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ABSTRACT: Retrosynthesis, the process of deconstructing a target molecule into simpler precursors, is crucial for computer-aided
synthesis planning (CASP). Widely adopted tree-search methods often suffer from exponential computational complexity. In this
work, we introduce FragmentRetro, a novel retrosynthetic method that leverages fragmentation algorithms, specifically BRICS and r-
BRICS, combined with stock-aware exploration and pattern fingerprint screening to achieve quadratic complexity. FragmentRetro
recursively combines molecular fragments and verifies their presence in a building block set, providing sets of fragment combinations
as retrosynthetic solutions. We present the first formal computational analysis of retrosynthetic methods, showing that tree search

exhibits exponential complexity O(b"), DirectMultiStep scales as O(h°), and FragmentRetro achieves O(h”), where h represents the
number of heavy atoms in the target molecule and b is the branching factor for tree search. Evaluations on PaRoutes, USPTO-190,
and natural products demonstrate that FragmentRetro achieves high solved rates with competitive runtime, including cases where
tree search fails. The method benefits from fingerprint screening, which significantly reduces substructure matching complexity.
While FragmentRetro focuses on efficiently identifying fragment-based solutions rather than full reaction pathways, its
computational advantages and ability to generate strategic starting candidates establish it as a powerful foundational component
for scalable and automated synthesis planning.

1. INTRODUCTION Alternative strategies have emerged to address these
scalability challenges. DirectMultiStep (DMS) models, for
instance, leverage sequence-to-sequence architectures to gen-
erate entire multistep pathways directly, bypassing iterative
search.'* While DMS has shown promising performance,
particularly on benchmarks like PaRoutes,”> and exhibits

Retrosynthetic analysis, the deconstruction of a target molecule
into simpler, typically commercially available precursors, is
fundamental to chemical synthesis and drug discovery."”
Computer-aided synthesis planning (CASP) aims to automate

this complex task. A conventional paradigm in CASP involves . o p ) ) ]
tree-search algorithms, such as Monte Carlo Tree Search polynomial complexity, its O(1”) scaling with molecular size J

(MCTS),> A* search (Retro*)," and Depth-First Proof Number can still be demanding. Other apprl?saches, such as Double-
(DFPN) search.” These methods iteratively apply single-step Ended Synthesis Planning (DESP), ° improve efficiency for
retrosynthetic (SSR) models, often machine learning-based,’ ™’ specific use cases by conducting a bidirectional tree search when
to explore the vast combinatorial space of possible synthetic starting r.nate.rials are provid.ed. by the user, though the}.' still rely
routes. While effective, a primary limitation of such tree-search on 1terat.1VE single-step predlCthTlS. This lands.cape.motlvates the
approaches is their inherent exponential computational exploration of fundamentally different algorithmic approaches

complexity with respect to tree depth, which can hinder

scalability for large and complex targets. Recent advancements Received:  September 29, 2025
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higher-level abstractions of molecular features.'> However, the
underlying exponential scaling often persists in the worst-case
scenario.
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Figure 1. FragmentRetro algorithm. (a) Cartoon representation of an example molecule processed by BRICS or r-BRICS to yield initial fragments
labeled A to F. (b) The FragmentRetro process: In Stage 1, all initial fragments have substructure matches in the stock set. In Stage 2, fragments A—B,
B—C, and E—F are valid. In Stage 3, only fragment A—B—C remains valid. Fragments like A—B—D do not need to be checked, since B—D is invalid and
therefore A—B—D cannot have a substructure match. There is no Stage 4, as no valid combinations of four fragments are possible in this case. (c)
Possible solutions are sorted by the number of fragments, with the most efficient solution on the left. (d) Each valid fragment is associated with a subset

of the stock that has substructure matches.

to retrosynthesis that offer improved computational efliciency,
particularly for unconstrained initial exploration, without
sacrificing solution quality.

