Systems 2024, 300, 112209.

(70) Cremer, J.; Medrano Sandonas, L.; Tkatchenko, A.; Clevert, D.-
A.; De Fabritiis, G. Equivariant Graph Neural Networks for Toxicity
Prediction. Chem. Res. Toxicol. 2023, 36 (10), 1561−1573.

(71) Dhakal, A.; Gyawali, R.; Cheng, J. Predicting Protein-Ligand
Binding Structure Using E(n) Equivariant Graph Neural Networks.
bioRxiv 2023, DOI: 10.1101/2023.08.06.552202.

(72) Ryu, J.-Y.; Elala, E.; Rhee, J.-K. K. Quantum Graph Neural
Network Models for Materials Search. Materials 2023, 16, 4300.

(73) Caro, M. C.; Huang, H.-Y.; Cerezo, M.; Sharma, K.; Sornborger,
A.; Cincio, L.; Coles, P. J. Generalization in quantum machine learning
from few training data. Nat. Commun. 2022, 13, 4919.

(74) Vitz, M.; Mohammadbagherpoor, H.; Sandeep, S.; Vlasic, A.;
Padbury, R.; Pham, A. Hybrid Quantum Graph Neural Network for
Molecular Property Prediction. arXiv 2024 , 2405.05205
DOI: 10.48550/arXiv.2405.05205.

(75) Dong, L.; Li, Y.; Liu, D.; Ji, Y.; Hu, B.; Shi, S.; Zhang, F.; Hu, J.;
Qian, K.; Jin, X.; Wang, B. Prediction of Protein−Ligand Binding
Affinity by a Hybrid Quantum−Classical Deep Learning Algorithm.
Advanced Quantum Technologies 2023, 6, 2300107.

(76) Wu, F.; Zhang, T.; Souza, Jr. A. H. d.; Fifty, C.; Yu, T.;
Weinberger, K. Q. Simplifying Graph Convolutional Networks. arXiv
2019, 1902.07153 DOI: 10.48550/arXiv.1902.07153.

(77) Pasa, L.; Navarin, N.; Erb, W.; Sperduti, A. Empowering Simple
Graph Convolutional Networks. IEEE Transactions on Neural Networks
and Learning Systems 2024, 35, 4385−4399.

(78) Dhillon, A.; Verma, G. K. Convolutional neural network: a review
of models, methodologies and applications to object detection. Progress
in Artificial Intelligence 2020, 9, 85−112.

(79) Jiang, S.; Zavala, V. M. Convolutional neural nets in chemical
engineering: Foundations, computations, and applications. AIChE J.
2021, 67, No. e17282.

(80) O’Shea, K.; Nash, R. An Introduction to Convolutional Neural
Networks. arXiv 2015, 1511.08458 DOI: 10.48550/arXiv.1511.08458.

(81) Cong, I.; Choi, S.; Lukin, M. D. Quantum convolutional neural
networks. Nat. Phys. 2019, 15, 1273−1278.

(82) Kerenidis, I.; Landman, J.; Prakash, A. Quantum Algorithms for
Deep Convolutional Neural Networks. arXiv 2019, 1911.01117
DOI: 10.48550/arXiv.1911.01117.

(83) Henderson, M.; Shakya, S.; Pradhan, S.; Cook, T. Quanvolu-
tional neural networks: powering image recognition with quantum
circuits. Quantum Machine Intelligence 2020, 2, 2.

(84) Liu, J.; Lim, K. H.; Wood, K. L.; Huang, W.; Guo, C.; Huang, H.-
L. Hybrid quantum-classical convolutional neural networks. Sci. China
Phys. Mech. Astron. 2021, 64, 290311.

(85) MacCormack, I.; Delaney, C.; Galda, A.; Aggarwal, N.; Narang,
P. Branching quantum convolutional neural networks. Physical Review
Research 2022, 4, 013117.

(86) Smaldone, A. M.; Kyro, G. W.; Batista, V. S. Quantum
convolutional neural networks for multi-channel supervised learning.
Quantum Machine Intelligence 2023, 5, 41.

