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ABSTRACT: We introduce a computational framework for simulating nonadiabatic
vibronic dynamics on circuit quantum electrodynamics (cQED) platforms. Our
approach leverages hybrid oscillator-qubit quantum hardware with midcircuit
measurements and resets, enabling the incorporation of environmental effects such
as dissipation and dephasing. To demonstrate its capabilities, we simulate energy
transfer dynamics in a triad model of photosynthetic chromophores inspired by natural
antenna systems. We specifically investigate the role of dissipation during the
relaxation dynamics following photoexcitation, where electronic transitions are coupled
to the evolution of quantum vibrational modes. Our results indicate that hybrid
oscillator-qubit devices, operating with noise levels below the intrinsic dissipation rates
of typical molecular antenna systems, can achieve the simulation fidelity required for
practical computations on near-term and early fault-tolerant quantum computing
platforms.

1. INTRODUCTION
The complex interplay between the electronic, vibrational, and
environmental degrees of freedom in organic molecules
underpins efficient photosynthetic processes1,2 as well as
many other charge and energy transfer phenomena, including
intramolecular energy redistribution3 and vibrational-selective
chemical reactions.4 Given the ubiquitous role of vibronic
dynamics, the development of computational frameworks for
efficient and accurate simulations of vibronic systems is a
subject of great interest.5 Here, we introduce a computational
framework for hybrid oscillator-qubit quantum hardware.

Simulating vibronic dynamics on classical computers is
challenging due to the exponential growth of the Hilbert space
dimension with the number of vibrational modes. Despite this,
numerically exact methods have been developed to propagate
quantum dynamics within a truncated Hilbert space.6−18 For
quantum systems with limited entanglement, state-of-the-art
algorithms rely on tensor factorization methods based on
matrix product state or tensor-train representations.8−18 These
approaches enable efficient and accurate simulations by
truncating the bond dimension (or Schmidt rank) to manage
computational costs. Other exact methods, such as the
hierarchical equations of motion (HEOM) and the pseudo-
mode framework,18−23 simplify the problem by mapping many
vibrational modes onto a smaller set of pseudomodes. This
significantly reduces the Hilbert space dimension. However,
these techniques are generally restricted to systems with linear

couplings between electronic and vibrational degrees of
freedom.

Approximate methods have also been proposed to address
the computational challenges of simulating vibronic dynamics.
These include mapping electronic and vibrational states to
simplified representations24,25 and employing many (quasi)-
classical trajectories to model dynamics at reduced computa-
tional costs.26,27 However, assessing the accuracy of these
methods can be challenging.28 A recent study indicates that the
choice of an optimal approximation method is highly system-
dependent: simulation accuracy is influenced by several factors,
including the initial sampling strategy for mapping variables.28

This underscores the need for developing computational
frameworks for efficient yet rigorous simulations.

Over the past decade, significant advances have been
achieved in the engineering and control of continuous-variable
(CV) bosonic quantum devices,29−33 in addition to their
discrete-variable (DV) counterparts.34,35 These breakthroughs
suggest that the challenges of simulating complex polyatomic
vibronic dynamics on classical computers could be addressed
by mapping molecular vibrations onto native bosonic
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hardware.36−38 With universal control on hybrid oscillator-
qubit platforms,33,39,40 the quantum dynamics of any vibronic
Hamiltonian can be simulated, in principle, given sufficiently
many high-fidelity bosonic modes.

However, several challenges must be addressed to effectively
utilize hybrid oscillator-qubit quantum hardware for realistic
vibronic simulations. First, the limited connectivity and native
gate sets on current quantum hardware raise questions about
the computational overhead required to map and compile the
Hamiltonian for near-term devices. Second, realistic vibronic
dynamics are inherently nonunitary41 due to dissipation
induced by the surrounding environment. This calls for the
development of systematic approaches to simulate dissipative
quantum dynamics on hybrid CV−DV platforms. Finally,
quantum hardware is inherently susceptible to noise.42,43 The
impacts of intrinsic noise on the accuracy and feasibility of
quantum simulations using near-term hybrid CV−DV devices
remain unclear and require further investigation.

In the present work, we address these challenges by
codesigning scalable, near-term hybrid oscillator-qubit quan-
tum modular hardware for simulating dissipative vibronic
dynamics, the first of its kind to the best of our knowledge. We
focus on the bosonic circuit quantum electrodynamics (cQED)
platform32,44 as a case study, yet the approach is broadly
applicable to other quantum hardware platforms equipped with
native bosonic modes and qubits. We provide a concrete
mapping and quantum circuit realization of the dissipative
dynamics using a native instruction set architecture for cQED
hardware. Additionally, we present a unitary method to
simulate Markovian dephasing and amplitude damping
processes by appropriately engineering quantum channels for
cQED hardware modules. A detailed gate count for resource
estimation is also included, along with an analysis on how
various intrinsic cQED hardware noise impact the simulation
results. To validate our approach, we perform numerical
simulations of energy transfer dynamics in a three-site
chromophore antenna model. The results highlight the
importance of dissipation in energy transfer dynamics, where
we demonstrate how tuning the amplitude damping rates on
specific chromophores can significantly alter the dominant
energy transfer pathway.

The structure of the paper is organized as follows. Section 2
introduces the Hamiltonian and dissipation model for a
photosynthetic antenna model composed of a one-dimensional
chromophore array. We then present the main findings,
focusing on the codesign of quantum circuit and layouts to
simulate chromophore dynamics using native operations on
cQED hardware. Section 3 provides extensive numerical
simulations to validate the proposed circuits and explore the
role of dissipation in energy transfer dynamics. Section 4
concludes the paper with future outlooks and potential
research directions.

2. METHODS
This section is organized as follows. Section 2.1 introduces the
vibronic Hamiltonian for a model photosynthetic antenna and
showcases its cQED formulation. Section 2.2 discusses the
energy transfer problem of interest. Section 2.3 describes our
approach for engineering environment-induced dissipation via
channel dilation techniques. We then propose our cQED
modular hardware design in Section 2.4, followed by quantum
circuit realization with resource estimation to simulate vibronic
dynamics in Section 2.5.
2.1. Photosynthetic Model. 2.1.1. Vibronic Hamiltonian

Model. We consider the model system illustrated in Figure 1a
which consists of three chromophores labeled as sites A, B, and
C. In the context of photosynthetic antennas, these
chromophores represent distinct pigments within a protein,
as modeled in ref 1. Each chromophore has one electronic
degree-of-freedom (i.e., a two-level system representing ground
and excited electronic states) coupled to one high-frequency
vibrational mode (labeled as a, b, c) and only interacts with its
adjacent chromophores. These high-frequency modes repre-
sent local vibrations, such as bond stretching or bending, of
which the frequencies and equilibrium positions are specific to
each chromophore.

Additionally, chromophore A also has a low-frequency
vibrational mode l, whose equilibrium position depends on the
state of chromophore A. Mode l can intuitively be interpreted
as a long-wavelength, vibrational coordinate that strongly
couples to two or more chromophores. Furthermore, the
(electronically) excited state of chromophore A is dipole-

Figure 1. (a) Photosynthetic antenna model system, composed of three chromophores representing distinct pigments within a protein. One
elementary problem is to determine if an initial electronic excitation on chromophore A has a dominant energy transfer pathway, and if so, whether
it favors energy transfer to chromophore B or C. (b) Proposed cQED modular hardware for simulating vibronic dynamics of a three-site
chromophore system. High-frequency (red circles) and low-frequency (yellow circles) cavities represent vibrational modes. A SNAIL device
mediates coupling between adjacent cavities. High-frequency cavities are coupled to transmon qubits (shown in purple), representing the ground
and excited electronic states of each chromophore, while ancillary qubits for low-frequency cavities are shown in teal blue.
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coupled to the excited states of chromophores B and C. These
couplings, with strengths JAB and JAC, are modulated differently
by the coordinates of mode l.

The photochemistry process is shown in Figure 1a. Initially,
chromophore A’s electronic state is excited. The excitation
energy is then transferred to chromophores B or C at rates
described by the coupling constants JAB and JAC. The excited
chromophores B or C can also transfer energy back to A at the
same rates. Local vibronic coupling in each chromophore
facilitates electronic-to-vibrational energy transfer.

We restrict the system Hamiltonian to the ground state and
singly excited state manifold. In this construction, at most one
of the three chromophores can be excited at a time, while the
others remain in the ground state. Thus, double-excitations
and triple-excitations are excluded by design. We denote the
ground and excited states of an individual chromophore as s =
g, e, respectively. The state |G⟩ = |gAgBgC⟩ represents all
chromophores in their ground electronic states. The state |R⟩
indicates that the chromophore R = A, B, C is in its excited
state while the others are in their ground states. In other words,
a local excitation on chromophore A is written as |A⟩ = |
eAgBgC⟩, while for chromophores B and C, the respective
excited states are |B⟩ = |gAeBgC⟩, and |C⟩ = |gAgBeC⟩.

The vibrational Hamiltonian for a chromophore R in state s
= g, e is denoted as ĥRs . Using this notation, the full system
Hamiltonian for the four possible electronic states (ground
state and three singly excited states), coupled to four
vibrational modes with distinct frequencies, is given by

= | | + + + |
| + +

+ | | + + + |
| + +

+ | | + + | | +

H G G h h h A
A h h h

B B h h h C
C h h h

J A B J A C

( )
( )

( )
( )

( h. c. ) ( h. c. ).