In this work, we introduce FragmentRetro, a novel
retrosynthetic method that adopts a bottom-up, fragment-
based strategy (Figure 1). FragmentRetro utilizes molecular
fragmentation algorithms (BRICS'” and its revision, r-BRICS'®)
to decompose a target molecule. It then recursively combines
these fragments, systematically verifying if the combined
fragments exist as substructures within a provided set of
commercially available building blocks (BBs). By integrating
efficient substructure matching, augmented by pattern finger-
print and property screening, FragmentRetro identifies sets of
fragment combinations that reconstruct the target. A key
contribution of this paper is the first formal computational
complexity analysis comparing these distinct retrosynthetic
paradigms. We demonstrate that while tree-search methods

scale exponentially (O(bh)) and DMS polynomially (O( %)),
FragmentRetro achieves a significantly more favorable quadratic
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complexity (O(h)), albeit with a linear dependency on the stock
set size which is effectively managed through parallelization.
We evaluate FragmentRetro on established benchmarks,
including PaRoutes and USPTO-190, as well as challenging
natural products. Our results show that FragmentRetro,
particularly when using r-BRICS, achieves high solved rates,
competitive with or exceeding those of tree-search and DMS
methods in certain scenarios, often with substantially reduced
runtimes. For instance, on USPTO-190 with a large BB set,
FragmentRetro with r-BRICS attains the highest solved rate
(78.4%) and demonstrates excellent parallelization for sub-
structure matching. While FragmentRetro currently outputs sets
of reconstructive fragments rather than fully elaborated reaction
pathways in the form of directed acyclic graphs (DAGs), it
provides a computationally efficient and scalable foundation for
identifying viable precursor sets. This positions it as a powerful
tool for initial synthesis exploration, potentially complementing
other methods in a tiered approach to retrosynthesis. Our main
contributions are (1) the FragmentRetro algorithm, a novel
fragment-based retrosynthetic method with quadratic complex-

https://doi.org/10.1021/acs.jctc.5c01632
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ity; (2) a comprehensive computational complexity analysis of
major retrosynthetic paradigms; and (3) empirical validation
demonstrating FragmentRetro’s competitive performance and

scalability.

2. RELATED WORK

The automation of retrosynthetic analysis has been a long-
standing goal, evolving from rule-based systems to sophisticated
machine learning-driven approaches. Understanding this land-
scape highlights the unique positioning of FragmentRetro.

2.1. Tree-Search Based Retrosynthesis

The predominant approach to CASP involves constructing a
search tree or graph. Early systems relied on expert-defined
chemical rules.' Modern methods typically integrate machine
learning models for SSR predictions with advanced search
algorithms. These SSR models can be template-based, utilizing
predefined reaction patterns,®”'?">* or template-free, directly
predicting reactants from products.”* Popular search algorithms
include Monte Carlo Tree Search (MCTS),”* A* search
Retro*,* and Proof-Number Search derivatives like DFPN.>

Recent advancements in tree search focus on improving
efficiency and prediction quality. For example, Xie et al
proposed RetroGraph, using graph neural networks to guide
search on an explicit graph representation of intermediates to
avoid redundant computations.'® Reinforcement learning
techniques, such as in GRASP,'" train agents to learn optimal
search policies. FusionRetro'* aims to improve SSR predictions
by incorporating contextual information from the partially built
synthetic route. Roh et al. introduced a higher-level retrosyn-
thesis strategy (Higherlev) that abstracts molecular details to
simplify the search space, usin§ substructure matching against
BBs as a stopping criterion.'” Despite these innovations, a
fundamental challenge for tree-search methods is their worst-
case exponential scaling with the size of the target molecule or
the depth of the synthetic route, as formally analyzed in this
work (SI Section B).