(87) Oh, S.; Choi, J.; Kim, J. A Tutorial on Quantum Convolutional
Neural Networks (QCNN). 2020 International Conference on
Information and Communication Technology Convergence (ICTC), Jeju,
South Korea; IEEE, 2020; pp 236−239. DOI: 10.1109/
ICTC49870.2020.9289439

(88) Mari, A. Quanvolutional Neural Networks. Pennylane, 2020.
https://pennylane.ai/qml/demos/tutorial_quanvolution/, accessed
2024-08-27.

(89) The Quantum Convolution Neural Network. In Qiskit Machine
Learning 0.8.2; GitHub, 2024. https://qiskit-community.github.io/
qiskit-machine-learning/tutorials/11_quantum_convolutional_
neural_networks.html, accessed 2024-08-27.

(90) Quantum Convolutional Neural Network. TensorFlow. https://
www.tensorflow.org/quantum/tutorials/qcnn, accessed 2024-08-27.

(91) Chen, S. Y.-C.; Wei, T.-C.; Zhang, C.; Yu, H.; Yoo, S. Quantum
convolutional neural networks for high energy physics data analysis.
Physical Review Research 2022, 4, 013231.

(92) Hong, Z.; Wang, J.; Qu, X.; Zhu, X.; Liu, J.; Xiao, J. Quantum
Convolutional Neural Network on Protein Distance Prediction. In
2021 International Joint Conference on Neural Networks (IJCNN); IEEE,
2021; pp 1−8. DOI: 10.1109/IJCNN52387.2021.9533405

(93) Domingo, L.; Djukic, M.; Johnson, C.; Borondo, F. Binding
affinity predictions with hybrid quantum-classical convolutional neural
networks. Sci. Rep. 2023, 13, 17951.

(94) Wu, T.; Bentellis, A.; Sakhnenko, A.; Lorenz, J. M. Generalization
Bounds in Hybrid Quantum-Classical Machine Learning Models. arXiv
2025, 2504.08456 DOI: 10.48550/arXiv.2504.0845.

(95) Stein, S. A.; Mao, Y.; Ang, J.; Li, A. QuCNN: A Quantum
Convolutional Neural Network with Entanglement Based Back-
propagation. arXiv 2022 , 2210.05443 DOI: 10.48550/
arXiv.2210.05443.

(96) Zhao, J.; Zhang, Y.-H.; Shao, C.-P.; Wu, Y.-C.; Guo, G.-C.; Guo,
G.-P. Building quantum neural networks based on swap test. Phys. Rev.
A 2019, 100, 012334.

(97) Jones, D. T.; Kandathil, S. M. High precision in protein contact
prediction using fully convolutional neural networks and minimal
sequence features. Bioinformatics 2018, 34, 3308−3315.

(98) Kumar, V.; Alevras, D.; Metkar, M.; Welling, E.; Cade, C.;
Niesen, I.; Friedhoff, T.; Park, J.; Shivpuje, Sa.; LaDue, M.; Davis, W.;
Galda, A. Towards secondary structure prediction of longer mRNA
sequences using a quantum-centric optimization scheme. arXiv 2025,
2505.05782, DOI: 10.48550/arXiv.2505.05782.

(99) Alevras, D.; Metkar, M.; Yamamoto, T.; Kumar, V.; Friedhoff, T.;
Park, J.-E.; Takeori, M.; LaDue, M.; Davis, W.; Galda, A. mRNA
Secondary Structure Prediction Using Utility-Scale Quantum Com-
puters. In IEEE International Conference on Quantum Computing and

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.4c00678
Chem. Rev. XXXX, XXX, XXX−XXX