A
g

B
g

C
g

A
e

B
g

C
g

A
g

B
e

C
g

A
g

B
g

C
e

AB AC
(1)

Here, terms 1−4 describe the Hamiltonians for configurations
with at most one excited chromophore. The fifth and sixth
terms account for the dipole couplings between the excited
state of chromophore A and those of B or C, with coupling
constants JAB and JAC, respectively.

Using the bosonic annihilation operators a, b, c for the high-
frequency vibrational modes of chromophores A, B and C, and
l for the low-frequency vibrational mode of chromophore A,
the vibronic Hamiltonians are defined, as follows. For
chromophore A,
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For chromophores B and C (with R = B, C and r = b, c)

i
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Here, Sr represents the Huang−Rhys factors, which character-
ize the vibronic coupling strengths.45 The dipole coupling
constants between chromophores A and R (R = B, C) are given
by

= [ + + ]†J J l l1 ( )AR AR AR,0 (6)

where ηAR is a first-order coupling constant. The modulation of
JAR by the low-frequency mode position (l + l†) reflects the
natural influence of vibronic coupling.

Additionally, the surrounding environment induces energy
dissipation, including amplitude damping and dephasing effects
at respective rates γamp,all and γdep,all. These processes are
described by the Lindblad quantum master equation as
outlined in Section 2.1.2. Our photosynthetic antenna model
system is parametrized with physically relevant values given in
Table 2.

2.1.2. Dissipative Dynamics. In this subsection, we describe
how energy dissipation from the excited chromophore
population, under the influence of environmental effects, can
be modeled using the spin-boson model and Lindblad master
equation.

Each chromophore’s electronic state is modeled as a two-
level quantum system described by HS and interacts with its
surrounding environment according to the following spin-
boson Hamiltonian
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2 2
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(7)

Here, HS = −E0σz is the system Hamiltonian, with E0 is the
energy difference between the excited state |e⟩ and ground
state |g⟩, while = +H p x( )B a a a a

1
2

2 2 2 is the harmonic bath
Hamiltonian. On the other hand, HI = −OS∑acaxa is the
coupling between system and bath, with the arbitrary operator
in the system Hilbert space OS = ηxσx + ηyσy + ηzσz + ηII
expressed as a linear combination of the four Pauli matrices.

The environmental effects are captured by the coupling
constants ca, introduced in eq 7, that can be obtained from the
reservoir correlation function46−48
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where =J( ) ( )a
c

a2
a

a

2

is the bath spectral density

and β = 1/kT is the inverse temperature.
Assuming the Born−Markov and rotating wave approx-

imations (RWA), the dynamics can be described by the
evolution of the reduced density matrix of the system, ρ(t) =
TrB[ρT(t)], according to the Lindblad equation49
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1 e

are the damping rates, and
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L O( ) S
(10)
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are the jump operators in the eigenbasis of HS, comprised of |
0⟩ and |1⟩ with respective eigenvalues −E0 and E0, i.e., HS|0⟩ =
−E0|0⟩ and HS|1⟩ = E0|1⟩. Substituting these eigenstates into
L(ω), we obtain three primary jump operators, corresponding
to

= = = ± = ±L L E( 0) , ( 2 ) ( i )z
z

x y0

(11)

Here, σ± = (σx ± iσy)/2 are the raising and lowering operators
and thus respectively represent the relaxation and excitation
environmental effects, while the σz operator describes pure
dephasing. Table 1 summarizes the derived jump operators
alongside their damping rates.

By accurately characterizing environmental effects, this
dynamical model provides a comprehensive description of
essential quantum energy transfer processes in our photo-
synthetic antenna model. We also note that the Lindblad
equation, as implemented in this study, has been widely used
to describe dissipation in a wide range of contexts, including
quantum information science.50 However, it is based on several
approximations that limit its applicability to systems that are
weakly coupled to their environment.22,46,49,51−54 Hence, more
rigorous quantum master equations should be used when its
applicability is exceeded.

2.1.3. Effective Hamiltonian of the cQED Platform. The
cQED platform, shown in Figure 1b, enables the simulation of
the model system shown in Figure 1a, upon suitable
parametrization of the quantum operations applied. Each
microwave cavity of the device corresponds to a vibrational
mode of the chromophores, while the ground and excited
electronic states of chromophores A, B, and C are mapped
onto the ground |0⟩ and excited |1⟩ states of qubits σa, σb and
σc, respectively. Therefore, within the single-excitation
manifold,

| | | | | | | |

| | | | | | | |

G A

B C

0 0 0 , 1 0 0

0 1 0 , 0 0 1
a b c a b c

a b c a b c
(12)

Appendix A shows how the system Hamiltonian H in eq 1
can be unitarily transformed into the following effective
Hamiltonian in the rotating frame:

= + + +H H H H H/ / / / /XX YY0 1 2, 2, (13)

The four terms of H̃ are defined as follows:
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4. YY coupling H( )YY2,
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(17)

2.1.4. Hamiltonian for a 1D Array of Coupled
Chromophores. In a more realistic photosynthetic setting,
we consider multiple chromophores coupled together in a one-
dimensional (1D) array, where every three neighboring
chromophores interact according to the Hamiltonian described
previously. Let each chromophore be labeled by the index ξ,
each having both a high-frequency mode ξ0 and a low-
frequency vibrational mode ξ1. Using bξ d0(1)

and †b
0(1)

to
represent the bosonic annihilation and creation operators for
the high(low)-frequency mode of the ξth chromophore, the
overall Hamiltonian of an N-chromophore 1D array of
chromophores can be written in the form

= + +
=

H H H H
N

1
0
( )

1
( )

2
( )

(18)

where the noninteracting part of the Hamiltonian

= +† †H b b b b
2
q z

0
( )

0 0 0 1 1 1

0

0 (19)

describes the free evolution of the vibrational modes the
electronic states of each chromophore. The dispersive
interactions within each chromophore, primarily involving
the high-frequency mode, are captured by

= + +† †H b b
g

b b
2 2

( )z cd z
1
( ) ,0

0 0 0

0

0 0 0 (20)

Table 1. Parameters for the Lindblad Equation as Derived
for the Spin-Boson Modela

Process Jump Operator Dissipation rate

Relaxation σ+ + J E
2( )

(2 )

1 ex y E
2 2 0

2 0

Excitation σ− + J E
2( )

( 2 )

1 ex y E
2 2 0

2 0

Dephasing σz
J (0)

z
2

aThe term = | =J J(0) ( ) 0 represents the first derivative of the
spectral density J(ω) at ω = 0. We note that energy absorption from
the environment, described by the jump operator σ−, becomes
abysmal when E0 ≫ kT.
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Finally, the interchromophore and intrachromophore cou-
plings, involving interactions between vibrational modes and
electronic transitions, are described by

= + +

+ + +

+ + +

+ + +

† +

+ +
+

+ †

+ +
+

†

H
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g

g
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2
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2
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2
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2
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2
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cd z
2
( ) , ,( 1)

( 1)

,( 1)
( 1)

,( 1) ,
( 1)

,( 1) ,
( 1)

1

1 1 0

0 0

0 0

0 0

0 0

0 0 1

0 0 1 1

0 0 1

0 0 1 1

(21)

where the first term describes the coupling between the low-
frequency vibrational mode and the high-frequency electronic
state within the same chromophore. The second and third
terms represent nearest-neighbor electronic couplings between
adjacent chromophores. The fourth and fifth terms describe
vibronic couplings, where interchromophore electronic tran-
sitions are modulated by the low-frequency vibrational modes.

It is important to note that all interchromophore interaction
coefficients in eq 21 are divided by a factor of 2 compared to
eqs 16 and 17 to avoid double counting interactions.
Additionally, each qubit drive frequency q 0

can be obtained,
following a relationship analogous to how ωqa is obtained from
ωl in eq 66 and Table 3. This dependency reflects the influence
of the vibrational modes on the chromophore electronic states.
2.2. Energy Transfer Mechanism. Understanding the

dominant energy transfer pathways in photosynthetic systems
is a fundamental problem with significant implications for both
natural and artificial light-harvesting processes. An illustrative
example for a three-chromophore system is shown in Figure
1a.55,56 Consider an electronic excitation initially generated on
molecule A through photoexcitation by sunlight. As molecule
A is coupled to both molecules B and C, excitation energy can
transfer between these adjacent sites. The rates of energy
transfer rates are determined by the specific chemical
interactions as described by the corresponding coupling
coefficients. The absorbed sunlight energy is subsequently
used to drive downstream chemical reactions associated with
charge separation and water oxidation.57 Therefore, it is of

great interest to understand how energy transfers through
specific relaxation pathways that are determined by chemical
interactions, quantum interference, and dissipation.