2.2. Direct Pathway Generation and Constrained Search

To circumvent the iterative nature and potential scalability
issues of tree search, methods that directly generate entire
multistep synthetic pathways have been developed. DirectMulti-
Step (DMS)'* employs transformer-based sequence-to-se-
quence models to predict a full retrosynthetic route, represented
as a linearized string, from a target molecule. DMS models have
demonstrated strong performance on benchmarks like Pa-
Routes,”” particularly in recovering known routes, and can
incorporate constraints such as desired starting materials or
route lengths. As shown in our complexity analysis (SI Section
B), DMS exhibits polynomial complexity(O(hé)), offering an
improvement over the exponential scaling of tree search.
Addressing the common real-world scenario where specific
starting materials must be utilized, Yu et al. introduced Double-
Ended Synthesis Planning (DESP).'® DESP employs a bidirec-
tional tree-search approach, simultaneously exploring retro-
synthetic steps from the target and forward synthetic steps from
user-specified starting materials. This method, guided by a
learned synthetic distance cost function, has shown improved
efficiency in solving such constrained problems compared to
purely unidirectional search. However, like many tree-search
methods, DESP combines explicit graph search with learned
single-step predictors, and critically, it requires prior human
specification of starting materials. Our work, in contrast, aims to
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identify potential starting material sets automatically as part of
its core fragment-based exploration.

2.3. Molecular Fragmentation in Chemistry

Molecular fragmentation, the process of breaking molecules into
smaller, chemically meaningful pieces, is a well-established
technique in cheminformatics. It finds applications in drug
design for identifying pharmacophores, in quantitative struc-
ture—activity relationship (QSAR) modeling, and as a
preprocessing step for various machine learning tasks. The
BRICS (Breaking of Retrosynthetically Interesting Chemical
Substructures) algorithm'” is a widely used rule-based method
that cleaves molecules at bonds deemed retrosynthetically labile,
effectively identifying potential synthons or key disconnections.
BRICS has been noted for sometimes producing large, inflexible
fragments. To address this, r-BRICS (revised BRICS) was
recently developed by Zhang et al,, extending the original rule set
to enable more granular fragmentation, particularly for
challenging structures like fused rings and long aliphatic
chains."® Our work, FragmentRetro, leverages these fragmenta-
tion algorithms not merely for analysis, but as the core engine for
a bottom-up retrosynthetic search.

2.4, Substructure Searching

A critical component of FragmentRetro, as well as methods like
Higherlev,13 is substructure searching: determining if a given
molecular fragment (query) exists within a larger molecule
(often from a database of BBs). This is a subgraph isomorphism
problem. Efficient algorithms like VF2*® are commonly used in
cheminformatics toolkits such as RDKit.”” The practical
performance of substructure searching can be significantly
enhanced by prefiltering candidates using molecular fingerprints
(e.g., pattern fingerprints) or simple property checks (e.g., heavy
atom count, ring count), as employed in FragmentRetro. While
worst-case complexity for subgraph isomorphism is exponential,
these heuristics and optimized algorithms make it feasible for
large-scale database searching in practice.””

3. ALGORITHM

FragmentRetro introduces a distinct paradigm for retrosynthetic
analysis. Unlike top-down tree-search methods that recursively
break bonds based on reaction predictions, or direct generation
methods that learn entire pathway sequences, FragmentRetro
operates bottom-up. It first decomposes the target into
elementary fragments and then systematically explores combi-
nations of these fragments that are present as substructures in a
BB inventory. This stock-aware exploration of fragment
combinations, combined with effective pruning and efficient
screening, allows FragmentRetro to achieve quadratic computa-

tional complexity O(h*). While it does not directly output a
sequence of reactions forming a DAG, it identifies sets of
precursor fragments from which such a route could be
constructed. This focus on computational efficiency and a
novel search strategy distinguishes FragmentRetro from existing
approaches, offering a scalable alternative for identifying
potential synthetic BBs, particularly for complex targets or
when exploring large chemical spaces. The formal complexity
analysis presented herein further clarifies the theoretical
advantages of this approach compared to established methods.
In what follows, we define M as the set of all molecules and
B C M as the set of available BBs. For a formal statement of the
retrosynthesis problem, refer to SI Section A.

https://doi.org/10.1021/acs.jctc.5c01632
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3.1. Fragment-Based Retrosynthesis

Building upon the principles of molecular fragmentation
discussed in the previous section, we introduce our fragment-
based retrosynthetic approach that leverages substructure
matching. This method recursively combines molecular frag-
ments while verifying their presence in 8. The process aims to
identify retrosynthetic solutions for a given target molecule

p" € M. Here, we define a retrosynthetic solution Q; as a set of
fragments that reconstruct the target molecule, i.e., U, f=p*

where the union is taken over molecular graphs with defined
attachment points (fragmented bonds).