U

https://doi.org/10.48550/arXiv.1802.06002
https://doi.org/10.48550/arXiv.1802.06002
https://doi.org/10.48550/arXiv.1802.06002?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevA.102.032420
https://doi.org/10.1103/PhysRevA.102.032420
https://doi.org/10.1109/ic-ETITE58242.2024.10493306
https://doi.org/10.1109/ic-ETITE58242.2024.10493306
https://doi.org/10.1109/ic-ETITE58242.2024.10493306?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/ic-ETITE58242.2024.10493306?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s43246-022-00315-6
https://doi.org/10.48550/arXiv.1909.12264
https://doi.org/10.48550/arXiv.1909.12264?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.23919/CCC52363.2021.9550372
https://doi.org/10.23919/CCC52363.2021.9550372
https://doi.org/10.1007/s42484-021-00055-9
https://doi.org/10.1007/s42484-021-00055-9
https://doi.org/10.1007/s42484-021-00055-9
https://doi.org/10.48550/arXiv.2103.10837
https://doi.org/10.48550/arXiv.2103.10837
https://doi.org/10.48550/arXiv.2103.10837?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2405.17060
https://doi.org/10.48550/arXiv.2405.17060
https://doi.org/10.48550/arXiv.2405.17060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2405.17060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2112.05261
https://doi.org/10.48550/arXiv.2112.05261
https://doi.org/10.48550/arXiv.2112.05261?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2112.05261?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2205.06109
https://doi.org/10.48550/arXiv.2205.06109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.knosys.2024.112209
https://doi.org/10.1016/j.knosys.2024.112209
https://doi.org/10.1016/j.knosys.2024.112209
https://doi.org/10.1021/acs.chemrestox.3c00032?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrestox.3c00032?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1101/2023.08.06.552202
https://doi.org/10.1101/2023.08.06.552202
https://doi.org/10.1101/2023.08.06.552202?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3390/ma16124300
https://doi.org/10.3390/ma16124300
https://doi.org/10.1038/s41467-022-32550-3
https://doi.org/10.1038/s41467-022-32550-3
https://doi.org/10.48550/arXiv.2405.05205
https://doi.org/10.48550/arXiv.2405.05205
https://doi.org/10.48550/arXiv.2405.05205?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/qute.202300107
https://doi.org/10.1002/qute.202300107
https://doi.org/10.48550/arXiv.1902.07153
https://doi.org/10.48550/arXiv.1902.07153?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/TNNLS.2022.3232291
https://doi.org/10.1109/TNNLS.2022.3232291
https://doi.org/10.1007/s13748-019-00203-0
https://doi.org/10.1007/s13748-019-00203-0
https://doi.org/10.1002/aic.17282
https://doi.org/10.1002/aic.17282
https://doi.org/10.48550/arXiv.1511.08458
https://doi.org/10.48550/arXiv.1511.08458
https://doi.org/10.48550/arXiv.1511.08458?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.48550/arXiv.1911.01117
https://doi.org/10.48550/arXiv.1911.01117
https://doi.org/10.48550/arXiv.1911.01117?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s42484-020-00012-y
https://doi.org/10.1007/s42484-020-00012-y
https://doi.org/10.1007/s42484-020-00012-y
https://doi.org/10.1007/s11433-021-1734-3
https://doi.org/10.1103/PhysRevResearch.4.013117
https://doi.org/10.1007/s42484-023-00130-3
https://doi.org/10.1007/s42484-023-00130-3
https://doi.org/10.1109/ICTC49870.2020.9289439
https://doi.org/10.1109/ICTC49870.2020.9289439
https://doi.org/10.1109/ICTC49870.2020.9289439?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/ICTC49870.2020.9289439?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pennylane.ai/qml/demos/tutorial_quanvolution/
https://qiskit-community.github.io/qiskit-machine-learning/tutorials/11_quantum_convolutional_neural_networks.html
https://qiskit-community.github.io/qiskit-machine-learning/tutorials/11_quantum_convolutional_neural_networks.html
https://qiskit-community.github.io/qiskit-machine-learning/tutorials/11_quantum_convolutional_neural_networks.html
https://www.tensorflow.org/quantum/tutorials/qcnn
https://www.tensorflow.org/quantum/tutorials/qcnn
https://doi.org/10.1103/PhysRevResearch.4.013231
https://doi.org/10.1103/PhysRevResearch.4.013231
https://doi.org/10.1109/IJCNN52387.2021.9533405
https://doi.org/10.1109/IJCNN52387.2021.9533405
https://doi.org/10.1109/IJCNN52387.2021.9533405?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41598-023-45269-y
https://doi.org/10.1038/s41598-023-45269-y
https://doi.org/10.1038/s41598-023-45269-y
https://doi.org/10.48550/arXiv.2504.0845
https://doi.org/10.48550/arXiv.2504.0845
https://doi.org/10.48550/arXiv.2504.0845?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2210.05443
https://doi.org/10.48550/arXiv.2210.05443
https://doi.org/10.48550/arXiv.2210.05443
https://doi.org/10.48550/arXiv.2210.05443?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2210.05443?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevA.100.012334
https://doi.org/10.1093/bioinformatics/bty341
https://doi.org/10.1093/bioinformatics/bty341
https://doi.org/10.1093/bioinformatics/bty341
https://doi.org/10.48550/arXiv.2505.05782
https://doi.org/10.48550/arXiv.2505.05782
https://doi.org/10.48550/arXiv.2505.05782?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/QCE60285.2024.00064
https://doi.org/10.1109/QCE60285.2024.00064
https://doi.org/10.1109/QCE60285.2024.00064
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.4c00678?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Engineering (QCE); IEEE, 2024; pp 488−499. DOI: 10.1109/
QCE60285.2024.00064