Traditionally, tackling this problem requires solving the
quantum master equation (QME),58−60 which poses signifi-
cant computational challenges, especially for complex systems
with a large number of degrees of freedom.61 The situation
becomes even more demanding when the vibrational modes
must be treated quantum mechanically, as accurate simulation
of such bosonic quantum dynamics is computationally intensive
on both classical and qubit-based quantum hardware.62,63

Given the rapid advancements in cQED hardware, we propose
an alternative approach that leverages the mapping of system
Hamiltonians onto cQED hardware modules, integrated with
novel quantum algorithms and advanced simulation techni-
ques. This CV−DV hybrid framework offers the potential to
efficiently tackle the energy transfer pathway problem,
providing deeper insights into the fundamental mechanisms
governing photosynthetic energy conversion.
2.3. Engineering Dissipation Channels for Chromo-

phores. The dissipation dynamics described by the Lindblad
equation in Section 2.1.2 can be modeled using damping and
dephasing channels, represented by the jump operators σ+, σ−,
and σz. In this section, we show how the damping rates listed
in Table 1 correspond to the quantum circuit parameters for
the Markovian dissipative channels derived in Appendix B.
This connection enables the simulation of colored bath effects
on the system qubit via ancilla qubits, employing unitary
dilation techniques.

2.3.1. Amplitude Damping Channel. Consider the
amplitude damping channel associated with the σ+ jump
operator. The corresponding Lindblad equation is
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(0) (0)
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The analytical solution can then be derived in the form

Figure 2. Quantum circuit realizations of different dissipation channels, where the system qubit |ϕ⟩ undergoes dissipation via coupling to the
environment, modeled by an ancillary qubit initialized in the ground state |0⟩. (a) Amplitude damping channel, where θ is obtained from eq 26; (b)
excitation channel, where θ is obtained from eq 28; (c) dephasing channel, where θ is obtained from eq 29; (d) general dissipation channel for the
spin-boson model in eq 7. The Ry rotation angle θ for each component channel is calculated with t being replaced by the small time step τ and the
damping rates provided in Table 1. (e) Real-time evolution of the spin-boson model, where each Trotter layer consists of the evolution unitary

=U e Hi S , followed by the general dissipation channel .
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Alternatively, the amplitude damping channel derived from eq
78, with damping probability p, is characterized by the Kraus
operators = | |A p 0 10 and = | |+ | |A p0 0 1 1 11 ,
yielding the analytical solution for the density matrix evolution
as
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Comparing eqs 24 and 25, the damping probability p relates to
the Lindbladian damping rate γamp through =p1 e tamp , or
equivalently,

=cos( /2) e t
amp

/2amp (26)

allowing the determination of the appropriate rotation angle
θamp for the amplitude damping channel amp channel shown in
Figure 2b.

2.3.2. Excitation (Inverse Amplitude Damping) Channel.
The excitation process from |0⟩ to |1⟩, corresponding to the σ−

jump operator, is similarly described by an amplitude damping
channel with the Lindblad equation
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, ( )exc (27)

Its quantum circuit implementation, shown in Figure 2a, is
simply an extension of the relaxation channel (Figure 2b).
Similarly, the Lindbladian excitation rate γexc relates to the Ry
rotation angle θexc via

=cos( /2) e t
exc

/2exc (28)

2.3.3. Pure Dephasing Channel. The dephasing channel
associated with the σz jump operator leads to a decay of off-
diagonal coherence elements. The relation between the
dephasing rate γdep and the Ry rotation angle θdep in the
dephasing channel dep (Figure 2c) is given by

i
k
jjjjj

y
{
zzzzz =sin

2
(1 e )

2

t
2 dep

2 dep

(29)

Defining the dephasing probability as p = sin2(θ/2) from eq
83, we obtain =p1 2 e t2 dep .

2.3.4. Quantum Circuit for the Spin-Boson Model. By
combining quantum operations from the three dissipation
channels, we can construct a quantum circuit that emulates
dissipative effects of the spin-boson model for a small time step
τ, as shown in Figure 2d. The order in which the three different
dissipation channels appear may be important in the general
case; however, for small values of τ (such as in a single Trotter
step), that is of less significance.64 We have now arrived at the
quantum circuit for evolving the Lindblad equation of the spin-
boson model, provided in Figure 2e.
2.4. cQED Modular Hardware Design. This section

outlines the proposed cQED modular hardware designed to
implement our computational framework using available
quantum gates.

The simulation of a 1D array of chromophores is mapped
onto a corresponding 1D cQED hardware layout, as shown in
Figure 3. This architecture employs SNAIL (Superconducting
Nonlinear Asymmetric Inductive eLement) couplers to enable
efficient coupling mechanisms between resonators.65 Each
hardware unit (indicated by a colored box) consists of two
cQED devices, including high-frequency (red circle) and low-
frequency (yellow circle) modes realized as microwave
resonators dispersively coupled to individual superconducting
transmon qubits. In this configuration, each chromophore in
the 1D chain is mapped to a hardware module, with the full
time-evolution decomposed into native operations for the
cQED platform.

2.4.1. Instruction Set Architecture (ISA). We briefly review
the cQED ISA33 employed for simulating vibronic dynamics.
In addition to the basic Pauli gates, arbitrary single-qubit
rotations can be performed for θ ∈ [0, 4π),

i
k
jjj y

{
zzz=R ( ) exp i

2j
j

(30)

where σj represents the Pauli matrices (j = x, y, z). This enables
native implementation of the Hadamard gate as

i
k
jjj y

{
zzz=H R

2
x

y (31)

Figure 3. Proposed modular cQED architecture for simulating vibronic dynamics in a 1D molecular chain. Each colored box represents a hardware
unit corresponding to a single chromophore. For the two boundary chromophores (ξ = 1, N), only the high-frequency vibrational modes are
considered. Intermediate chromophores ξ ∈ [2, N − 1] are modeled with both high- (red circles) and low-frequency (orange circles) cavities,
coupled with SNAILs for efficient cavity−cavity interactions. Transmon qubits (shown in purple) represent the electronic states, while ancillary
transmon qubits are depicted in teal blue.
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For entangling nearest-neighbor qubits, we utilize the native
XX-rotation gate, which can be generalized to the YY-rotation
via single-qubit gate conjugation with θ ∈ [0, 4π):
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Additionally, we assume access to Controlled-NOT (CNOT)
gates, where nonnearest-neighbor interactions are mediated via
nearest-neighbor SWAP operations, each decomposable into
three CNOT gates.

In the continuous-variable (CV) domain, two fundamental
operations are displacement and rotation in the phase-space
formulation:66,67

= *

= =

†

†
D b b

R n b b

( ) exp( ),

( ) exp(i ) exp(i ) (34)

where b and b† are the bosonic annihilation and creation
operators, satisfying the canonical commutation relation [b, b†]
= 1. We note that R(θ) rotates the oscillator wavefunction by
an angle θ ∈ [0, 2π), while D(β) displaces its Wigner
quasiprobability distribution by Re(β) along the position axis
and Im(β) along the momentum axis.

The Fock states {| }n n are eigenstates of the number
operator = †n b b and comprise a computational basis

| =
!

†n
n

b1
( ) 0n

(35)

Nonlinear phase-space transformations (also referred to as
non-Gaussian operations) enable phase-control over individual
Fock states, such as the SNAP gate68

= | |
=

n nSNAP( ) e
n 0

i n

(36)

parametrized by = ( , , , ..., )N0 1 2 max
for φn ∈ [0, 2π).

This gate effectively imparts a different phase to each Fock
level of the oscillator.

For entangling two oscillators, the beam splitter gate is
employed66,69−71
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parametrized by the transmittivity θ ∈ [0, 4π) and phase angle
φ ∈ [0, π).

In addition, advances in hybrid continuous−discrete variable
(CV−DV) systems have enabled gates that couple the
oscillator with its auxiliary qubit in the weakly dispersive
regime, like the conditional displacement40,72

= [ * ]†b bCD( ) exp ( )z (38)

with . Conditional phase-space rotations are implement-
able and can be fine-tuned with SNAP gates33

= [ ]†b bCR( ) exp (i )z (39)

for θ ∈ [0, 2π).
Universal quantum computation on hybrid CV−DV devices

can be realized with the gate set {CD(β), BS(θ, φ), Rj(θ)}. For
universal oscillator control, it is sufficient to use the gate set
{ }DSNAP( ), BS( , ), ( ) .33 Based on these gate sets, the
time-evolution governed by the chromophore Hamiltonian in
eq 18 can be efficiently compiled and simulated on cQED
devices.
2.5. Compiling Hamiltonian Simulation with cQED

ISA. We now describe how to simulate the time-evolution of
the system Hamiltonian H̃ from eq 13, generalizable to eq 18.
In this framework, H2

(ζ) in the rotated frame is decomposed
into H XX2,

( ) and H YY2,
( ) , as outlined in Appendix A for N = 3

chromophores. This decomposition implements only the
cQED ISA described in Section 2.4.

Given a discrete time step τ, the objective is to compute the
time evolution of the system at each time t

i
k
jjj y

{
zzz| + =t H t( ) exp

i
( )

(40)

where |Ψ(t)⟩ denotes the full state-vector of the N-site
chromophore system at time t. In our notation, the ξth
chromophore consists of a pair of electronic states with high
and low frequency, represented as qubits |ϕξd0

⟩ and |ϕξd1
⟩,

respectively. Each electronic state is coupled to an associated
vibrational mode, encoded as a qumode in states |ψξd0

⟩ and
|ψξd1

⟩.