Let 7, = {fl(l),fz(l), .y él)}represent the set of k molecular
fragments obtained from a fragmentation method (e.g.,
BRICS'” and r-BRICS'®), where each fragment fi(l) eEF

corresponds to a SMILES® string. These SMILES strings
contain ‘any atoms (dummy atoms “*’, which represent any
atom in SMARTS™ expressions) each attaching to the fragment
bond ends unless no fragmentation is performed on a given
SMILES string.

Fragment combinations are defined as groups of fragments
that remain bonded during fragmentation, forming a connected
subgraph of neighboring fragments. For example, 7, represents
single fragments, while ¥, represents combinations of n
neighboring fragments, which are still represented as single
SMILES strings, possibly with dummy atoms. These combina-
tions expand as the recursion progresses, increasing the number
of fragments combined and refining the search for valid
retrosynthetic solutions. FragmentRetro identifies valid retro-
synthetic solutions through the following recursive process:

1. Initialization: For each fragment fl_(l) € F,, check if

ibe B s.t.f,-(l) is a substructure of b, i.e., fl-(l) C b. Here,
strict substructure matches are done using SMARTS
patterns to avoid branchings from nonfragmented sites.
Also, the ‘any’ atoms can be hydrogen atoms (no
branching from the fragmented sites). Aromaticity and
chirality must match for a candidate BB to be considered
as containing the substructure of the fragment, except at
the fragmented sites where stereochemistry may be
undefined. We call f,(l) a valid fragment if there is a

substructure match. If 3 fi(l) € T st fl_(l) ZbvbeS,

the process terminates immediately, as subsequent
fragment combinations would also fail to have sub-
structure matches.

2. Recursive Fragment Combination: At each iteration n >
2, obtain combinations of n neighboring fragments
(connected subgraphs with n nodes) from ;. Form a

fragment set F, = {fl(n); fz(n); - ,ff'? }, where each fz(n)

can be written as fj(ll) U..u fj(nl) with j,..., j, < k. For each
fragment £ € 7, checkif3 b € B such that f” C b.

We also record the subset of B that have a substructure
match. When checking larger fragment combinations, we
then take the intersection of these subsets, limiting the
substructure check to a potentially much smaller set of
BBs. One can save time by pruning fragments containing
invalid fragments from previous stages to avoid redundant
checks. This gives a subset of 7, that we call it the effective

set 7, at stage n. For example, if a combination fj(ll) U fj(zl)
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at stage n = 2 does not have substructure matches in 8,

any larger combination containing it (e.g., fj‘l) U fj(zl) U fj:)
at stage n = 3 is excluded from evaluation). This, in
practice, also prevents the process of finding all connected
subgraphs with n nodes, as one can find the effective
combinations from the valid combinations of the n — 1
stage. Additionally, strategies such as fingerprint screening
can be used to filter out BBs that lack the pattern
fingerprints of the fragment SMILES, significantly
reducing the number of BBs that need to be checked for
substructure matches (it is also applicable to the
substructure matching process during the Initialization
stage). In this work, FragmentRetro not only uses
fingerprint screening but also utilizes screening based on
the number of heavy atoms and rings, ensuring that BBs
have greater than or equal numbers of heavy atoms and
rings compared to the fragment combinations (ie.,
property screening).

3. Termination and Solution Construction: The process
terminates when either 7, = @ (indicating no effective
or valid combinations exist) or 7, = {p*} (orn = IF)).
The final retrosynthetic solutions Q = {Q;, Q,...} consist
of sets of fragments Q, = {f\*), fy’),...}, where each fragment
f,(c“) represents a valid combination of original fragments
from . Each Q; satisfies the condition Ujeq, f = p*. The

most efficient solution minimizes the number of frag-
ments in Q, ie., [Q].