(100) Paquet, E.; Soleymani, F.; St-Pierre-Lemieux, G.; Viktor, H. L.;
Michalowski, W. QuantumBound − Interactive protein generation with
one-shot learning and hybrid quantum neural networks. Artificial
Intelligence Chemistry 2024, 2, 100030.

(101) Jin, Y.-X.; Hu, J.-J.; Li, Q.; Luo, Z.-C.; Zhang, F.-Y.; Tang, H.;
Qian, K.; Jin, X.-M. Quantum Deep Learning for Mutant COVID-19
Strain Prediction. arXiv 2022, 2203.03556 DOI: 10.48550/
arXiv.2203.03556.

(102) Romero, J.; Olson, J. P.; Aspuru-Guzik, A. Quantum
autoencoders for efficient compression of quantum data. Quantum
Science and Technology 2017, 2, 045001.

(103) Lamata, L.; Alvarez-Rodriguez, U.; Martín-Guerrero, J. D.;
Sanz, M.; Solano, E. Quantum autoencoders via quantum adders with
genetic algorithms. Quantum Science and Technology 2019, 4, 014007.

(104) Bondarenko, D.; Feldmann, P. Quantum Autoencoders to
Denoise Quantum Data. Phys. Rev. Lett. 2020, 124, 130502.

(105) Cao, C.; Wang, X. Noise-Assisted Quantum Autoencoder.
Physical Review Applied 2021, 15, 054012.

(106) Pepper, A.; Tischler, N.; Pryde, G. J. Experimental Realization
of a Quantum Autoencoder: The Compression of Qutrits via Machine
Learning. Phys. Rev. Lett. 2019, 122, 060501.

(107) Ding, Y.; Lamata, L.; Sanz, M.; Chen, X.; Solano, E.
Experimental Implementation of a Quantum Autoencoder via
Quantum Adders. Advanced Quantum Technologies 2019, 2, 1800065.

(108) Huang, C.-J.; Ma, H.; Yin, Q.; Tang, J.-F.; Dong, D.; Chen, C.;
Xiang, G.-Y.; Li, C.-F.; Guo, G.-C. Realization of a quantum
autoencoder for lossless compression of quantum data. Phys. Rev. A
2020, 102, 032412.

(109) Srikumar, M.; Hill, C. D.; Hollenberg, L. C. L. Clustering and
enhanced classification using a hybrid quantum autoencoder. Quantum
Science and Technology 2022, 7, 015020.

(110) Ma, H.; Huang, C.-J.; Chen, C.; Dong, D.; Wang, Y.; Wu, R.-B.;
Xiang, G.-Y. On compression rate of quantum autoencoders: Control
design, numerical and experimental realization. arXiv 2022,
2005.11149 DOI: 10.48550/arXiv.2005.11149.