For the decomposition of e Hi / into elementary gates
suitable for cQED implementation, we leverage established
techniques for Hamiltonian simulation. These include gate
decompositions for (i) qubit-centric systems, such as the
Heisenberg spin chain model73,74 and Kitaev’s honeycomb
model,75 where interactions are mapped onto sequences of
single- and two-qubit gates; (ii) qumode-centric systems
including the multisite Bose−Hubbard model;76 and (iii)
hybrid qubit−qumode systems, notably recent developments
in the simulation of gauge fields.62 These prior works provide
the foundational strategies for gate decomposition applied to
the unique structure of our chromophore model.

2.5.1. Real-Time Evolution via Trotterization. To simulate
the system real-time evolution, we employ a Trotter−Suzuki
decomposition, which enables approximating the time-
evolution operator by sequentially applying exponentials of
Hamiltonian terms that are natively implementable on
quantum hardware. The key challenge lies in properly
decomposing the total Hamiltonian H̃ into separate terms,
each compatible with available operations on the cQED
platform. However, these terms generally do not commute, so
the Baker−Campbell−Hausdorff formula for Trotterization
introduces errors.

We refer the readers to the established error analysis of
Trotterization,64 including recent extensions to bosonic
devices.77 While the Hamiltonian decomposition can, in
principle, be optimized to minimize Trotter error, practical
hardware constraints often impose limitations. For example,
terms such as ( )

g
a
x

b
x

2
ab and + †l l( )( )

g
a
x

b
x

2
ab in eq 16 cannot

currently be implemented as a single native operation. Instead,
they must be decomposed into separate operations, increasing
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Trotter error. This trade-off between leveraging native
hardware capabilities and minimizing Trotterization error is a
key consideration in quantum simulation.

2.5.1.1. Hamiltonian Decomposition and Trotterization
Scheme. For our system, we rewrite the total Hamiltonian
from eq 13 as a sum of four distinct terms

= + + +H H H H HXX YY0 1 2, 2, (41)

This can be reorganized as
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2 0 2, 2 0 2,

0 1

2 3 (42)

where w1 ∈ [0, 1] and w2 ∈ [0, 1/2] are tunable weights used
to distribute the free evolution term H0 across different Trotter
steps. Each term represents different physical interactions and
demands distinct implementation strategies. The terms in H0
can be toggled on or off at will during the simulation on cQED
devices while the terms in H1 can only be turned on and off
simultaneously in an analog manner. H XX2, and H YY2, pose the
greatest challenge, as they are not directly implementable on
cQED hardware and must be synthesized/compiled from
native gates.

To simulate the time evolution over a small time step τ, we
apply the second-order Suzuki−Trotter formula78
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3
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3p q

(43)

where the leading-order error term arises from the non-
commutativity of the Hamiltonian components. The Trotter
error coefficient, αcomm, quantifies this error and is given by64
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(44)

where ∥·∥ denotes the spectral norm. This expression captures
the dominant error contributions arising from nested
commutators of the Hamiltonian components.

2.5.1.2. Error Mitigation and Parameter Selection. In
principle, the weights w1 and w2 can be optimized to minimize
αcomm and thereby reduce Trotter errors. However, for the
purpose of this work, we focus on high-accuracy simulations by
setting w1 = w2 = 0, effectively simplifying the decomposition.
To ensure the Trotter error remains negligible, we select a
sufficiently small time step τ such that αcommτ2 ≪ 1, or
equivalently,

1

comm (45)

This condition guarantees that the accumulated error over the
simulation remains reasonably bounded, balancing computa-
tional efficiency with the desired accuracy.

2.5.2. Compiling Quantum Circuits to Simulate Dispersive
Vibronic Couplings. To simulate the generalized multisite
Hamiltonian in eq 18, we compile each term into its quantum
circuit native implementation. In this subsection, we only focus
on the terms

+± +
±

†
g

b b
2

( )( )
,( 1) ,

( 1)
0 0 1

0 0 1 1 (46)

which describe dispersive vibrational−electronic coupling
between adjacent chromophores. The readers are referred to
Appendix C for the full compilation of the remaining terms in
eq 18. Following Appendix A, the simulation of σ+σ−

interactions is split into separate σxσx- and σyσy-interaction
terms, compiled via Trotterization with parametrized angles

= ±g

2
,( 1) ,0 0 1

(47)

for the XX- and YY-rotations.
2.5.2.1. Compiling σxσx Interactions. To simulate the σxσx-

interaction terms, we conjugate a conditional displacement
operation with CNOT and SWAP gates, yielding
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alongside an alternative decomposition, as shown in Figure 4a:
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In eqs 48 and 49, H denotes the Hadamard gate, and the
SWAP gates mediate interactions between nonnearest-
neighbor qubits in the cQED architecture. Equation 48
describes vibronic interactions with the next chromophore in
the array, requiring nearest neighbor SNAIL couplings
between ξ0 − ξ1 and ξ1 − (ξ + 1)1. Equation 49 describes
interactions with the previous chromophore, requiring three
mediations: (ξ − 1)0 − (ξ − 1)1, (ξ − 1)1 − ξ0, and ξ0 − ξ1.

2.5.2.2. Compiling σyσy Interactions. The σyσy-interaction
terms can also be simulated in a very similar manner to σxσx-
interaction terms, using the identity

=e ex yi 4 i 4
z z

(50)

which implies
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This results in the circuit as shown in Figure 4b.
2.5.3. Resource Estimation from Hybrid ISA. In this

section, we estimate the resources required to simulate the
Trotterized 3-site chromophore model. Specifically, we count
two-qubit and qubit−qumode gates based on the hybrid cQED
ISA.

The first three terms of eq 15 require 3 SNAP gates, while
the remaining three terms need 3 CD operations. For the
circuit shown in Figure 11d, each SWAP operation
decomposes into three CNOT gates, implying that a single
transmon−transmon coupling requires 7 nearest-neighbor two-
qubit gates. The four two-transmon interaction terms in eqs 16
and 17 cumulatively demand 28 nearest-neighbor two-qubit
gates.

For the circuit in Figure 11c, the gate requirements are
equivalent to one CD gate and 6 nearest-neighbor CNOT
gates. Therefore, the two σz(l + l†) terms in eqs 16 and 17
require 2 CD operations and 12 CNOT gates.

In Figure 4a, the first circuit requires 1 CD gate, 2 CNOT
gates for entangling transmons a and l, and 6 CNOT gates for

SWAP operations between transmons b and l. The second
circuit requires 1 CD gate, 6 CNOT gates for the two SWAP
operations between transmons a and l, plus 8 CNOT gates to
account for the two CNOT operations between transmons a
and b. The latter gates, separated by the low-frequency cavity
coupled to b, require two additional nearest-neighbor SWAP
operations.

Considering both σxσx(l + l†) (Figure 4a) and σyσy(l + l†)
terms (Figure 4b), the gate count amounts to 2 CD and 28
CNOT gates for a−c interactions, and 2 CD and 16 CNOT
gates for a−b interactions. This results in a total of 4 CD and
44 CNOT gates for two-transmon-one-cavity operations.

Summing the contributions, the 3-site chromophore model
requires per Trotter step: 84 CNOT gates, 9 CD gates, and 3
SNAP gates. For a generalizing 1D array of N-chromophores,
assuming negligible low-frequency modes at the boundaries
and mapping to 2N − 2 transmon qubits and 2N − 2 cavities,
the total gate count per Trotter step is

= × + +N N( 2) (84 CNOT 9 CD 3 SNAP)gate

(52)

In an alternative scenario where transmon connectivity is
absent, we consider a cavity-only approach. Here, we assume
native access to CD operations via weak dispersive interactions
between each cavity and its coupled transmon. Each CNOT
gate can be analytically decomposed into four native beam
splitter (BS) gates between adjacent cavities and four CD
operations.33 Consequently, simulating the 3-site chromophore
model requires 336 BS gates, 345 CD gates, and 3 SNAP gates
per Trotter step. Extending this to an N chromophore 1D
array, the total gate count per Trotter step is

= × + +N N( 2) (336 BS 345 CD 3 SNAP)gate (53)

3. RESULTS
3.1. Validation against Exact Lindbladian Dynamics.

To assess the accuracy of the proposed quantum circuits in
capturing environmental effects (Section 2.3), we compare the
simulation results with exact Lindblad dynamics for the spin-
boson model. Specifically, we consider a Debye spectral
density

=
+

J( ) c

c
2 2 (54)

using parameters representative of photoinduced charge
transfer in solution:22,79,80 system-bath coupling strength η =
0.3 eV, spectral width ωc = 30 cm−1, site energy E0 = 0.2 eV,
and temperature T = 77 K. The environmental coupling is
assumed to be equally distributed among all Pauli operators
(ηx = ηy = ηz = 1/3), and the system is initialized in the
superposition state ρ(0) = |+⟩⟨+|.