By iteratively expanding and pruning fragment combinations,
FragmentRetro balances exhaustive exploration with computa-
tional efficiency, effectively navigating the constraints imposed
by the BBs. This approach provides a robust framework for
analyzing retrosynthetic pathways while deferring the selection
of specific reactions to downstream analysis. The reaction
selection process itself is relatively straightforward and depends
heavily on the fragmentation algorithm. For instance, if the
fragmentation algorithm (e.g., BRICS, as used in this work) is
well-defined and consistent, it is possible to establish a mapping
between specific fragment bond breaks and common reaction
types associated with those bond breaks.

Unlike the explicit synthetic routes S generated in tree-search
and DirectMultiStep methods, Q; represents a set of fragments
that reconstruct the target molecule p* but does not inherently
define the sequence of reaction steps. Without specifying the
order of reactions, a DAG representation of the synthetic route

cannot be constructed. For instance, given three fragments fi“),
fib), and fic) , it must be determined whether fi“) and fy(b) react

first, or if all three participate in a three-component reaction.
Additionally, intermediate products formed during these
reactions must be explicitly defined. Once the reaction order
and intermediate products are specified, the sequence of
reactions S can be constructed, enabling the formation of a
DAG that represents the synthetic route.

3.2. Algorithm Summary

The FragmentRetro method employs a multistage, stock-aware
exploration strategy for fragment combination. Each stage
checks feasibility of fragment combinations, reducing the search
space by pruning infeasible combinations. The algorithm is
summarized in Algorithm 1 and an illustration is shown in Figure
1. Note that the effective combinations at stage n can be found
by adding neighboring fragments to the valid combinations of

https://doi.org/10.1021/acs.jctc.5c01632
J. Chem. Theory Comput. 2026, 22, 972—980


pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.5c01632?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

the n — 1 stage. This prevents the process of finding all
connected subgraphs with # nodes.

Algorithm 1: FragmentRetro(p*, B, Fi = {flm, fél), o .fk(:l)})
p*: target molecule, B: building blocks, F;: initial fragment set from fragmentation algorithms
for i < 110 | Fi| do
it £ ¢ bforall b € B then
\ exit ; /* All initial fragments should be valid to continue */

end
end
for n < 210 |Fi| — 1do
Obtain F,, = {f,("), fz("% .. ,ff?)) H /* n neighboring combinations */

Prune to get effective combinations F}, ;
if 7!, = 0 or F,, = {p*} then

/* Check for redundancy */

/* No valid fragments exist or the target molecule is formed */
break

end

if f,(") C b for some b € B then
/* Fingerprint screening on B can be performed here using ff") */

Mark j'f") as valid ; /* Check substructure match in B */

else
‘ Mark fi(n) as invalid ;
end

/* Help check redundancy in the next stage */

end
return solutions Q = {Q1, Q2. ...}, where Q; = {fiax ;b). ...} satisfies e, f=p"

3.3. Computational Complexity Comparison

The computational complexity analysis is outlined in SI Section
B and summarized in Table 1. Here, we use the heavy atom

Table 1. Comparison of Retrosynthetic Methods

feasibility form
method complexity ~ guarantee atom mapping DAG
es (template-
tree search O(bh) no ¥y ba(sed)P yes
DirectMultiStep o) no no yes
FragmentRetro o(n?) no yes no

count of a given target h as a proxy for problem difficulty. For
tree-search methods, the depth of the search tree for a given
target can be estimated as h/Ah, where Ah is the average
reduction in heavy-atom count per reaction. Therefore, tree-
search methods scale exponentially as O" 2" = O(b"), where
b is the branching factor of the search tree and Ah can be treated
as constant. In comparison, DirectMultiStep models require
repeated computation of attention matrices and exhibit

polynomial complexity of O(K°®), since the route sequence

length scales as O(h*) and each attention operation scales as
o(h").