(111) Wang, G.; Warrell, J.; Emani, P. S.; Gerstein, M. ζ-QVAE: A
Quantum Variational Autoencoder utilizing Regularized Mixed-state
Latent Representations. arXiv 2024, 2402.17749 DOI: 10.48550/
arXiv.2402.17749.

(112) Guimaraes, G. L.; Sanchez-Lengeling, B.; Outeiral, C.; Farias, P.
L. C.; Aspuru-Guzik, A. Objective-reinforced generative adversarial
networks (organ) for sequence generation models. arXiv 2017,
1705.10843 DOI: 10.48550/arXiv.1705.10843.

(113) Sanchez-Lengeling, B.; Outeiral, C.; Guimaraes, G. L.; Aspuru-
Guzik, A. Optimizing distributions over molecular space. An objective-
reinforced generative adversarial network for inverse-design chemistry
(ORGANIC). ChemRxiv 2017, DOI: 10.26434/chemrxiv.5309668.v2.

(114) Putin, E.; Asadulaev, A.; Ivanenkov, Y.; Aladinskiy, V.; Sanchez-
Lengeling, B.; Aspuru-Guzik, A.; Zhavoronkov, A. Reinforced
adversarial neural computer for de novo molecular design. J. Chem.
Inf. Model. 2018, 58, 1194−1204.

(115) Putin, E.; Asadulaev, A.; Vanhaelen, Q.; Ivanenkov, Y.;
Aladinskaya, A. V.; Aliper, A.; Zhavoronkov, A. Adversarial threshold
neural computer for molecular de novo design. Mol. Pharmaceutics
2018, 15, 4386−4397.

(116) Dallaire-Demers, P.-L.; Killoran, N. Quantum generative
adversarial networks. Phys. Rev. A 2018, 98, 012324.

(117) Romero, J.; Aspuru-Guzik, A. Variational Quantum Generators:
Generative Adversarial Quantum Machine Learning for Continuous
Distributions. Advanced Quantum Technologies 2021, 4, 2000003.

(118) Li, J.; Alam, M.; Sha, C. M.; Wang, J.; Dokholyan, N. V.; Ghosh,
S. Drug Discovery Approaches using Quantum Machine Learning.
arXiv 2021, 2104.00746.

(119) Ramakrishnan, R.; Dral, P. O.; Rupp, M.; Von Lilienfeld, O. A.
Quantum chemistry structures and properties of 134 kilo molecules.
Scientific Data 2014, 1, 140022.

(120) Kao, P.-Y.; Yang, Y.-C.; Chiang, W.-Y.; Hsiao, J.-Y.; Cao, Y.;
Aliper, A.; Ren, F.; Aspuru-Guzik, A.; Zhavoronkov, A.; Hsieh, M.-H.;
Lin, Y.-C. Exploring the Advantages of Quantum Generative
Adversarial Networks in Generative Chemistry. J. Chem. Inf. Model.
2023, 63, 3307−3318.

(121) Anoshin, M.; Sagingalieva, A.; Mansell, C.; Zhiganov, D.; Shete,
V.; Pflitsch, M.; Melnikov, A. Hybrid Quantum Cycle Generative
Adversarial Network for Small Molecule Generation. IEEE Transactions
on Quantum Engineering 2024, 5, 1−15.

(122) Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A. A. Unpaired Image-to-
Image Translation using Cycle-Consistent Adversarial Networks. arXiv
2020, 1703.10593 DOI: 10.48550/arXiv.1703.10593.

(123) Maziarka, u.; Pocha, A.; Kaczmarczyk, J.; Rataj, K.; Danel, T.;
Warchoł, M. Mol-CycleGAN: a generative model for molecular
optimization. Journal of Cheminformatics 2020, 12, 2.

(124) Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.
arXiv 2023, 1706.03762 DOI: 10.48550/arXiv.1706.03762.