Figure 5 compares the population dynamics obtained from
the quantum circuit simulations using AerSimulator (from
Qiskit Aer)81 to those obtained with the exact Lindblad
dynamics computed the QuTiP solver.82,83 This result
confirms that the circuit in Figure 2e accurately captures the
general characteristics of environmentally induced dissipative
effects within the validity regime of the Lindblad formalism.
3.2. Nondissipative Simulations. To assess the accuracy

of the compiled quantum topology introduced in Section 2.5,
we benchmarked its performance by propagating the system
Hamiltonian (eq 13) using the numerical solver method

Figure 4. (a) Two circuit compilations for σxσx interaction terms
between adjacent chromophores. These circuits reduced to qubit
operations and transmon−cavity dispersive interactions on the low-
frequency mode ξ1. The second circuit implicitly requires a pair of
conjugate SWAP operations to mediate nonnearest-neighbor CNOT
gates. (b) Circuit compilation for σyσy interaction terms between
adjacent chromophores. The H2,XX block is implemented as shown in
(a). For the cQED hardware layout in Figure 3, the (ξ − 1)0 qubit
shall be placed before the ξ0 qubit.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.5c00315
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/10.1021/acs.jctc.5c00315?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00315?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00315?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00315?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.5c00315?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


implemented in QuTiP.82,83 This corresponds to numerically
solving the Liouvillian part of the Lindblad equation in the
absence of dissipation, i.e., all damping rates are set to zero (γj
= 0).

Given the presence of both electronic and vibrational
transitions in the chromophore system, we utilized Bosonic-
Qiskit,84 an extension of Qiskit that enables Trotterized
simulations of hybrid CV−DV systems via Qiskit Aer
simulators. Figure 6 compares the exact quantum evolution
with the Trotterized quantum simulation, where each time step
corresponds to approximately 10 fs. The close agreement
between both simulations validates the accuracy of our
approach.

3.3. Dissipative Simulations. Dissipation is a fundamen-
tal aspect of real-world quantum systems and must be
incorporated into physically relevant simulations. Here, we
combine amplitude damping and dephasing channels to
effectively capture key features of environmentally induced
dissipation in the 3-site chromophore model system. To
emulate quantum dissipative channels, we implement a gate-
based approach following ref 85 where we measure the ancilla
qubits and reset them to the ground state after each Trotter
step (Section 2.5.2). The overall structure of this approach is
illustrated in Figure 7, where low-frequency qubits |ϕξd1

⟩ are

used to implement the dissipative channels. These qubits serve
to control the evolution of the low-frequency qumodes |ψξd1

⟩
rather than evolving in real-time themselves (see compiled
circuits in Figure 2). These channels are parametrized in terms
of the dissipative Lindbladian damping rates and associated
jump operators of the system, as discussed in Section 2.1.3.

Given a Trotter step of duration τ, the damping rates for the
amplitude damping and dephasing channels are given by γampτ
and γdepτ, respectively. The corresponding Ry rotation angles
for these dissipative channels are determined by

= 2 arcsinamp amp (55)

= 2 arcsindep dep (56)

where γamp and γdep are the damping rates. Further details on
performance and convergence analysis, including the choice of
Trotter step size τ = 10 fs, a Fock truncation of 8 levels, and
10,000 shots per simulation, are provided in Appendix D.

To investigate the impact of environmental dissipation on
the 3-site chromophore system, we analyze population
dynamics under varying amplitude damping and dephasing
rates. These simulations help elucidate how energy and
quantum coherence evolve in open quantum systems and
provide insight into how environmental effects can be tuned to
control energy transfer pathways.

3.3.1. Amplitude Damping Effects. Figure 8 depicts the
population dynamics under different amplitude damping rates
for the three chromophores, modeled using the Lindblad jump
operator σ+. The top panel compares a system-wide damping
rate of γamp,all = 3.15 × 1012 Hz (defined in Table 3 against a
nondissipative reference evolution (dashed lines)).

These results indicate a substantial decrease in the
chromophore excited state population, with only 21% and

Figure 5. Population dynamics of the spin-boson model. The results
compare Lindblad dynamics simulated using QuTiP with the
Trotterized quantum circuit in Figure 2e. P0 and P1 denote the
probabilities of measuring |0⟩ and |1⟩, respectively, for the system
qubit. Each data point represents the average measurement from 2000
shots.

Figure 6. Population dynamics of the 3-site chromophore system
without dissipation over a 2 ps time scale, comparing exact evolution
computed with QuTiP (solid lines) and Trotterized quantum
simulation using Bosonic-Qiskit84 (markers). Each data point
represents the average measurement from 10,000 shots, with a Fock
space truncated to 8 levels applied in both simulations.

Figure 7. Generalized quantum circuit topology for simulating a
dissipative 1D-array of n chromophores. In each Trotter step τ, the
full system Hamiltonian from eq 18 is first propagated, followed by
the quantum dissipative channels , as in Figure 2d, to the low-
frequency qubits |ϕξd1

⟩. The symbols |0⟩reset indicate that these qubits
are then incoherently reset to |0⟩ state after each dissipation step,
independent of measurement outcomes.
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4% of the initial population remaining at 0.5 and 1 ps,
respectively. These values closely match the theoretical
expectation: after t/τ Trotter steps, the undamped population
is

= =p(1 ) (e ) et t t
amp,all

/ /amp,all amp,all
(57)

also yielding 21% and 4% at 0.5 and 1 ps, respectively.
Furthermore, adjusting individual chromophore damping

rates (e.g., changing the local chemical environment of the
chromophore) offers a potential mechanism for controlling
energy transfer pathways. The middle and bottom panels of
Figure 8 illustrate the effects of increasing and decreasing the
damping rate of chromophore B by a factor of 3 (γamp,b = 9.45
× 1012 Hz and γamp,b = 1.05 × 1012 Hz, respectively). As
expected, increasing (decreasing) the damping rate leads to a
lower (higher) excited-state population for chromophore B.
Notably, this tuning also temporarily enhances (suppresses)
the excited-state populations of chromophores A and C,
suggesting a transient redistribution of energy before ultimate
dissipation. We hypothesize that a reduced damping rate on B
allows energy to accumulate and subsequently transfer to A
and C before environmental dissipation dominates.

3.3.2. Dephasing Effects. Dephasing, the second dissipation
mechanism under investigation, leads to quantum coherence
loss without energy dissipation,86 causing the system to evolve
toward a mixed state over time.

At higher temperatures, dephasing rates increase, accelerat-
ing the relaxation of the system.87 For instance, in the spin-
boson model discussed in Section 2.1.2, the dephasing rate is
inversely proportional to the inverse temperature, β = 1/kT
(Table 1). For this analysis, we select a physically relevant

dephasing rate of γdep = 9.0 × 1011 Hz, corresponding to an
experimental system temperature of approximately 77 K.88,89

Applying this rate on the 3-site chromophore system and
comparing it to the dissipationless (top panel of Figure 9), we
observe that the system decays as expected to a mixed state
while maintaining the total excited-state chromophore
population.

To explore the effect of selective dephasing, we vary the
dephasing rate of chromophore B (middle and bottom panels
of Figure 9). A higher dephasing rate accelerates relaxation
while reducing the transient population of excited-state
chromophore B, whereas a lower dephasing rate results in
slower relaxation and higher transient excited-state popula-
tions. This behavior can be attributed to the nature of phase
damping: since dephasing does not dissipate energy into the
environment, the excited-state population redistributes across
the chromophores as coherence is lost.

3.3.3. Combined Amplitude Damping and Dephasing. To
achieve a more comprehensive and physically relevant
simulation, we incorporate both amplitude damping and
dephasing effects in the 3-chromophore system, as shown in
Figure 10. Comparing the damped−dephased system with the
damped-only case highlights the additional influence of
environmental dephasing. The results indicate that the
presence of both amplitude and phase damping suppresses
most oscillations in the excited-state population, leading to a
single peak for chromophores B and C. This suggests that
dephasing accelerates relaxation, reducing the coherence-
driven oscillations observed in purely damped systems.
3.4. Noise Tolerance and Analysis. Current state-of-the-

art quantum hardware is subject to three primary sources of

Figure 8. Population dynamics of the 3-site chromophore system
under various damping rates. The top graph shows the population
dynamics of the 3-site chromophore (γamp,all = 3.15 THz) under
amplitude damping, plotted against a nondissipative system. The
middle and bottom graphs demonstrate the effects of tuning damping
dissipation on chromophore B, with the middle graph showing the
effects of a 3× increase (γamp,b = 9.45 THz) and the bottom graph
showing the effects of a 3× reduction (γamp,b = 1.05 THz). 10,000
shots are performed for each case.

Figure 9. Population dynamics of the 3-site chromophore system
under different dephasing rates. The top panel shows dephasing
dissipation γdep,all = 0.9 THz at 77 K, plotted against a nondissipative
system. The middle and bottom panels demonstrate the effects of
tuning dephasing rate on chromophore B, with the middle panel
showing a 3× increase (γdep,b = 2.7 THz at 231 K) and the bottom
panel showing a 3× reduction (γdep,b = 0.3 THz at 25.6 K) with
respect to a reference dephasing simulation (dashed lines in the
middle and lower panels). 10,000 shots are performed for each case.
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error: gate infidelity, decoherence from thermal relaxation and
dephasing, and state preparation and measurement (SPAM)
errors.42 However, in the context of simulating the dynamics of
our 3-site chromophore system, the dominant hardware
challenges arise from noisy controlled-NOT (CNOT) and
conditional displacement (CD) operations, as indicated by eqs
52 and 53.