For FragmentRetro, the dominant computational cost arises
from substructure matching. However, fingerprint screening
eliminates the majority of nonmatching candidates before the
substructure check, effectively keeping this process inexpensive
in practice. This introduces a constant prefactor Cfp representing

the filtering efficiency. The cost still scales linearly with the stock
set size 18], and the number of possible fragment combinations
scales quadratically with h. Therefore, the overall complexity of

FragmentRetro can be derived as O(Cfp-lBl'hz) = O(h?). Note

that this analysis describes the asymptotic behavior and comes
with certain caveats. For example, we assume an ideal fingerprint
that prevents collisions between molecular features, but in
practice the fingerprint size is finite. Additionally, the worst case
could occur for extremely ring-heavy target molecules, where 1-
BRICS fragmentation of ring bonds produces a large number of
fragments and combinations, increasing the computational cost.

The exponential complexity of tree search also applies to the
Higherlev approach,"> which employs a higher-level retro-
synthetic strategy by abstracting functional groups based on
their electronegativity. For the Higherlev method, determining
whether a precursor exists in the stock compound set is
formulated as a substructure matching task. Since functional
group abstraction increases Ah, their approach effectively
reduces h/Ah in practice. Consequently, following our
derivation in SI Sections B.1 and B.3, the complexity of their
method is given by O(Cyr181-6"%") = O(b").

Table 1 provides a comparison of FragmentRetro, tree-search,
and DMS methods across key metrics, including computational
complexity, feasibility guarantees, and atom mapping capa-
bilities. Notably, none of these methods can guarantee that the
predicted synthetic routes are experimentally feasible. However,
each method has certain advantages that may improve the
likelihood of generating viable routes. Tree-search methods
that rely on reaction templates allow them to retrieve references
and metadata from template datasets, which can help assess
reaction feasibility. DirectMultiStep employs a data-driven
approach, generating reactions that are statistically closer to
experimentally validated synthetic routes. FragmentRetro
leverages fragmentation algorithms that preferentially break

Table 2. Search Performance on PaRoutes Test Sets with n; Stock or ng Stock as the Stock Set

method targets

MCTS” set-n;
set-ng

Retro*© set-n;
set-ng

DFPN* set-n;
set-ng

DMS-Explorer-XL? set-n,
set-ng

FragmentRetro + BRICS® set-n,
set-ng

FragmentRetro + r-BRICS® set-n,
set-ng

solved rate (%)

run time (s) clusters/solutions”

97.16 3033 109
96.89 365.7 113
97.28 300.7 31
97.29 3492 26
77.86 347.3 2
67.30 297.9 2
80.08 14.7 NA
79.04 16.3 NA
69.90 9.4 (26.2) 4
69.32 9.7 (27.1) 6
83.32 11.7 (30.2) 11
82.62 12.0 (32.2) 12

“Averages over all targets. ®Medians over all targets. NA indicates not available. “Data collected from the 2.0 version of PaRoutes in their GitHub
repository’® under the Apache-2.0 License. 9DMS models are run with a beam size of 50 on a single NVIDIA A100 GPU with half-precision
floating point inference (FP16). The other methods are run with a single CPU (no parallelization). “Runtimes in parentheses are reported without

property and fingerprint screening.
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bonds of retrosynthetic interest. Since these bonds are more
likely to correspond to feasible reaction conditions, the resulting
fragments can guide retrosynthetic planning effectively. Addi-
tionally, specific bond-breaking patterns can be mapped to
known reaction types (similar to how synthons relate to actual
molecules), suggesting that FragmentRetro could be extended
to generate a DAG representation of synthetic routes. This
remains an area for future development. Analogous to
FragmentRetro’s use of fragments, Higherlev also necessitates
a mapping from abstracted portions to actual functional groups.