(125) Wang, J.; Hsieh, C.-Y.; Wang, M.; Wang, X.; Wu, Z.; Jiang, D.;
Liao, B.; Zhang, X.; Yang, B.; He, Q.; et al. others Multi-constraint
molecular generation based on conditional transformer, knowledge
distillation and reinforcement learning. Nature Machine Intelligence
2021, 3, 914−922.

(126) Luong, K.-D.; Singh, A. Application of Transformers in
Cheminformatics. J. Chem. Inf. Model. 2024, 64, 4392−4409.

(127) Shee, Y.; Li, H.; Morgunov, A.; Batista, V. DirectMultiStep:
Direct Route Generation for Multi-Step Retrosynthesis. J. Chem. Inf.
Model. 2025, 65 (8), 3903−3914.

(128) Shee, Y.; Li, H.; Zhang, P.; Nikolic, A. M.; Lu, W.; Kelly, H. R.;
Manee, V.; Sreekumar, S.; Buono, F. G.; Song, J. J.; Newhouse, T. R.;
Batista, V. S. Site-specific template generative approach for
retrosynthetic planning. Nat. Commun. 2024, 15, 7818.

(129) Li, H.; Shee, Y.; Allen, B.; Maschietto, F.; Morgunov, A.; Batista,
V. Kernel-elastic autoencoder for molecular design. PNAS Nexus 2024,
3, pgae168.

(130) Xue, C.; Chen, Z.-Y.; Zhuang, X.-N.; Wang, Y.-J.; Sun, T.-P.;
Wang, J.-C.; Liu, H.-Y.; Wu, Y.-C.; Wang, Z.-L.; Guo, G.-P. End-to-End
Quantum Vision Transformer: Towards Practical Quantum Speedup in
Large-Scale Models. arXiv 2024, 2402.18940 DOI: 10.48550/
arXiv.2402.18940.

(131) Evans, E. N.; Cook, M.; Bradshaw, Z. P.; LaBorde, M. L.
Learning with SASQuaTCh: a Novel Variational Quantum Trans-
former Architecture with Kernel-Based Self-Attention. arXiv 2024,
2403.14753 DOI: 10.48550/arXiv.2403.14753.

(132) Tariq, S.; Arfeto, B. E.; Khalid, U.; Kim, S.; Duong, T. Q.; Shin,
H. Deep Quantum-Transformer Networks for Multi-Modal Beam
Prediction in ISAC Systems. IEEE Internet of Things Journal 2024, 11,
29387.

(133) Cherrat, E. A.; Kerenidis, I.; Mathur, N.; Landman, J.; Strahm,
M.; Li, Y. Y. Quantum Vision Transformers. Quantum 2024, 8, 1265.

(134) Khokhlov, I.; Krasnov, L.; Fedorov, M. V.; Sosnin, S.
Image2SMILES: Transformer−Based Molecular Optical Recognition
Engine. Chemistry Methods 2022, 2, No. e202100069.

(135) Ding, W.; Chen, H.; Ji, H. Efficiently Predicting Reaction Rates
and Revealing Reactive Sites with a Molecular Image-Vision Trans-
former and Fukui Function Validation. Ind. Eng. Chem. Res. 2024, 63
(16), 7064−7072.

(136) Jha, K.; Saha, S.; Karmakar, S. Prediction of Protein-Protein
Interactions Using Vision Transformer and Language Model. IEEE/
ACM Transactions on Computational Biology and Bioinformatics 2023,
20, 3215−3225.

(137) Smaldone, A. M.; Shee, Y.; Kyro, G. W.; Farag, M. H.;
Chandani, Z.; Kyoseva, E.; Batista, V. S. A Hybrid Transformer
Architecture with a Quantized Self-Attention Mechanism Applied to
Molecular Generation. arXiv 2025, 2502.19214.