In Appendix E, we simulate the population dynamics of both
the dissipative and nondissipative 3-chromophore systems in
the presence of various CNOT infidelity levels. We then
demonstrate that the dominant energy transfer pathway can
still be determined if the infidelity is approximately no larger
than 10−4. In Appendix F, we show that the parameter regime
describing vibronic couplings in eq 13 is compatible with
hardware implementation of high-fidelity CD operations that
does not notably affect the population dynamics of the 3-site
chromophore system. Thus, our proposed framework for
vibronic dynamics simulation is robust against hardware noise
that can be achieved with near-term quantum devices.

4. CONCLUSION AND OUTLOOK
We have introduced a general framework for simulating
vibronic dynamics in chromophore arrays using programmable
hybrid oscillator-qubit quantum hardware. Our approach
incorporates energy dissipation into the simulation via
engineered quantum channels, paving the way for codesigning
gate-based quantum circuits applicable to both open and
closed quantum systems. This work strengthens the link
between high-level quantum algorithms and low-level hardware
constraints, advancing toward a demonstration of quantum
advantage in practical applications.

Starting with a trimer chromophore Hamiltonian inspired by
photosynthetic antenna systems, we mapped the molecular
Hamiltonian to the Hamiltonian of a cQED platform. We then
generalized it to a one-dimensional multiple-site array. By
encoding vibrational states in qumodes, we emulated the
dynamics of bosonic modes involved in energy transfer, a
computationally demanding task for quantum computers that
rely solely on qubit platforms.

For the hybrid CV−DV platform we demonstrated how
amplitude damping and dephasing channels can be encoded to
implement Lindblad dynamics. Based on this, we proposed a
modular cQED hardware design and compiled the system
Hamiltonian using a native instruction set architecture. Our
numerical simulations confirmed that the vibronic population
dynamics remained robust even in the presence of 0.01%
CNOT gate infidelity.

This work opens several avenues at the intersection of
hardware-algorithm codesign and chemical physics. On the
chemistry side, analogous quantum mappings could enable
efficient simulations of reaction dynamics near conical
intersections where the Born−Oppenheimer approximation
breaks down.90,91 At the algorithmic level, while we focus on
Trotterization and product formulas, investigating alternative
approaches such as quantum signal processing and linear
combination of unitaries will be necessary to determine the
most efficient algorithms for specific hardware.

On the hardware front, novel platforms that enable scalable
qumode implementations, such as multimode cavities,92

present promising opportunities for vibronic simulations.
Optimizing instruction set architectures for these platforms
will be essential.33 While our results demonstrate viability
under intermediate gate error rates, long-time simulations will
require integrating error correction and mitigation strategies
into the codesign process.93−95 Finally, as chemical systems
and quantum hardware grow increasingly complex, automated
quantum compilers will become essential for scalable and
efficient circuit design.96,97 We look forward to future
developments along these directions.

■ APPENDIX

A. Derivation of the cQED Effective Hamiltonian
In this Appendix we provide a detailed derivation of the cQED
effective Hamiltonian, given in eq 13, corresponding to the
model system Hamiltonian introduced by eq 1 with the
parameters as provided in Table 2.

We regroup eq 1 as follows
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We then reorder a, defined by the first line of eq 58, as
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where we used the closure relation I = |G⟩⟨G| + |A⟩⟨A| + |B⟩⟨B|
+ |C⟩⟨C| in the single-excitation manifold.

Equations 2−4 allow us to further expand eq 59 as

Figure 10. Population dynamics of the 3-site chromophore system
under both dephasing and amplitude damping, compared to a system
with amplitude damping only. The damping rates used are γamp,all =
3.15 × 1012 Hz and γdep,all = 9.0 × 1011 Hz, as defined in Table 2. Each
data point represents an average over 10,000 measurement shots.
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(60)

We first omit the global phase terms in eq 60 during the time
evolution ( )Htexp i . Then, we perform a (time-independ-
ent) displaced frame transformation associated with the unitary

= = *† †U D a a( ) exp( )a a (61)

Effectively, this transformation displaces chromophore A’s
high-frequency vibrational mode in the phase-space coordi-
nates alongside its ladder operators by υ:

= + = + *† † † † †a U aU a a U a U a,a a a a
(62)

and modifies the Hamiltonian as
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That is, for real values of υ,
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By choosing = g

2
a

a
, we have (numerically) canceled the

classical part of the oscillator a’s phase-space trajectory
described by the term proportional to (a† + a) in the first
term of the last line of eq 64. Similarly, we perform a second
displaced frame transformation on the low-frequency vibra-
tional mode l of chromophore A, associated with

i
k
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y
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g
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l

,

(65)

we can also cancel the classical part of oscillator l’s phase-space
trajectory, simplifying eq 64 to
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Repeating the similar process for b and c yields the
displaced-frame Hamiltonians
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Then, within the single-quanta excitation manifold for the
three qubits

Table 2. Parameters for the Three-Chromophore Antenna
Model, Relevant to Energy Transfer in the Photosynthetic
Processa

parameters values values (converted) (Hz)

ωg,a 1650 cm−1 4.95 × 1013

ωe,a 1545 cm−1 4.63 × 1013

ωg,b 1660 cm−1 4.98 × 1013

ωe,b 1540 cm−1 4.62 × 1013

ωg,c 1640 cm−1 4.92 × 1013

ωe,c 1550 cm−1 4.65 × 1013

ωl 200 cm−1 6.00 × 1012

JAB,0 100 cm−1 3.00 × 1012

JAC,0 90 cm−1 2.70 × 1012

ηAB −0.1
ηAC 0.15
Sa 0.005
Sb 0.004
Sc 0.006
Sl 0−0.1 (tunable)
γamp,all 105 cm−1 3.15 × 1012

γdep,all 30 cm−1 9.00 × 1011

aMost values are adapted from the dimer chromophore analogue
model in ref 1. Parameters for chromophore C are selected at the
same order of magnitude with those in the dimer chromophore model
within a physically relevant regime.
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for R = B, C, from which the energy hopping terms in ,
combined with eq 6, are equivalent to
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Equations 66−68 and 70 have led us to the displaced full
system Hamiltonian
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We now transform this Hamiltonian into the first rotating
frame where the qubits a, b, c rotate at frequencies ωqa, ωqb,
and ωqc, respectively. This results in the detuning frequencies
of Δr = 0 for all qubits r = a, b, c and effectively transforms

± ± ±eR R
ti qr (72)

for R = A, B, C. The Hamiltonian now has become
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where Δxy = ωqx − ωqy. We remark from this transformation
that only the relative difference between qubit frequencies are
relevant for the system dynamics at stake. With this in mind,

we now make a second rotating frame transformation, to “re-
absorb” the time dynamics into a static Hamiltonian where we
consider qubits b and c at relative frequencies Δab and Δac,
respectively. The composition of this rotating frame and the
previous one is equivalent to a rotating frame transformation
from the original system Hamiltonian H with frequency ωqa for
all qubits. We then obtain the static Hamiltonian

= + + +

+ + + +

+ + + +

+ + + +

+ + +
+ + +

† † † †

† † †
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(74)

Finally, using the fact that

=
++
2A B

a
x

b
x

a
y

b
y

(75)

we arrive at the final rotating frame Hamiltonian given in eq
13, with Table 3 summarizing the experimental parameters of
the system as described by these equations (frequencies are
scaled for compatibility with the microwave domain).
B. Engineering Dissipation via Channel Dilation
The discussion of Lindbladian dynamics in Section 2.1.2 sets
the stage for constructing quantum channels, which we now
detail within the framework of gate-based quantum hardware.
Consider the amplitude damping channel characterized by a
damping probability p. The corresponding Kraus operators are

= | | = | | + | |A p A p0 1 , 0 0 1 1 10 1

(76)

Here, A0 represents the relaxation of the excited state |1⟩ to the
ground state |0⟩ while A1 accounts for the partial preservation
of the excited state population and full preservation of the
ground state. To ensure the map is physically valid, the set of
Kraus operators {Ak} must satisfy the completely positive and
trace-preserving (CPTP) condition

=†A A I
k

k k
(77)

where I is the identity operator. To derive an isometric
extension of this channel, we define an isometry UA BE

N that
maps the system A to a larger Hilbert space BE comprising the
system B and the environment E

= | | + | | | + | |

|

U p p( 1 1 1 0 0 ) 0 ( 0 1 )

1

A BE
N

E

E (78)

This isometry (represented as a rectangular matrix) can be
embedded into a unitary operation VAE (represented as a
square matrix) on the combined system-environment space by
extending the isometric matrix to a full unitary matrix through
the addition of (two more) orthogonal columns
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V
p p

p p

1 0 0 0

0 0 1

0 0 1

0 1 0 0
1 0 0 0

0 0 sin( /2) cos( /2)

0 0 cos( /2) sin( /2)