4. EMPIRICAL VALIDATION

4.1. Search Performance Evaluation

Table 2 presents the search performance of various methods on
the PaRoutes test sets n; and ns. All methods were evaluated
using a single CPU/core (no parallelization), except for the
DMS models, which were run on an NVIDIA A100 GPU. The
stock set for each test follows the SMs defined in n; or ng, as done
in the PaRoutes work.'* Among the evaluated methods, Retro®,
a tree-search approach, achieved the highest solved rate. The
DMS Explorer-XL model'* exhibited competitive performance,
solving a significant portion of the test set while providing a 20x
speedup compared to tree-search methods. Similarly, Fragmen-
tRetro demonstrated decent performance, particularly with r-
BRICS fragmentation, which outperformed DMS in solved rate
while achieving a 30x speedup over tree-search methods. For
FragmentRetro, a target is considered solved if at least one
solution is found, where the solution corresponds to a set of valid
fragments that can reconstruct the target compound, since the
method does not output DAGs. Table 2 also reports the median
number of solutions. Since the PaRoutes paper'® clustered
synthetic routes using the method in’> to estimate route
diversity, we compare the number of solutions from
FragmentRetro to the number of clusters from PaRoutes.
However, these metrics are not directly comparable, as a single
FragmentRetro solution can correspond to multiple synthetic
routes—each valid fragment combination may have substruc-
ture matches with different BBs.

Table 3 summarizes the search performance of different
methods on the USPTO-190 dataset, using the Buyables stock
set (0.329 M BBs) provided by the Higherlev study."® This stock
set is a more practical choice than the eMolecule screening
compounds (23.1 M compounds) used in Retro*,* as many
screening compounds require custom synthesis. It is important
to note that 13 compounds from USPTO-190 appear as target
compounds in the single-step training dataset for Higherlev,
while 47 compounds appear as targets or intermediates in the
PaRoutes training set used by the DMS models. The DMS study
reports solved rates both with and without these 47 compounds,
showing minor differences. We expect similar results for
Higherlev. FragmentRetro with BRICS fragmentation achieved
a comparable solved rate to the best-performing DMS models
but did not surpass Higherlev. However, with r-BRICS
fragmentation, FragmentRetro achieved the highest solved
rate among all methods. Despite this, the runtime of
FragmentRetro is similar to that of tree-search methods in
Table 2, as execution time scales with the stock set size (18l),
even with the prefactor Cg,. This is due to substructure matching

being the dominant computational bottleneck, as each candidate
BB must be checked against the fragments. Fortunately, these
checks are independent and can be efliciently parallelized across
multiple CPU cores. To demonstrate this scalability, we also
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Table 3. Search Performance on USPTO-190“ with
Buyables” as the Stock Set

method® solved rate (%) Run Time (s)d
DMS-Explorer-XL 27.9 219
Original + MCTS" 463 NA
DMS-Flash® 55.3 313
DMS-Wide® 56.8 105.8
Retro*-0% 732 NA (65.0)
Higherlev + MCTS" 73.7 NA
Retro*¥ 76.8 NA (57.1)
FragmentRetro + BRICS® 532 344.0 (74.2,49.1, 42.1)
FragmentRetro + r-BRICS® 78.4 473.1 (102.1, 72.9, 64.5)

“USPTO-190 is from® (downloaded from®' under the CC BY 4.0
License). “The stock compounds (Buyables) are from'> under the
CC BY 4.0 License and includes 0.329 M buyable building blocks
from eMolecules, Sigma-Aldrich, Mcule, ChemBridge Hit2Lead, and
WuXi LabNetwork. “DMS models are run with a beam size of 50 on a
single NVIDIA A100 GPU with half-precision floating point inference
(FP16). The other methods are run with a single CPU (no
parallelization). dAverages over all targets. NA indicates that the
runtime is not available in the original publication. “Uses step counts
from 2 to 8 (total of 7 DMS model runs per compound).vaaluated
in this work using Retro*’s* official repository. The original
checkpoint is used with a maximum of 500 iterations. Runtimes in
parentheses are first-solution times, as the repository lacks search
continuation. *Runtimes in parentheses are from parallelization with
S, 10, and 20 CPU cores (during substructure matching).

report FragmentRetro runtime using S, 10, and 20 CPU cores.
The results show that parallelization significantly reduces
runtime, achieving speeds comparable to or better than DMS
models. Notably, 5 and 10 CPU cores exhibit near-perfect
parallelization efficiency, with speedups of 4.6X and 6.9X,
respectively. However, with 20 CPU cores, the speedup is only
8.2x, indicating diminishing returns. This suggests that at this
stock set size, the trade-off between parallelization efficiency and
overhead is optimal around 10 CPU cores.