(138) Di Sipio, R.; Huang, J.-H.; Chen, S. Y.-C.; Mangini, S.; Worring,
M. The Dawn of Quantum Natural Language Processing. ICASSP 2022
- 2022 IEEE International Conference on Acoustics, Speech and Signal

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.4c00678
Chem. Rev. XXXX, XXX, XXX−XXX

V

https://doi.org/10.1109/QCE60285.2024.00064?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/QCE60285.2024.00064?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.aichem.2023.100030
https://doi.org/10.1016/j.aichem.2023.100030
https://doi.org/10.48550/arXiv.2203.03556
https://doi.org/10.48550/arXiv.2203.03556
https://doi.org/10.48550/arXiv.2203.03556?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2203.03556?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/2058-9565/aa8072
https://doi.org/10.1088/2058-9565/aa8072
https://doi.org/10.1088/2058-9565/aae22b
https://doi.org/10.1088/2058-9565/aae22b
https://doi.org/10.1103/PhysRevLett.124.130502
https://doi.org/10.1103/PhysRevLett.124.130502
https://doi.org/10.1103/PhysRevApplied.15.054012
https://doi.org/10.1103/PhysRevLett.122.060501
https://doi.org/10.1103/PhysRevLett.122.060501
https://doi.org/10.1103/PhysRevLett.122.060501
https://doi.org/10.1002/qute.201800065
https://doi.org/10.1002/qute.201800065
https://doi.org/10.1103/PhysRevA.102.032412
https://doi.org/10.1103/PhysRevA.102.032412
https://doi.org/10.1088/2058-9565/ac3c53
https://doi.org/10.1088/2058-9565/ac3c53
https://doi.org/10.48550/arXiv.2005.11149
https://doi.org/10.48550/arXiv.2005.11149
https://doi.org/10.48550/arXiv.2005.11149?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2402.17749
https://doi.org/10.48550/arXiv.2402.17749
https://doi.org/10.48550/arXiv.2402.17749
https://doi.org/10.48550/arXiv.2402.17749?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2402.17749?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.1705.10843
https://doi.org/10.48550/arXiv.1705.10843
https://doi.org/10.48550/arXiv.1705.10843?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.26434/chemrxiv.5309668.v2
https://doi.org/10.26434/chemrxiv.5309668.v2
https://doi.org/10.26434/chemrxiv.5309668.v2
https://doi.org/10.26434/chemrxiv.5309668.v2?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.7b00690?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.7b00690?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.molpharmaceut.7b01137?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.molpharmaceut.7b01137?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevA.98.012324
https://doi.org/10.1103/PhysRevA.98.012324
https://doi.org/10.1002/qute.202000003
https://doi.org/10.1002/qute.202000003
https://doi.org/10.1002/qute.202000003
https://doi.org/10.48550/arXiv.2104.00746
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1021/acs.jcim.3c00562?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.3c00562?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/TQE.2024.3414264
https://doi.org/10.1109/TQE.2024.3414264
https://doi.org/10.48550/arXiv.1703.10593
https://doi.org/10.48550/arXiv.1703.10593
https://doi.org/10.48550/arXiv.1703.10593?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/s13321-019-0404-1
https://doi.org/10.1186/s13321-019-0404-1
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s42256-021-00403-1
https://doi.org/10.1038/s42256-021-00403-1
https://doi.org/10.1038/s42256-021-00403-1
https://doi.org/10.1021/acs.jcim.3c02070?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.3c02070?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.4c01982?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.4c01982?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-024-52048-4
https://doi.org/10.1038/s41467-024-52048-4
https://doi.org/10.1093/pnasnexus/pgae168
https://doi.org/10.48550/arXiv.2402.18940
https://doi.org/10.48550/arXiv.2402.18940
https://doi.org/10.48550/arXiv.2402.18940
https://doi.org/10.48550/arXiv.2402.18940?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2402.18940?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2403.14753
https://doi.org/10.48550/arXiv.2403.14753
https://doi.org/10.48550/arXiv.2403.14753?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/JIOT.2024.3420455
https://doi.org/10.1109/JIOT.2024.3420455
https://doi.org/10.22331/q-2024-02-22-1265
https://doi.org/10.1002/cmtd.202100069
https://doi.org/10.1002/cmtd.202100069
https://doi.org/10.1021/acs.iecr.4c00711?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.4c00711?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.4c00711?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/TCBB.2023.3248797
https://doi.org/10.1109/TCBB.2023.3248797
https://doi.org/10.48550/arXiv.2502.19214
https://doi.org/10.48550/arXiv.2502.19214
https://doi.org/10.48550/arXiv.2502.19214
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.4c00678?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Processing (ICASSP), Singapore; Brrokhaven Science Associates, LLC,
2022; pp 8612−8616.