0 1 0 0

AE

(79)

where the second equality holds for p = sin2(θ/2). This

parametrization facilitates an efficient gate-based realization of

the amplitude damping process. The corresponding quantum

circuit implementation is depicted in Figure 2b, where the

system qubit |ϕ⟩ interacts with an ancilla qubit initialized in the

ground state |0⟩, representing the environment.
A dephasing channel can be constructed analogously,

defined by the map

+p p(1 ) z z (80)

where the phase flips with probability p.86 From this definition,

we derive the CPTP set of Kraus operators

= =K p K p I, 1z
0 1 (81)

corresponding to the isometric extension

= | | + | |U p p1 0 1A BE A E
z

A E (82)

which can be extended to the full unitary representation

Table 3. Experimental Parameters of the Effective Vibronic
Hamiltonian in the cQED Frameworka

cQED model exp. value

ωa (ωg,a + ωe,a)/2 4.79 × 1013

ωb (ωg,b + ωe,b)/2 4.80 × 1013

ωc (ωg,c + ωe,c)/2 4.79 × 1013

ωl ωl 6.00 × 1012

χa ωe,a − ωg,a −3.20 × 1012

χb ωe,b − ωg,b −3.60 × 1012

χc ωe,c − ωg,c −2.70 × 1012

ωqa see eq 66 −1.30 × 1012

ωqb see eq 67 −1.80 × 1012

ωqc see eq 68 −1.35 × 1012

Δab ωqa − ωqb 5.00 × 1011

Δac ωqa − ωqc 4.99 × 1010

gcd,a S /a e a g a a, , 3.38 × 1012

gcd,b S /b e b g b b, , 3.03 × 1012

gcd,c S /c e c g c c, , 3.70 × 1012

gcd,l Sl l 1.34 × 1012

gab JAB,0 3.00 × 1012

gac JAC,0 2.70 × 1012

gabl JAB,0ηAB −3.00 × 1011

gacl JAC,0ηAC 4.05 × 1011
γamp,all γamp,all 3.15 × 1012

γdep,all γdep,all 9.00 × 1011

aFrequencies are in Hz; scaling assumes a base rate of 105 Hz on
cQED hardware, so the actual frequencies on experimental devices are
obtained by dividing the values of the last column by 105 to place
them in the MHz microwave regime, which is implementable with
state-of-the-art devices.40 Relevant values are calculated with Sl = 0.05.

Figure 11. (a) Compiling simulation of the term H0
(ξ) for the ξth chromophore. (b) Compiling simulation of the term H1

(ξ) for the ξth
chromophore. (c) Compiling simulation of dispersive intrachromophore interactions between the high-frequency electronic state |ϕξd0

⟩ and the low-

frequency vibrational mode |ψξd1
⟩ within the ξth chromophore. The interaction + †

e b bi z
1 1 0 is decomposed into a conditional displacement gate

CD(iθ) on the low-frequency mode, conjugated by SWAP operations that exchange the states of the high- and low-frequency transmons to
facilitate the interaction. (d) Compiling simulation of interchromophore σxσx interactions between high-frequency electronic states |ϕξd0

⟩ and |
ϕ(ξ+1)d0

⟩. Vibrational states encoded in qumodes |ψξ d0
⟩ and |ψ(ξ+1)d0

⟩ are omitted for brevity. The σyσy interactions follow a similar structure, replacing
the RXX operation with RYY.
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(83)

as we have introduced the substitution p = sin2(θ/2).
The corresponding quantum circuit, denoted as dep, is

shown in Figure 2c. Here, the rotation Ry(θ) can be
decomposed as Ry(−θ) = σzRy(−θ) when acting on the
environment in the ground state |0⟩, since

| = |R R( ) 0 ( ) 0y
z

y (84)

C. Compiling Quantum Circuits per Trotter Step
In this Appendix we provide the full compilation to simulate
each Trotter step τ for all the terms in eq 18, except those that
describe dispersive vibronic coupling which are already
covered in Section 2.5.2.

Compiling H0
(ξ). The compilation of H0

(ξ) (eq 19) is
straightforward, involving only single-qubit and single-qumode
gates. The time-evolution of the terms involving the bosonic
number operators †b b

0 0 0
and †b b

1 1 1
is implemented via

phase-space rotation operations on the high- and low-
frequency modes, respectively. The qubit term, z

2
q 0

0
,

corresponds to a Pauli-Z rotation applied on the high-
frequency transmon qubit. The combined time-evolution
operator is

=

† †

R R R

e e e e

( ) ( ) ( )

H b b b b

z q

i i
2

i i

,

q z
0
( ) 0

0 0 0 0
1

1 1 1

0 0 0 0 1 1 1

(85)

where
1

denotes the identity operation on the low-frequency
transmons. Figure 11a shows the corresponding quantum
circuit for each chromophore ξ evolving under H0.

Compiling H1
(ξ). The term H1

(ξ) (eq 20) describes the
vibronic interactions within the high-frequency mode of each
chromophore, corresponding to dispersive couplings between
states |ϕξ d0

⟩ and |ψξ d0
⟩. In the circuit topology (Figure 3), these

states have direct connectivity, allowing efficient gate
compilation.

The term †b b z
2

0

0 0 0
is implemented as a CR gate. The

interaction + †b b( )
g z

2
cd , 0

0 0 0
is then compiled as a CD

operation. The approximate time-evolution operator, justified
via the Trotter−Suzuki decomposition for small τ, is
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( ) , 0

0 0 0
0

0 0 0
1
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0

0

1
(86)

Here,
1

indicates that no operation is performed on the low-
frequency cavity and transmon. Figure 11b shows the
corresponding circuit for each chromophore ξ evolved with H1.

Compiling H2
(ξ). The term H2

(ξ) (eq 21) describes vibronic
transitions between adjacent chromophores, involving both
intra and intersite couplings. In the cQED framework (Figure
3), these interactions are mediated via SNAIL couplers, which
support only nearest-neighbor couplings. We consider the
dispersive intrachromophore coupling term

+ †
g

b b
2

( )cd z, 1

1 1 0 (87)

which couples the high-frequency qubit |ϕξd0
⟩ and the low-

frequency vibrational mode |ψξ d1
⟩ of the ξth chromophore. This

interaction is implemented using a conditional displacement
on the low-frequency mode, sandwiched between the SWAP
operations that exchange the states of the high- and low-
frequency transmons

= · ·

= · ·

+ +† †
e SWAP e SWAP

SWAP CD (i ) SWAP

b b b bi ( ) i ( )z z
1 1 0

0 1
1 1 1

0 1

0 1 1 0 1 (88)

where =
g

2
cd , 1 . The corresponding quantum circuit is

shown in Figure 11c.
High-Frequency Electronic Coupling. We now focus on the

terms

+ +
+

g

2
( )

,( 1)
( 1)

0 0

0 0 (89)

which describe high-frequency electronic couplings. Deriving
how its time evolution can be simulated using an XX-rotation
followed by another YY-rotation, both parametrized by

= +g

2
,( 1)0 0

(90)

is provided in Appendix A. However, since the two high-
frequency electronic states (qubits) are separated by a low-
frequency mode, a pair of conjugate SWAP gates is required

=

= [ ]
[ ]

+
+

+

+ +

+ +

+ +

+
+

R R

R

R

e SWAP e SWAP

SWAP ( ) ( )SWAP

SWAP ( )SWAP

SWAP ( )SWAP

X X Y Y

X X

Y Y

i
( 1)

i 2 ( )
( 1)

( 1) ( 1)

( 1) ( 1)

( 1) ( 1)

x x y y
0 ( 1)0

1 0
0 1 0 1

1 0

1 0 0 1 0 1 1 0

1 0 0 1 1 0

1 0 0 1 1 0

(91)

where the approximation is justified via Trotterization for small
θ. Hardware constraints prevent simultaneous implementation
of the RXX and RYY operations, requiring the separation into
H /XX2, (eq 16, compiled in Figure 11d), and H /YY2, (eq
17) for the 3-site chromophore model. Finally, the terms
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+
g

2
( )

,( 1)
( 1)

0 0

0 0 (92)

are compiled analogously by decrementing ξ in eq 91.
D. Simulation Performance and Convergence
Several parameters influence the performance of Trotter-based
simulations on a cQED device, including the Trotter step size,
Fock truncation level, and shot count. In this section, we
systematically vary these parameters to assess their effects on
the simulation accuracy and performance, ultimately determin-
ing optimal parameters.

Accuracy Assessment. To quantify accuracy, we compute
the root mean square error (RMSE) for each parameter set by
comparing five independent simulations against another set of
five simulations, forming a fully connected bipartite graph with
a total of 25 comparison points. These RMSE values are
averaged and normalized against the average RMSE of the
(intuitively) most accurate parameter in each class, yielding the
normalized RMSE values presented in Table 4. The reference
data set is chosen as a median of all the comparison points,
with a Trotter step size τ = 10 fs, 10,000 measurement shots,
and a Fock truncation of 8 levels.

Additionally, to provide a baseline for general simulation
errors, we compute the normalized internal average RMSE
(visualized as a fully connected graph of comparison points)
for simulations using the most accurate parameter in each
category.

Parameter Scaling and Optimization. We benchmark
Trotter step sizes ranging from 5 to 40 fs (corresponding to
200 to 25 steps per ps). Since the RMSE variance is
significantly influenced by τ, minimizing the step size is
desirable. Notably, the average normalized RMSE nearly halves
when reducing τ from 40 to 20 fs, whereas the improvement
from 20 to 10 fs is less pronounced but still substantial. While
larger step sizes can provide a qualitative understanding of the
system dynamics, a smaller τ should be chosen whenever
computationally feasible. In the presence of hardware intrinsic
noise, an optimal trade-off between Trotter error and

hardware-induced errors should be considered in future
experimental implementations.