4.2, Case Studies

To demonstrate the practical utility of FragmentRetro, we
evaluate drugs and natural products, as shown in Figure 2 (and
SI Section C). These targets are selected from the Higherlev
study'” and represent different levels of retrosynthetic difficulty:
Narlaprevir, which can be solved without a higher-level strategy;
Martinellic Acid, which requires a higher-level strategy to be
solved; and Lennoxamine, which is not solvable by either
approach. For Narlaprevir, we apply BRICS fragmentation rules,
while for Martinellic Acid and Lennoxamine, we use r-BRICS
since these compounds contain fused rings that BRICS would
otherwise leave intact. FragmentRetro generates hundreds of
solutions for each of these compounds. Figure 2 presents a
representative solution for each compound, selected to
minimize the number of fragment combinations.

Each fragment combination can match multiple BBs; Figure 2
displays one representative building block per fragment
combination. Some BBs are directly compatible for coupling,
while others require additional preparation steps, such as
functional group interconversion or protective group manipu-
lation. As a result, the number of fragments in a solution does not
directly correlate with the number of synthesis steps, similar to
how higher-level abstraction methods operate.
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Figure 2. FragmentRetro evaluation on Narlaprevir, Martinellic Acid, and Lennoxamine. The fragments from BRICS and r-BRICS are highlighted.
One solution for each compound from FragmentRetro is shown. The highlighted fragments remain highlighted in both the solutions and
corresponding building blocks, even when some BRICS or r-BRICS cleavage sites are not fragmented in the solutions.

5. CONCLUSIONS

FragmentRetro provides a scalable framework for fragment-
based retrosynthesis, achieving quadratic complexity through
stock-aware fragment exploration and pruning. While Fragmen-
tRetro does not explicitly return a DAG, it performs the same
core task as other retrosynthetic methods: identifying chemically
valid decompositions of a target molecule into known
precursors. Its outputs provide sets of fragment combinations
that capture aspects of both single-step (individual disconnec-
tions) and multistep (multiple simultaneous combinations)
approaches, although the method does not define the exact
sequence of reactions or BBs. DAG construction is a post-
processing step that depends on the fragment connectivity and
can be layered atop our approach. Therefore, comparing the
search complexity of FragmentRetro to tree-search and DMS
methods is both appropriate and informative. Unlike DMS and
tree-search methods that do not rely on template-based single-
step models, FragmentRetro remains compatible with atom
mapping tools, making it a flexible approach for retrosynthetic
planning. However, FragmentRetro is not a route-level synthesis
planning tool in its current form. Mapping solutions and BBs to
fully elaborated synthetic routes (forming a DAG) would be
required to enable direct route quality comparisons across
different methods, potentially using top-k accuracy as an
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evaluation metric. Future work may focus on integrating cost-
aware metrics and experimental validation to further refine its
applicability.

This work also presents the first formal computational analysis

of different retrosynthetic approaches. We establish that tree-
search methods scale exponentially as O(bh), DMS has a
polynomial complexity of O(h°), and FragmentRetro achieves

O(h*) complexity, with the caveat that its runtime scales linearly
with the stock set size. However, we show that substructure
matching exhibits strong parallelization efficiency, particularly
when applied to large building block datasets such as Buyables.
Given the trade-offs between computational cost and solved
rates, an efficient retrosynthesis pipeline could adopt a tiered
approach: first applying FragmentRetro for rapid exploration,
then leveraging DMS for higher route quality, and finally
resorting to tree-search methods when higher solved rates are
required. Overall, FragmentRetro represents a promising
direction for fragment-based retrosynthesis, offering a computa-

tionally efficient option that complements existing methods.
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