(139) Gao, Y.; Song, Z.; Yang, X.; Zhang, R. Fast Quantum Algorithm
for Attention Computation. arXiv 2023, 2307.08045.

(140) Li, G.; Zhao, X.; Wang, X. Quantum Self-Attention Neural
Networks for Text Classification. arXiv 2023, 2205.05625.

(141) Guo, N.; Yu, Z.; Choi, M.; Agrawal, A.; Nakaji, K.; Aspuru-
Guzik, A.; Rebentrost, P. Quantum linear algebra is all you need for
Transformer architectures. arXiv 2024, 2402.16714.

(142) Liao, Y.; Ferrie, C. GPT on a Quantum Computer. arXiv 2024,
2403.09418.

(143) CUDA-Q Applications. NVIDIA CUDA-Q; NVIDIA. https://
nvidia.github.io/cuda-quantum/latest/applications/python/
quantum_transformer.html, accessed 2025-05-05

(144) Katharopoulos, A.; Vyas, A.; Pappas, N.; Fleuret, F. Trans-
formers are RNNs: Fast Autoregressive Transformers with Linear
Attention. arXiv 2020, 2006.16236.

(145) Wang, S.; Li, B. Z.; Khabsa, M.; Fang, H.; Ma, H. Linformer:
Self-Attention with Linear Complexity. arXiv 2020, 2006.04768.

(146) Lee-Thorp, J.; Ainslie, J.; Eckstein, I.; Ontanon, S. FNet: Mixing
Tokens with Fourier Transforms. arXiv 2022, 2105.03824.

(147) Khatri, N.; Matos, G.; Coopmans, L.; Clark, S. Quixer: A
Quantum Transformer Model. arXiv 2024, 2406.04305.

(148) Childs, A. M.; Wiebe, N. Hamiltonian Simulation Using Linear
Combinations of Unitary Operations. Quantum Information and
Computation 2012, 12, 901.

(149) Gilyén, A.; Su, Y.; Low, G. H.; Wiebe, N. Quantum singular
value transformation and beyond: exponential improvements for
quantum matrix arithmetics. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, 2019; pp 193−204.

(150) Ghazi Vakili, M., Gorgulla, C., Snider, J. et al. Quantum-
computing-enhanced algorithm unveils potential KRAS inhibitors. Nat.
Biotechnol., 2025 DOI: 10.1038/s41587-024-02526-3.

(151) Roca-Jerat, S.; Román-Roche, J.; Zueco, D. Qudit machine
learning. Machine Learning: Science and Technology 2024, 5, 015057.

(152) Mandilara, A.; Dellen, B.; Jaekel, U.; Valtinos, T.; Syvridis, D.
Classification of data with a qudit, a geometric approach. Quantum
Machine Intelligence 2024, 6, 17.

(153) Ghasemian, E.; Razminia, A.; Rostami, H. Quantum machine
learning based on continuous variable single-photon states: an
elementary foundation for quantum neural networks. Quantum
Information Processing 2023, 22, 378.

(154) Ranjan, A.; Patel, T.; Silver, D.; Gandhi, H.; Tiwari, D.
ProxiML: Building Machine Learning Classifiers for Photonic
Quantum Computing. Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems 2024, 3, 834−849.

(155) Copetudo, A.; Fontaine, C. Y.; Valadares, F.; Gao, Y. Y. Shaping
photons: Quantum information processing with bosonic cQED. Appl.
Phys. Lett. 2024, 124, 080502.

(156) Dutta, R.; Cabral, D. G.; Lyu, N.; Vu, N. P.; Wang, Y.; Allen, B.;
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