Measurement Shots. Shot count influences simulation
variance, as more measurements reduce statistical fluctuations.
The error reduction trend is noticeable, though less significant
than that observed with Trotter step size refinement. We
observe that computational runtime scales linearly with shot
count, yet multiple simulations can be averaged to achieve
equivalent effects, i.e., optimizing shot count is not as critical.

Fock Truncation Level. Intuitively, the Fock truncation level
directly impacts simulation accuracy: lower truncation levels
can exclude essential aspects of the system dynamics, while
higher truncation levels are computationally expensive. We
observe from Table 4 that, with the exception of chromophore
B, lower Fock truncation levels do not significantly impact the
normalized RMSE specifically in our 3-chromophore dis-
sipative system.
E. CNOT-Noisy Numerical Simulations
In this Appendix we explain how noisy CNOT operations are
simulated and demonstrate that infidelities no larger than 10−4

suffice to determine the dominant energy transfer pathway in
the 3-site chromophore system.

We conducted noise sweep simulations using Qiskit’s Noise
Models module. Figure 12 shows the population dynamics of
both pure and dissipative 3-site chromophore systems under
various levels of CNOT infidelity. This infidelity is modeled by
an amplitude damping channel with error εCNOT,amp followed
by a dephasing channel with error εCNOT,dep. Based on the
relative photon loss and dephasing rates in the qubit
(Appendix F), we set εCNOT = εCNOT,amp = 2εCNOT,dep and
analyze the noisy population dynamics for εCNOT values
ranging from 10−2 to 10−5. Since each SWAP operation can be
decomposed into three consecutive CNOT gates, the
cumulative infidelity per SWAP operation is given by

1 (1 )SWAP CNOT
3

(93)

As expected, when εCNOT = 10−5, the excited population
dynamics closely match the ideal simulation. For larger error
rates, the effects of noise become more pronounced. Notably,
at εCNOT = 10−4, the qualitative structure of population
dynamics�particularly the relative excitation distribution
among chromophores�remains discernible, albeit with some
distortion. However, for εCNOT = 10−3, the noise overwhelms
the system, rendering the dynamics unrecognizable. These
results suggest that achieving a CNOT error rate of
approximately 10−4 (0.01% infidelity) or lower is essential
for practical implementation of the chromophore dynamics
simulation on circuit quantum electrodynamics (cQED)
hardware.
F. Estimating Fidelity, Idling Errors of the Conditional
Displacement Gate with Numerical Simulations
The primary infidelity source in implementing the conditional
displacement (CD) gate arises from physical errors in both the
cavity and qubit during the gate execution. We model the
composite system evolution under the Hamiltonian

= + + *† †H a a a a/
2

( )
z

z
CD (94)

where χ/2π ≈ 50 kHz is the weakly qubit-cavity dispersive
coupling frequency, and α ≤ 30 is the displaced-frame
amplitude to implement the CD operation40 at a rate gCD = αχ.

Table 4. Normalized RMSE for Various Simulation
Parameter Setsa

comparison chromo. A (%) chromo. B (%) chromo. C (%)

5−5 fs* 1.8 2.6 3.7
5−10 fs 2.2 3.6 4.6
5−20 fs 2.4 5.5 6.9
5−40 fs 6.0 11 13
20,000−20,000 shots* 1.4 3.7 3.2
20,000−10,000 shots 1.8 3.8 3.5
20,000−5000 shots 3.1 5.0 4.5
20,000−2500 shots 3.0 7.2 6.9
16−16 Fock levels* 1.5 2.6 4.5
16−8 Fock levels 2.1 3.4 4.1
16−4 Fock levels 1.7 4.0 4.4
16−2 Fock levels 1.9 4.3 4.7
aThe first column presents results for varying Trotter step sizes,
followed by shot counts and Fock truncation levels. All simulations
include environmentally induced dissipation, as in Figure 10 and are
performed on the Lafayette College High Performance Cluster. We
use * to denote the normalized RMSE calculated amongst itself,
which provides a baseline.
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Error Sources. We consider the following dominant sources
of infidelity: photon loss in the cavity at a rate κ1,c ∼ (1 ms)−1,
photon loss in the qubit at a rate κ1,q ∼ (100 μs)−1, qubit
dephasing at a rate κϕ,q ∼ (200 μs)−1 (assuming the qubit has
T1 = T2 as a reasonable assumption), and qubit heating
characterized by the thermal excited-state population nth ≈
0.001−0.01. Here nth represents the steady-state of heating and
loss. Together with κ1,q, it fully describes the heating of the
qubit and loss channels via detailed balance: κ1,q = κ↑,q + κ↓,q, (1
− nth)κ↑,q = nthκ↓,q. These mechanisms apply to all idling times
under the dispersive coupling Hamiltonian

= †H a a/
2

z

(95)

In particular, qubit heating induces dephasing in the cavity at a
characteristic rate of κϕ,c ≈ nthκ1,q, which holds under the
condition χ ≫ κ1,q, ensuring that single loss or heating events
fully dephase the cavity.98 We also note that the phase-flip (σz)
errors on the qubit commute with the Hamiltonian. Therefore,
they do not directly affect the fidelity of the CD gate itself but
instead propagate to subsequent operations, i.e., we can either
simulate the phase-flip error with the single-qubit σz gate
(assuming idle time) or perform quantum error correction.99

Analysis of CD Gate Errors. The probability of CD gate
error, εCD can be estimated as

= ×CD all gate (96)

where κall is the total photon loss and dephasing rate (in Hz),
and τgate is the execution time of the CD gate on a physical
quantum processor.

To estimate κall, we add up the rates in times per second for
each of the four error sources mentioned above. As κϕ,c is
highly variable and at least 2 orders of magnitude less frequent
than some of the other error rates, we can safely ignore cavity
dephasing from our calculations for brevity to obtain κall ≈ 16
kHz. The time necessary to perform the gate, τgate, can also be
calculated by dividing the displacement parameter by the CD
operation rate (gCD = αχ) of the hardware. For each Trotter
step, the displacement parameters are of the form gcd,xτ/2
(Appendix C). Hence, eq 96 can be rewritten as

+ +
g

( )
2c q q
cd x

CD 1, 1, ,
,

(97)

For x = l, we present the range of expected error
probabilities for our CD gate on chromophore A’s low-
frequency cavity in Figure 13a. These calculations are based on
a Trotter step size τ = 10 fs and various values of Sl ∈ {0.10,
0.05, 0.00}, which correspond to the CD rates gcd,l ∈ {1.90 ×
1012, 1.34 × 1012, 0.00}, respectively. We observe that the error
probabilities are relatively low, at approximately 1.14 × 10−5(α

Figure 12. (a) Population dynamics of the 3-site chromophore system under varying levels of CNOT infidelity, with εCNOT = 10−2, 10−3, 10−4,
10−5. Each data point represents an average over 10,000 measurement shots. (b) Dissipative population dynamics of the 3-site chromophore system
with amplitude damping under varying levels of CNOT infidelity. The error rates tested are εCNOT = 10−2, 10−3, 10−4, 10−5. Each data point
represents an average over 10,000 measurement shots.
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= 30). However, it is important to keep in mind that these
errors are per Trotter step and per chromophore, and thus can
compound as we evolve the system further. While our error
analysis only covers β = gcd,l, other coupling strengths including
gcd,a, gcd,b, gcd,c will also introduce additional error to the
simulation results. We finally observe from eq 97 that
probability error increases proportionally with the coupling
strengths gcd,x.

Finally, we perform vibronic simulations incorporating CD
infidelity, as modeled using eq 97, with α = 30, which
represents the maximum displaced-frame amplitude achievable
on hardware. To account for this infidelity, eq 97 is compiled
as one dephasing and two amplitude damping channels acting
on the cavity and its auxiliary qubit with probabilities

= =

=

p
g

p
g

p
g

2
,

2
,

2

q q
cd x

c c
cd x

q q
cd x

CD,amp, 1,
,

CD,amp, 1,
,

CD,dep, ,
,

(98)

For details on implementing amplitude damping and
dephasing channels for qubits, we refer the readers to
Appendix B, and for modeling Markovian amplitude damping
in bosonic modes, ref 100.

The results shown in Figure 13b indicate minimal deviation
between noisy and ideal simulations. This aligns with the
analysis from Section 2.5.3 where the number of CD gates per
Trotter step is significantly smaller than that of CNOT
operations, leading to negligible overall impact. Moreover, we
observe that the cavity amplitude damping channels do not
influence the population dynamics measured in the high-
frequency qubits: the terms in eqs 14−17, when compiled into
CD gates, only modify the phase of the controlled qubits.
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Figure 13. (a) Calculated error probability for an individual CD(β) gate with varying β and a range of α = [15, 40] defined in eq 94. The red region
captures realistic values of α that can be achieved on hardware, with an upper bound of α ≤ 30 (900 photons), whereas the gray region is indicative
of the ranges of error probabilities that are possible for various values of gcd,l. (b) Population dynamics of the 3-site chromophore system where the
noisy CD gate’s displaced-frame amplitude is α = 30. The top panel considers the nondissipative system, whereas the bottom panel incorporates
amplitude damping and dephasing with dissipative rates γamp,all and γdep,all, respectively. 10,000 shots are performed for each case.
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